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Machine learning will change imaging technology,
but the current technology is still in its infancy
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Biomedical imaging is going through a
paradigm shift driven by machine learning

Past: Focus on hardware for image formation

input instrument output

Present: Use digital image processing for better performance

input instrument computation output

Future: Al for retrieving hidden information

input instrument computation
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The vast majority of imaging problems
can be formulated as inverse problems

Forward problem: generate y from x

- . ¢
Ihstrument

Inverse problem: recover x from y

Source: Michael Unser
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The vast majority of imaging problems
can be formulated as inverse problems

Imaging Problem

2D or 3D
tomography

3D deconvolution
microscopy

+ structured illumination
i microscopy (SIM)

positron emission
tomography (PET)

magnetic resonance
Imaging (MRI)

Cardiac MRI

(parallel, nonuniform)

optical diffraction
tomography (ODT)

Light Source Forward Model
coherent x-ray yi = Ro,x
fluorescence y = Hzx
fluorescence y;, = HW;x
gamma rays y; = Hp,x
radio frequency y =SFx
radio frequency Yii = StFW;x
coherent light y; = W,;Fx

Variations

parallel, cone beam

brightfield, confocal,
light sheet

full 3D reconstruction,
non-sinusoidal patters

list mode with time-of-flight

uniform or nonuniform
sampling in k-space

gated or nongated,
retrospective registration

with holography or gating
interferometry

1
Source: Michael Unser »


http://bigwww.epfl.ch/tutorials/items/unser_emim_2017.pdf
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Example: Magnetic resonance imaging (MRI)
collects data in the spatial-frequency domain

reconstructed
image

collected
data

Inverse Fourier transform

Fourier transform

Source: Brian Hargreaves

Longer data collection leads to better images,
but it implies more discomfort for patients
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http://www-mrsrl.stanford.edu/~brian/mri-movies/
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Example: Magnetic resonance imaging (MRI)
collects data in the spatial-frequency domain

5 min scan

Longer data collection leads to better images,
but it implies more discomfort for patients

Liu et al., “RARE: Image Reconstruction using Deep Priors Learned
without Ground Truth,” IEEE J. Sel. Topics Signal Process., October 2020
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don transform

More projections lead to better images,
but also higher x-ray radiation dose
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Example: Tomographic imaging forms a single
volumetric image from multiple projections

60 projections 90 projections 120 projections

More projections lead to better images,
but also higher x-ray radiation dose
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Three challenges in biomedical imaging:
slow acquisition, imaging artifacts, and big data

5 min scan

Challenge #1: Acquisition is too slow for some applications
Due to sequential and indirect acquisition of data

Challenge #2: Reconstructed images contain artifacts:
Due to undersampling, model mismatch, and noise

Challenge #3: High computational/memory requirements:
Due to large volumes of data to process



& Washington

University in St Louis

Outline for the rest of the talk

e Regularization by Artifact Removal (RARE)
Integrating physical models and learned deep priors

e Efficient model-based deep learning (SGD-Net)
Approximating physical layers for complexity gains
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Example: Train a deep neural net to remove artifacts from an image

: Image 1 Supervised
formation ) ’{-'; i learning
input image artifact
raw data with artifacts removing CNN

raw data
(long scan)

high-quality

Imaging reference
system
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Question: What are some advantages of this approach?

Advantage #1: Very easy to implement and deploy

Use existing deep learning frameworks and architectures
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Example: Train a deep neural net to remove artifacts from an image

1w R

imaging input image artifact output
system with artifacts removing CNN image

Question: What are some advantages of this approach?

Advantage #1: Very easy to implement and deploy

Advantage #2: Very fast at test time

Simple pass through CNN (seconds) vs. optimization (hours)
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Advantage #1: Very easy to implement and deploy
Advantage #2: Very fast at test time

Advantage #3: No need to explicitly model anything

Everything is learned automatically from data
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Example: Train a deep neural net to remove artifacts from an image

1w R

imaging input image artifact output
system with artifacts removing CNN image

Question: What are some limitations of this approach?

Limitation #1: Does not allow for efficient model adaptation

One must retrain the model, which is computationally expensive!
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Simple recipe for DL-based image formation:
Train a supervised artifact-removing CNN

Example: Train a deep neural net to remove artifacts from an image

1w -8

imaging input image artifact output
system with artifacts removing CNN image

Question: What are some limitations of this approach?

Limitation #1: Does not allow for efficient model adaptation

Limitation #2: Needs ground truth for training the CNN

Limits applicability to some important imaging problems
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Simple recipe for DL-based image formation:
Train a supervised artifact-removing CNN

Example: Train a deep neural net to remove artifacts from an image

imaging input image artifact output
system with artifacts removing CNN image

Question: What are some limitations of this approach?

Limitation #1: Does not allow for efficient model adaptation
Limitation #2: Needs ground truth for training the CNN

Limitation #3: Does not exploit known physical models
Why re-learn something we know?
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Simple recipe for DL-based image formation:
Train a supervised artifact-removing CNN

Example: Train a deep neural net to remove artifacts from an image

imaging input image artifact output
system with artifacts removing CNN image

Question: What are some limitations of this approach?

Limitation #1: Does not allow for efficient model adaptation
Limitation #2: Needs ground truth for training the CNN

Limitation #3: Does not exploit known physical models
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ldea: Address limitations by combining
model-based optimization and deep learning

Regularization by denoising
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ldea: Address limitations by combining
model-based optimization and deep learning

Regularization by denoising

[Romano’l7]
Reqularization b :
arg’:ifact removolly Plug-and-play Priors
Liu'20 Consensus [Venkat’13]
[Liu20] Equilibrium
[Buzzard’19]
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E =mC : : s @R ;
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Models . Learning !
--------------- ‘ TNRD Neural Sensors *=--cccccacaaa-=’
[Chen’15] [Martel’20]

Learning Tomo
[Kamilov’15]

LISTA
[Gregor’10]

SGD-Net
[Liu’21]

MoDL
[Aggarwal’19]
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artifact removing deep networks as image priors

Liu et al., “RARE: Image Reconstruction using Deep Priors Learned
without Ground Truth,” IEEE J. Sel. Topics Signal Process., October 2020
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Reqgularization by Artifact Removal (RARE) uses
artifact removing deep networks as image priors

Idea: Pre-train an artifact removing CNN on a dataset of images

Liu et al., “RARE: Image Reconstruction using Deep Priors Learned
without Ground Truth,” IEEE J. Sel. Topics Signal Process., October 2020
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Reqgularization by Artifact Removal (RARE) uses
artifact removing deep networks as image priors

|dea: Pre-train an artifact removing CNN on a dataset of images

Includes the physical model
. of the imaging instrument

E . 1
. Example data fit: go(x) = §Hy — H¢w||3

The data-fidelity term measures the distance between
the actual measurements and predicted ones!



&8 Washington

University in St Louis

Reqgularization by Artifact Removal (RARE) uses
artifact removing deep networks as image priors

|dea: Pre-train an artifact removing CNN on a dataset of images

Combine the CNN with the physical-model of the instrument

Question: How an we use information from both the
data-fidelity term and the CNN?

1 5 ¢ = parameters of the measurement model
0 = parameters of the CNN
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Reqgularization by Artifact Removal (RARE) uses
artifact removing deep networks as image priors

|dea: Pre-train an artifact removing CNN on a dataset of images

“gradient” descent improve reduce image
data fit artifacts
: . 1 o !
: Exam P le data fit: Jdo (fL') = = | | Yy — H oL ‘ ‘ 2 E Romano et al., “The Little Engine That Could: Regularization by Denoising,”

2 : SIAM J. Imaging Sci., vol. 10, no. 4, 2017
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Reqgularization by Artifact Removal (RARE) uses
artifact removing deep networks as image priors

|dea: Pre-train an artifact removing CNN on a dataset of images

' — 't — 4Gzt G(x) = Vgg(x) + 7(x — Re(x))

RARE #2: Based on Plug-and-Play Priors (PnP)

t) reduce image § t—1 YV gl t_1) improve

t
T Rg(z artifacts SR data fit

Venkatakrishnan et al., “Plug-and-Play Priors for Model Based Reconstruction,” Kamilov et al., “A Plug-and-Play Priors Approach for Solving
Proc. IEEE GlobalSIP, pp. 945-948, December 2013. Nonlinear Imaging Inverse Problems,” IEEE Signal Process. Lett., 2017
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Reqgularization by Artifact Removal (RARE) uses
artifact removing deep networks as image priors

|dea: Pre-train an artifact removing CNN on a dataset of images

RARE #1: Based on Reqularization by Denoising (RED)
2t 2t — 4Gz G(x) = Vgg(x) + 7(x — Ro())
RARE #2: Based on Plug-and-Play Priors (PnP)

x' < Rg(2") 2zt 2 — Ve (x' 1)

RARE leverages DL-priors while controlling fidelity to data!
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Suppose there exists a vector that satisfies

J. Liu, S. Asif, B. Wohlberg, and U. S. Kamilov, “Recovery Analysis for Plug-and-
Play Priors using the Restricted Eigenvalue Condition”, arXiv:2106.03668, 2021
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RARE might look heuristic, but it has a rigorous
foundation iIn monotone operator theory

Suppose there exists a vector that satisfies

Question: How can we interpret such a vector?

J. Liu, S. Asif, B. Wohlberg, and U. S. Kamilov, “Recovery Analysis for Plug-and-
Play Priors using the Restricted Eigenvalue Condition”, arXiv:2106.03668, 2021
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RARE might look heuristic, but it has a rigorous
foundation iIn monotone operator theory

Suppose there exists a vector that satisfies

Zer(Vg) ={x € R" : Vg(x) = 0} Fix(R) = {x € R" : & = R(x)}

Consistent with the measurements Artifact-free according to the prior

J. Liu, S. Asif, B. Wohlberg, and U. S. Kamilov, “Recovery Analysis for Plug-and-
Play Priors using the Restricted Eigenvalue Condition”, arXiv:2106.03668, 2021
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RARE might look heuristic, but it has a rigorous
foundation in monotone operator theory

Suppose there exists a vector that satisfies
x” € Zer(Vg) N Fix(R)

Consider the following assumptions

Assumption 1. The function ¢ is convex and L-Lipschitz continuous. :

. Assumption 2. The AR operator R is a contraction.

. Definition 1. We say that an operator S is A-Lipschitz continuous if
- 1IS(@) — S)]l2 < Al — g, for all @,y € R™.
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RARE might look heuristic, but it has a rigorous
foundation in monotone operator theory

Suppose there exists a vector that satisfies
x” € Zer(Vg) N Fix(R)
Consider the following assumptions

Assumption 1. The tunction g is convex and L-Lipschitz continuous.

Assumption 2. The AR operator R is a contraction.

Theorem 1. Both variants of RARE (based on PnP and RED) converge to a
. vector in Zer(Vg) N Fix(R) = Fix(T) = Zer(G), where T = R(I —yVg). '

PnP and RED are equivalent under the assumptions above!

J. Liu, S. Asif, B. Wohlberg, and U. S. Kamilov, “Recovery Analysis for Plug-and-
Play Priors using the Restricted Eigenvalue Condition”, arXiv:2106.03668, 2021
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Artifact2Artifact (A2A) is a technique for training
CNN priors for RARE without ground truth

Consider multiple independent views for each object
(examples: radial lines in MRI, projections in CT)

Y2

“ground truth” available artifact available
not available data #1 removing CNN data #3

Artifact2Artifact (A2A) uses two independent acquisitions of
the same object as training labels for the AR prior!

Lehtinen et al., “Noise2Noise: Learning Image Liu et al., “RARE: Image Reconstruction using Deep Priors Learned
Restoration without Clean Data,” Proc. ICML, 2018 without Ground Truth,” IEEE J. Sel. Topics Signal Process., October 2020
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Application: Reconstructing 10 motion phases
from a 1 minute free-breathing MRI scan

iteration=9 iteration=1 iteration=3 iteration=5 iteration=7 iteration=9
91.82% | 93.77% | 95.74% 98.56% 100%
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e Efficient model-based deep learning (SGD-Net)
Approximating physical layers for complexity gains
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SIMBA decomposes a large-scale imaging
problem into a sequence of partial updates

Wu et al., “SIMBA: Scalable Inversion in Optical Tomography using Deep Sun et al., “A Provably Convergent Asynchronous Block Parallel Stochastic
Denoising Priors,” IEEE J. Sel. Topics Signal Process., October 2020 Method using Deep Denoising Priors,” Proc. ICLR, May 2021
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SIMBA decomposes a large-scale imaging
problem into a sequence of partial updates

Traditional PnP/RED algorithms are use all the data at every
iteration, which significantly limits their scalability

. Large measurement challenge:
: 102-106 measurements,
. each with 106 pixels

S - . Large image challenge:
_ ’_;‘,{‘/x_&‘; "f ; 5 3D (space), _4D (space, time),
L= Y By o . 5D (space, time, spectrum)
12 L 5T . images with 106-1012 voxels
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SIMBA decomposes a large-scale imaging
problem into a sequence of partial updates

Traditional PnP/RED algorithms are use all the data at every
iteration, which significantly limits their scalability

Batch data-fidelity: g(x) =

Complexity grows with
Z ge(w) the # of measurements
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SIMBA decomposes a large-scale imaging
problem into a sequence of partial updates

Traditional PnP/RED algorithms are use all the data at every
iteration, which significantly limits their scalability

SIMBA uses only a subset of variables at a time which makes it
scalable to datasets that are too large for batch processing

o
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SIMBA decomposes a large-scale imaging
problem into a sequence of partial updates

Traditional PnP/RED algorithms are use all the data at every
iteration, which significantly limits their scalability

SIMBA uses only a subset of variables at a time which makes it
scalable to datasets that are too large for batch processing

Complexity grows with
Z ge(w) the # of measurements

: : : ~ 1 Complexity independent from
Online data-fidelity: g(w) - E Z 9ty (:B) the #pof m)e/osurcleoments

1
Example term: g/(x) = §Hye — HEiBHg
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SIMBA decomposes a large-scale imaging
problem into a sequence of partial updates

Traditional PnP/RED algorithms are use all the data at every
iteration, which significantly limits their scalability

SIMBA uses only a subset of variables at a time which makes it
scalable to datasets that are too large for batch processing

SIMBA uses only B << L

RARE SIMBA measurements per iteration
Vg(z"1) < FullGradient(z" 1) @g(wk_l) <~ MinibatchGradient(a*~1) :
. G(a"!) « V(@) 4 r(a" T — Re(2FT)) ii G(a" 1)« Vg(a* ') +7(a" ! —Ro(z"")) |

k—l) k—l)

h — 1 — 4Gz

xh — "1 — 4Gz
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SIMBA decomposes a large-scale imaging
problem into a sequence of partial updates

Traditional PnP/RED algorithms are use all the data at every
iteration, which significantly limits their scalability

SIMBA uses only a subset of variables at a time which makes it
scalable to datasets that are too large for batch processing

Theorem 1. Run SIMBA for t > 1 iterations under Assumptions 1-3 using a

fixed step-size 0 < v < 1/(L + 27) and a fixed minibatch size B = t. Then, we
have

1 _
E|- Y63 <
| k=1 i

ER

where C' > 0 is a constant.

This convergence behavior is similar to that of SGD

Wu et al., “SIMBA: Scalable Inversion in Optical Tomography using Deep
Denoising Priors,” IEEE J. Sel. Topics Signal Process., October 2020
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SIMBA leads to faster image reconstruction when
using several processing cores

100 35
Al Async-RARE (#c = 2) = Nf 29 00 dB
e ] = (/)
o 2 o
= < 7
10 108 0
0 iteration (k) 500 0 time (second) 8000 0 time (second) 8000
Method SNR Time Speed-Up
RARE (1-core) 29.01 dB 1.8 hrs - .
Sync-SIMBA (8-core) 29.00 dB 389 mins | 2.8X .
Async-SIMBA-BG (8-core) 29.01 dB 17.9 mins 6.1x .
Async-SIMBA-SG (8-core) 28.08 dB 13.0 mins 8.4x

Accelerations of up to 8.4x for image reconstruction
In compressive sensing

Sun et al., “A Provably Convergent Asynchronous Block Parallel Stochastic
Method using Deep Denoising Priors,” Proc. ICLR, May 2021



& Washington

University in St Louis

SIMBA leads to better image quality when
combined with deep priors

Significant improvements in sectioning capability in
Intensity Diffraction Tomography (IDT)

Wu et al., “SIMBA: Scalable Inversion in Optical Tomography using Deep
Denoising Priors,” IEEE J. Sel. Topics Signal Process., October 2020
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Slice 8 of 1024x1024x25 ‘{ A ' 2 a5
10/89' SIMBA DnCNN B o
Full Reconstruction ok 4 | 2

N,

) S
"I-‘-"h‘_f,‘.-j‘.-‘ |
[ #

LR & -

Abs. Value of Residual

J | | :.01
SIMBA is as good as full RARE
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SGD-Net is a model-based deep network
obtained by “unfolding” iterations of SIMBA

An “optimal” artifact-removal CNN can be designed by
unfolding truncated RARE and training it end-to-end

Repeat for Q lterations

q*"iteration

N Backpropagation
£Xr -«
0
Ty
» Loss
AH —
Full measurements
L [ 7 /y/ VA4 /I
HEEEEEN

Limitation: Computational and GPU-memory complexities of
data-consistency layers scale with the number of projections!

Liu et al., “SGD-Net: Efficient Model-Based Deep Learning with
Theoretical Guarantees,” IEEE Trans. Comput. Imag., in press.
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SGD-Net is a model-based deep network
obtained by “unfolding” iterations of SIMBA

An “optimal” artifact-removal CNN can be designed by
unfolding truncated RARE and training it end-to-end

SGD-Net improves scalability of training and testing by
directly unfolding SIMBA that processes data in minibatches
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Key idea: Use minibatches in data-consistency layers!
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SGD-Net is a model-based deep network
obtained by “unfolding” iterations of SIMBA

An “optimal” artifact-removal CNN can be designed by
unfolding truncated RARE and training it end-to-end

SGD-Net improves scalability of training and testing by
directly unfolding SIMBA that processes data in minibatches

We theoretically show that SGD-Net can be trained to approximate
the full unfolded RARE to any desired precision (see the paper)

I SGD-Net (40)
I SGD-Net (120)
[ ] SGD-Net (180)
I U-RARE

Time (hr)
B
SNR (dB)

23.5

Training accelerations of up to 2x for the
same image quality in IDT and CT!
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SGD-Net can significantly reduce the training
time and the usage of GPU-memory



SGD-Net is competitive in terms of image quality

with some of the best deep learning methods

Metric SNR SSIM Size Time
Input-SNR 20-5 20 20+5 | 20-5 20 2045 #lterations Model/Measurement CPU/GPU
Method dB)

TV 2426 | 2431 | 2439 | 0.887 | 0.890 | 0.891 250 —/1.01GB 87.58s/10.66s
U-Net 2427 | 2433 | 24.35 | 0.887 | 0.889 | 0.889 — 1182 MB/—— 0.925s/0.012s
ISTA-Nett 2439 | 2441 | 2447 | 0.889 | 0.890 | 0.890 12 6.90 MB/1.01 GB 18.36s/0.402s
RED-DnCNN 24.54 | 2461 | 24.67 | 0.890 | 0.892 | 0.893 220 2.29MB/1.01 GB 197.5s/4.144s
SGD-Net (40) 24.84 | 2494 | 2496 | 0.896 | 0.899 | 0.901 8 29.6 MB/0.17 GB 7.443s/0.322s
SGD-Net (120) 24.87 | 2493 | 2494 | 0.898 | 0.899 | 0.900 8 29.6 MB/0.51 GB 16.51s/0.617s
U-RED 24.89 | 2493 | 2494 | 0.898 | 0.899 | 0.900 8 29.6 MB/1.01 GB 31.23s/0.943s

SGD-Net reduces complexity of model-based deep learning,

Intensity Diffraction Tomography (IDT) with 240 measurements!

while offering comparable or better imaging quality
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SGD-Net is competitive in terms of image quality

with some of the best deep learning methods

Method
Views Metric RED- ISTA- SGD- SGD-

FBP v U-Net DnCNN Net+ Net (30)  Net (60)  URED

90 SNR 17.56 30.09 31.17 31.93 32.01 32.76 32.88 32.87
SSIM 0.362 0.924 0.930 0.935 0.934 0.942 0.943 0.943

120 SNR 20.03 31.23 32.54 33.13 33.17 3391 33.95 34.01
SSIM 0.449 0.929 0.936 0.941 0.940 0.948 0.949 0.950

180 SNR 23.19 32.97 34.04 34.49 34.61 35.44 35.46 35.46
SSIM 0.582 0.940 0.948 0.950 0.951 0.957 0.958 0.958

Time CPU 0.859s 304.1s 2.061s 460.3s 15.95s 11.56s 13.31s 20.72s
(views=180) GPU 0.147s 13.58s 0.217s 5.177s 0.331s 0.269s 0.278s 0.325s

Sparse-view Computerized Tomography (CT)

SGD-Net reduces complexity of model-based deep learning,

while offering comparable or better imaging quality



SGD-Net is competitive in terms of image quality
with some of the best deep learning methods

U-Net ISTA-Net+ SGD-Net (60)

3+79/0.933 32-10/0.938 32:83/0.949

SGD-Net significantly improves over several
existing methods in terms of imaging quality!
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Outline for the rest of the talk

One more thing: How does RARE compare with the
methods based on using generative models as priors?
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Artifact-removal (AR) priors improve over
AWGN denoising priors when used in PnP/RED
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Artifact-removal (AR) priors improve over
AWGN denoising priors when used in PnP/RED

Recovery Analysis for Plug-and-Play Priors using the
Restricted Eigenvalue Condition

Jiaming Liu M. Salman Asif
Washington University in St. Louis University of California, Riverside
jiaming.liu@wustl.edu sasif@ece.ucr.edu
Brendt Wohlberg Ulugbek S. Kamilov
Los Alamos National Laboratory Washington University in St. Louis
brendtQieee.org kamilov@wustl.edu
T — P

J. Liu, S. Asif, B. Wohlberg, and U. S. Kamilov, “Recovery Analysis for Plug-and-
Play Priors using the Restricted Eigenvalue Condition”, arXiv:2106.03668, 2021
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Artifact-removal (AR) priors improve over
AWGN denoising priors when used in PnP/RED

Ground truth PULSE ILO

RED (denoising) PnP (denoising)

Table 3: Average PSNR (dB) values for several algorithms on test images from CelebA HQ.

1. AR s better than AWGN (expected!) e 0w wm W% w% s

. . " = TV 32.13 35.24 37.41 39.35 41.29

2. RED is nearly equivalent to PnP (somehow surprising!) PULSE (34 Zas 298 W06 M W7
. .y . - ILO [35] 3 36.15 40.98 43.46 47.89 4821

3. PnP (AR) is competitive with PULSE and ILO (surprising!) D Weneling sde 4Ly e 4D w0

PnP (AR) 39.19 44.20 48.66 51.32 53.89
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Artifact-removal (AR) priors improve over
AWGN denoising priors when used in PnP/RED

Ground truth | PULSE ILO

2597 ‘

enoising)
b

Table 3: Average PSNR (dB) values for several algorithms on test images from CelebA HQ.

1. AR s better than AWGN (expected!) et T LR U T

. . " = TV 32.13 35.24 37.41 39.35 41.29

2. RED is nearly equivalent to PnP (somehow surprisingf) PULSE [34 nmas  mw  moo s um
- - . - ILO [35] - 36.15 40.98 43.46 47.89 48.21

3. PnP (AR) is competitive with PULSE and ILO (surprising!) o Wenoting) Sde 4L dses D

PnP (AR) 39.19 44.20 48.66 51.32 53.89
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To conclude

@ We increasingly rely on deep learning for characterizing
complex high-dimensional statistical distributions

® RARE is a theoretically sound algorithm that combines
an artifact removing CNN with data consistency

® SGD-Net is a model-based network that uses minibatches
to reduce complexity of data-consistency layers



Computational Imaging Group (CIG) at WashU
focuses on algorithms and math for imaging

Computational Imaging %
- Group (CIG) at WashU ‘
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Source: WashU GIFs

Learn more about what we do at: cigroup.wustl.edu


https://giphy.com/washugifs
http://cigroup.wustl.edu
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