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• AdS/CFT applied to condensed matter:

1. Generating functional for new non-trivial  
unknown IR fixed points 

2. Far superior method to compute real time  
finite temperature/density correlation functions



Condensed Matter in a Nutshell

• Systems at finite density

• The generic bosonic ground state

• Macroscopic properties: SSB

•               Goldstone boson

• The generic fermionic ground state

• Macroscopic properties: Fermi gas/liquid

•                  Quasiparticle

• Instabilities: BCS superconductivity

m = 0

m = 0 Electrons in the solid state

• BCS Superconductor

BCS Pairing
- instability to bound state.

Superconducting state
- Cooper pair Bose-Einstein condensate
- U(1) Spontaneous symmetry breaking
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Lattice effects at low energy

• Bands from eigenvalue repulsion
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• Broken translations affect transport

• Drude model

• Origin translational symmetry breaking 

• Lattice                              distinct lattice momentum

• Impurities (“disorder”)       “ensemble average”

• Translational symmetry breaking can be weak or strong

“Lattice” effects at low energy
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What is the strange metal?



The strange metal in high Tc cuprates



What is the theory of the strange metal?



Why is a strange metal “strange”?

• Linear-in-T resistivity  
 
 

e.g. Anderson, Physics Today 2013

⇢ ⌘ 1

�
⇠ T

Resistivity
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Bi - 2201

Cu

Resistivity is very large, linear in T, non-
saturating
Implies strong local (back-)scattering
Mean free path is a lattice constant or less -
-- is this a meaningful concept?

Martin et al, 
PRB41 (1990) 846
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Why is a strange metal “strange”?

• Linear-in-T resistivity  
 

• Power Law in AC conductivity  
 
 

e.g. Anderson, Physics Today 2013

⇢ ⌘ 1

�
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Scaling in AC conductivity

Van Der Marel et al.

Holographic conductivity, Elias Kiritsis

5-

Van der Marel et al, 
Nature 425, 271 (2003)
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Why is a strange metal “strange”?

• Linear-in-T resistivity  
 

• Power Law in AC conductivity

• Hall angle vs DC conductivity scaling 
 
 
 
 
 
 
 

e.g. Anderson, Physics Today 2013
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Why is a strange metal “strange”?

• Linear-in-T resistivity  
 

• Power Law in AC conductivity

• Hall angle vs DC conductivity scaling

• Inverse Matthiessen law  
 
 
 
 
 
 
 

e.g. Anderson, Physics Today 2013
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Why is a strange metal “strange”?

• Linear-in-T resistivity  
 

• Power Law in AC conductivity

• Hall angle vs DC conductivity scaling

• Inverse Matthiessen law

• Lots of Power law scaling 
 
 
 
 

e.g. Anderson, Physics Today 2013
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• Linear-in-T resistivity  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The marginal Fermi liquid

• The Fermion Green’s function

G(!, k) =
1
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G(!, k) =
1

! � vF k + ⌃(!, k)

• The Fermion Green’s function  
 
 

• Strange metal: postulate phenomenologically

The marginal Fermi liquid

Varma, Littlewood, Schmitt-Rink, 
Abrahams, Ruckenstein, 

PRL63 (1989) 1996
⌃(!) = �! ln!



• The marginal Fermi liquid Green’s function

• Explains numerous features: notably    -linear resistivity

• Assumes Fermi-surface-excitations are responsible for 
transport

The marginal Fermi liquid

G(!, k) =
1

! � vF k + �! ln!

Resistivity

Martin et al Phys. Rev. B 41:846 (1990 )

Bi - 2201

Cu

Resistivity is very large, linear in T, non-
saturating
Implies strong local (back-)scattering
Mean free path is a lattice constant or less -
-- is this a meaningful concept?

Martin et al, PRB41 (1990) 846
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FIG. 2: One-loop a) fermion and b) photon self-energies.

where v
0

and e
0

are the bare Fermi velocity and charge,
respectively,  n is a four-component spinor field describ-
ing a fermion of specie n (for graphene NF = 2) and A

0

is the gauge field mediating the instantaneous Coulomb
interaction. The Dirac matrices, �µ = (�0,~� ) satisfy
the usual algebra {�µ, �⌫} = 2gµ⌫ , with metric tensor
gµ⌫ = diag(+,�,�).

From Eq. (16), the bare momentum space fermion
propagator reads (we use the convention pµ = (p0, v

0

~p )):

S
0

(p) =
i/p

p2
, /p = �µpµ = �0p

0

� v
0

~� · ~p , (17)

and we shall implicitly assume that Feynman’s prescrip-
tion, p2 ⌘ p2+i0+, holds so that we may Wick rotate all
integrals. The e↵ective photon propagator reads:

V
0

(~q ) =
i

2(|~q |2)1/2
, (18)

and the bare vertex is: �ie
0

�0.
In conventional DR,17 these Feynman rules stay the

same but momenta, Dirac matrices and metric tensor
are extended to span a De-dimensional space (keeping
Tr [1] = 4NF ) with De = 2 � 2"� . All bare param-
eters and fields are then related to renormalized ones
via renormalization group constants:  n = Z

1/2
  nr,

A
0

= Z
1/2
A A

0r and v
0

= Zvv. We shall use DR in the
MS scheme, where the Zs are polynomial in 1/"� and the
bare charge, e

0

, is related to the renormalized one, e, via:

e2
0

(4⇡)De/2
=

e2(µ)

4⇡
µ2"� Z2

e (µ) e
�E"� , (19)

where µ is the renormalization scale. In graphene, charge
does not flow and: Ze = 1.

We may now focus on the one-loop fermion self-energy,
Fig. 2a. The latter is defined as:

� i⌃
1

(k) =

Z
[ddeq] (�ie

0

�0)S
0

(k + q) (�ie
0

�0)V
0

(q) ,

where de = 1+De is the space-time dimension. Because
of the instantaneous nature of the interaction this self-
energy depends only on momentum; there is therefore
neither wave-function nor vertex renormalization: Z =
Z�1

�

= 1. The parametrization:

⌃
1

(~k ) = v
0

~�·~k⌃k1(|~k |2) , ⌃k1(|~k |2) = �Tr[~� · ~k⌃
1

(~k )]

4NF v0|~k |2
,

(20)

together with Eqs. (8), yields:

⌃k1(|~k |2) =
e2
0

8 v
0

(|~k |2)De/2�1

(4⇡)De/2
G(1/2, 1/2) . (21)

Performing the "�-expansion in the MS scheme, yields,
with one-loop accuracy:

⌃k1(|~k |2) =
↵(µ)

8

✓
1

"�
� Lk + 4 log 2 + O("�)

◆
, (22)

where ↵ is the renormalized coupling constant and Lk =
log(|~k |2/µ2). The UV-divergent self-energy leads to a
renormalization of the Fermi velocity:18

Zv = 1� ↵(µ)

8"�
+O(↵2), ↵(µ) =

e2(µ)

4⇡v(µ)
. (23)

The corresponding beta-function is negative: �v =
d log v(e(µ))

d log µ = �↵/4, implying that Fermi velocity grows

in the infrared.18

We may proceed in a similar way with the one-loop
photon self-energy, Fig. 2b, defined as:

i⇧µ⌫
1

(q) = �
Z
[ddek] Tr [(�ie

0

�µ)S
0

(k + q) (�ie
0

�⌫)S
0

(k)] .

(24)
Focusing on ⇧00, performing the trace, going to euclidean
space (q

0

= iqE0

), integrating over frequencies and taking
the ~q ! 0 limit, yields:

⇧00

1

(qE0

, ~q ! 0) =
NF

2v
0

e2
0

|~q |2 De � 1

De

Z
[dDek]

|~k | [|~k |2 +m2

0

]
,

(25)
which is of the form Eq. (9) with m

0

= qE0

/2v
0

. This is
immediately integrated to give:

⇧00

1

(qE0

, ~q ! 0) =
NF

2v
0

m
0

|~q |2 e2
0

(m2

0

)�"�

(4⇡)De/2

De � 1

De
B(1, 1/2) .

(26)
Using Eqs. (19) and (23) to express the bare parameters
in terms of renormalized ones and performing the "�-
expansion yields, with two-loop accuracy:

⇧00

1

(q
0

, ~q ! 0) = �NF e
2

8

|~q |2

iq
0

⇣
1� ↵

4

⌘
. (27)

We note that Fermi velocity renormalization plays a cru-
cial role in Eq. (27) as it brings the factor (Zv)2"� =
1�↵/4 to O("�) accuracy. Combining Eqs. (1) and (27),
we arrive at: �

1

(q
0

) = �
0

(1 + C0(D)↵ + O(↵2)), with
C0(D) = �1/4.
We may now proceed in a similar way with the help of

the Kubo formula Eq. (2). In order to better exploit the
O(2) space rotational symmetry of the system we shall
derive an alternate formula based on Eq. (24). Using
the Ward identity, S

0

(k)(�ie
0

/p)S
0

(k + p) = e
0

[S
0

(k) �
S
0

(k + p)], this function can be shown to be transverse:
qµ⇧

µ⌫
1

(q) = 0, reflecting current conservation. We note,

�(!) =
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Experimental Evidence

• Non-Fermi Liquids

• a.k.a. “strange metals”; a.k.a “quantum critical fermions”

Phase diagram of a high Tc cuprate Graphene and other Dirac/Weyl 
semimetals

e.g. Mueller, 
Sachdev

↵ =
e2

~vF
' 0.5� 2



Can holography give a theory of a strange metal?



Holographic strange metals

• AdS/CFT: 

• a dual gravitational description of a (strongly) interacting 
quantum field theory.

Electric Field

UV
Charge 
Density

Q

Systems at finite temperature/density = AdS charged black hole
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• Holographic prediction:  
 
Emergent scale invariant hyperscaling violating theories 
 
 
 
 
 
 
 
 
Lifshitz quantum critical theory supported by an ordered state

• At finite      ,               , and quantum criticality is ultralocal

Holography describes new states of matter
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• The entropy scales as

S ∼ T
d−θ
z

which gives an interpretation to the hyperscaling violation exponent.

• There is a third exponent, associated with the charge density, the con-
duction exponent ζ:
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• If non-zero it also violates hyperscaling.
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• Holographic prediction:  
 
Emergent scale invariant hyperscaling violating theories 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Strange metal without quasiparticles



• The single fermion function from AdS/CFT

• The groundstate has a clear Fermi surface

Holographic strange metals

G(!, k) =
1

! � vF k + ⌃(!, k)
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Holographic strange metals

• The single fermion function from AdS/CFT

• The exponent                                    is a free parameter

• Fermi surface excitations disperse as

G(�, k) =
Z

� � vF (k � kF )� ei��2⇥kF
+ . . .

Cubrovic, Zaanen, Schalm; 
Science 325 (2009) 439

Faulkner, Liu, McGreevy, Vegh
PRD 83 (2011) 125002, 
Science 329 (2010) 1043
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Holographic strange metals

• The single fermion function from AdS/CFT

G(�, k) =
Z

� � vF (k � kF )� ei��2⇥kF
+ . . .

Cubrovic, Zaanen, Schalm; 
Science 325 (2009) 439

Faulkner, Liu, McGreevy, Vegh
PRD 83 (2011) 125002, 
Science 329 (2010) 1043

⌫kF < 1/2 ⌫kF = 1/2 ⌫kF > 1/2

artificially broadenend

Fermi LiquidMarginal Fermi LiquidNon-Fermi Liquid



• The                     NFL is a system without quasiparticles

• Physics: the probe fermion interacts 
with a quantum critical sector

• Transport does not follow from FS excitations (alone). The 
quantum critical sector contributes significantly

Holographic strange metals

⌫kF < 1/2 ⌫kF = 1/2 ⌫kF > 1/2

⌃ ⇠ !2⌫kF

⌫kF < 1/2

9.4 The physics of the holographic fermions 333

 

Quantum
Critical

Figure 9.5: A cartoon illustrating the structure of the self-energy diagram behind
the “Fermi-surface” holographic phases highlighted in Fig. 9.4.

resummed in a Dyson series [364]. The “unparticles” of the AdS2 metal
just act as a simple “heat bath” damping the free fermions. One notices
that this is precisely coincident with the central assumption of the original
marginal Fermi-liquid phenomenology. In the original marginal Fermi liquid
context, the puzzle has all along been why there are these two subsystems.
But even if one takes this for granted, the more pressing question is why
can one get away with a naive resummation of second order perturbation
theory. In a single system of interacting electrons on the microscopic scale
diagrammatics would insist that one has to include vertex corrections as
well as “boson” self-energies, and it has been argued many times that these
also should become singular [365]. An old proverb states that Fermi-liquids
are like pregnancy, while it is impossible to be marginally pregnant.

How can we understand the emergence of nearly free fermions and the
validity of re-summed second order perturbation theory in the holographic
result? The first key is from section 6.3. We learned that by capping o↵ the
deep interior geometry one finds a confining state in the boundary. In the
radial direction the bulk turns into an e↵ective box and the standing waves
formed in this box dualise in non interacting gauge singlet mesons in the
boundary. They are truly free as the interactions through pion exchange are
1/N suppressed. Here the deep potential well manifest in the Schrödinger
formulation acts in a very similar way to this confining box. The only dif-
ference is that the bulk Dirac fermion has a finite probability to tunnel into
the RN horizon. This dualises in the “local quantum critical” self energy
that provides a finite width to the otherwise free fermions.

Holography teaches us here a valuable lesson regarding the physics of
strongly interacting Yang-Mills fields when the density becomes finite. Fer-
mionic probes in the “deconfining” or “fractionalised” vacuum of the local



Holographic strange metals

• Are such holographic self-energies and dispersions measured 
in experiment?

⌫kF < 1/2 ⌫kF = 1/2 ⌫kF > 1/2

⌃ ⇠ !2⌫kF



This situation changed recently with the introduction of ultra-resolution laser-ARPES [18] ..., 
which bypasses the unknowns of the ARPES lineshape and removes much of the effects of the 
heterogeneous “dirt” effects that are for example observed in STM experiments [22] (see 
supplementary materials). Combined with new methods for removing nonlinearities in the 
electron detection [23], a quantitative analysis of the small ... or scattering rates  (a self-energy 
effect) ... in an ARPES measurement.

Reber, et al ,..Desseau et
arXiv:1508.06252, 1509.01556

Fig 1. Experimental electronic self 
energy Σ’’ as a function of energy, 
temperature, and doping.  a) The 
self energy is extracted from an 
ARPES spectrum (top left) located at 
the node  (green cut, bottom right) by 
taking momentum cuts at constant 
energy ( top r ight ) to ex t ract 
momentum widths ΓMDC(ω) (bottom 
left) which are directly proportional to 
Σ”(ω). (b) Measured temperature and 
energy dependence of Σ” for four 
different samples from overdoped 
Tc=75K (OD75K) through optimal 
d o p e d T c = 9 1 K ( O P T 9 1 K ) t o 
underdoped Tc=63K (UD63K). (c) Fit 
results for the three main parameters 
in the model as a function of doping.  
The superconducting dome is 
schematically illustrated by the 
inverted parabola. The most relevant 
parameter is the power α which is 
seen to have a simple l inear 
dependence on doping with value 0.5 
very near optimal doping.
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The strange metal in high Tc cuprates

strange metal 
= quantum critical phase



Two specific predictions from holography



• Evidence of the quantum critical sector in the spectral function

• Near               for
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Holographic strange metal: novel lattice effects

• The quantum critical contribution to the spectral function

• On a lattice

• The Green’s function is no  
longer strictly periodic
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Figure 2. The behavior of the di↵erent powers of !2⌫k�K ,!2⌫k ,!2⌫k+K in the lattice AdS2-metal

spectral function as a function of k. The IR of the Green’s function is controlled by the lowest

branch: !2⌫k+K in the ` = �1 Brillioun zone, !2⌫k in the ` = 0 Brillioun zone, and !2⌫k�K in the

` = 1 Brillioun zone.

logarithmic correction is easily understood as the leading term in the expansion

!2⌫

k

(µ) = !2⌫

k

(µ

0

)(1� 4k2�µ(x, y) ln! + . . .); (2.6)

it is present in the higher Brillioun corrections as well, but for ` > 0 these corrections

are subleading compared to the Umklapp correction. The logarithmic correction has an

interesting collusion right at the Brillioun zone boundary. Due to the “resonant” con-

dition in the bulk, at the boundary yet another scaling arises, associated with a factor

!2⌫

k | ln(!)|2. This takes over in the deep IR at the first Brillioun zone boundary, in a

regime �k
x

⌧ ⌫
k

/| ln(!)|, where �k
x

denotes the deviation of the momentum from the

boundary of the first Brillioun zone. This understanding allows us to immediately guess

what the answer will be at higher order in perturbation theory. At every next order in

perturbation theory one can Umklapp to one further Brillioun zone:
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This phenomenon of Umklapp imprinting on the scaling behavior of the fermion prop-

agators is most easily discerned in the AdS
2

metal. As we already emphasized, the AdS
2

-

metal is the ultimate “algebraic pseudo-gap” state, where the fermion spectra are charac-

terized by pseudogaps at all momenta, but where the algebraic rise of the spectral function

is characterized by the momentum dependence of the exponents. This result therefore

predicts that upon adding a periodic potential, the power law responses acquire generically

subdominant corrections. However, in the deep IR it is these subdominant corrections
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Figure 3. This sequence of AdS2 metal spectral functions for a fixed generic k shows how the

Umklapp contribution takes over at low frequencies. For ` = 0, inside the 1st BZ, we show the

full corrected spectral function Afull(!,~k) ⇠ ImG (red), the original “bare” holographic spectral

function Apure AdS(!,~k) ⇠ ImG0 (brown), and the Umklapp correction due to the periodic chemical

potential modulation �Alattice(!,~k) ⇠ Im�G (black).

Figure 4. The behavior of the AdS2 metal. The spectral function in three distinct regimes: the

first Brillion zone, the Brillioun edge and higher Brillioun zones. In each case the full spectral

function ImG(!,~k) = ImG0 + Im�G is plotted in red, the “bare” component G0 in brown and the

Umklapp contribution, Im�G in black. The frequency scale is chosen such that the contributions

are comparable by zooming as in Fig. 3. Below the ratio of the full spectral function in units of the

“bare” spectral function is plotted for the full range of frequencies. This shows the excess states at

low frequency that appear due to the lattice.

which control the density of states (Fig.4). Consistency argues that this can only be an

enhancement of the number of states at low energy (otherwise there would be a zero in the

spectral weight at small but finite !). In the first Brillioun zone (` = 0) the logarithmic
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A universal linear resistivity



• Linear resistivity in the High-Tc cuprates

Nigel Hussey 
High Field Magnet Laboratory  
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Strange metals,  
       curious cuprates 

Cooper, Hussey et al.
 Science 323 (2009) 609

Pnictides vs. Cuprates 

Totally different ‘criticality’ in the two SC families  

– at least in the dc transport 

Cooper, NEH et al.,  
Science 323 609 (09) 
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• Linear resistivity in the High-Tc cuprates

Nigel Hussey 
High Field Magnet Laboratory  
Radboud University, Nijmegen 

Physics@FOM, Veldhoven, 20th January 2016 

Strange metals,  
       curious cuprates 

Cooper, Hussey et al.
 Science 323 (2009) 609

⇢ = ↵1T + ↵2T
2 � = ↵1T + ↵2T

2

Inverse Matthiessen law also fits the data
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Resistivity and hydrodynamics

• Hydrodynamics is a universal LEET

• What choice for the impurity operator     ?

• Hydrodynamics: 

• For 

• Caveat:  theory must be locally quantum critical
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Davison, Schalm, Zaanen
PRB89 (2014) 245116

A universal mechanism for a linear resistivity

• Entropy density at low  

• If                                      Then

Can be confirmed in a massive gravity model of a two-charge AdS black hole 
 

• Universal linear-in-T resistivity from hydro + disorder 
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Caveat: holography has many other “linear resistivity” scenarios
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The Dirac Fluid

electron FLhole FL

Dirac fluid

Q

T

✏a� = �vFk

+

Vint =
↵e�

r

0

I marginally irrelevant 1/r Coulomb interactions:

↵e↵ =
↵0

1 + (↵0/4) log((105 K)/T )
, ↵0 ⇡ 1

137

c

vF✏r
⇠ 0.5.

I thermo/hydro nearly that of relativistic theory

I ↵e↵ ⇠ 0.3 at T = 100 K

e.g. [Sheehy, Schmalian, Physical Review Letters 99 226803 (2007)]

[Müller, Fritz, Sachdev, Physical Review B78 115406 (2008)]
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Graphene: an Ideal Experimental Platform

I fabricating ultra pure monolayer
graphene:
[Dean et al, Nature Nanotechnology 5

722 (2010)]

monolayer graphene

hBN

hBN

I weak disorder: charge puddles
[Xue et al, Nature Materials 10 282

(2011)]
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Figure 3 | Spectroscopy of graphene on hBN as a function of gate voltage.
a, dI/dV spectroscopy showing a nearly linear density of states as a
function of energy (tip voltage). b, dI/dV spectroscopy as a function of tip
voltage and gate voltage. The white line corresponds to the minimum in the
dI/dV curves and represents the Dirac point. c, Energy of the Dirac point as
a function of gate voltage. The red curve is a fit assuming a linear band
structure. d, Energy versus momentum dispersion relations for the case of
graphene and hBN having the same lattice constant and zero angle
mismatch (black curve) and two curves with 1.8% lattice mismatch. The
blue curve has �5.45� angle mismatch and the red curve has �10.9�.

the Fourier transform of this hopping potential into the low-energy
Hamiltonian for graphene on hBN to find the energy–momentum
dispersion. The inter-layer coupling is nonzero only for k = 0
as well as for six additional vectors k associated with the Moiré
pattern. Most importantly, we found that the coupling between the
A and B atoms in the graphene lattice with the boron and nitrogen
atoms in the hBN are almost identical. Thus, sublattice symmetry is
restored and a gapless Dirac spectrum is recovered, albeit at slightly
shifted values of K. This is illustrated in Fig. 3d. More details of our
numerical approach are given in the Supplementary Information.

By determining the energy of the Dirac point as a function of
gate voltage, we can measure the Fermi velocity of electrons and
holes in graphene. Figure 3c shows the energy of the Dirac point
as a function of gate voltage. Graphene has a linear dispersion
relation such that E = ¯hvFk, where vF is the Fermi velocity. As
it is a two-dimensional material, the density of electrons is given
by n = gsgv⇡k

2/(2⇡)2, where gs and gv are the spin and valley
degeneracies, both of which are 2. Therefore, the Dirac point should
depend on gate voltage as E = ¯hvF

p
⇡↵Vg, with ↵ determined

by the capacitance to the gate (see Methods). The red curve is
a fit to the data, from which we can extract the Fermi velocity.
We find that vF = 1.16± 0.01⇥ 106 m s�1 for the electrons and
vF = 0.94± 0.02⇥ 106 m s�1 for the holes. Moreover, we observe
an asymmetry between the Fermi velocity for electrons and holes
of about 25% depending on the Moiré pattern observed. The
shorter Moiré pattern has a higher Fermi velocity for holes whereas
the longer one has a higher Fermi velocity for electrons. This
asymmetry is larger than for graphene on SiO2 (ref. 5) or graphene
on graphite27, which have discrepancies less than 10%. The origin of
this asymmetry is unclear but it may arise as a result of next-nearest-
neighbour coupling, which is not taken into account in ourmodel.

One of the main advantages of using hBN instead of SiO2
as a substrate for graphene is the improvement in the electronic
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Figure 4 | Spatial maps of the density of states of graphene on hBN and
SiO2. a, Topography of graphene on hBN. b, Tip voltage at the Dirac point
as a function of position for graphene on hBN. c, Tip voltage at the Dirac
point as a function of position for graphene on SiO2. The colour scale is the
same for b and c. The scale bar in all images is 10 nm. d Histogram of the
energies of the Dirac point from b as well as a Gaussian fit. The inset shows
the same data but also includes the histogram for SiO2 shown in red.

properties of the graphene. Figure 4a shows the topography of
graphene on hBN over a range of 100 nm. We have performed
dI/dV measurements at 1 nm intervals over the entire area of
Fig. 4a. For each of these dI/dV curves, we have found the tip
voltage of the minimum, which corresponds to the Dirac point
(Fig. 4b). We have done a similar analysis for a 100 nm area of
graphene on SiO2 (Fig. 4c). The red and blue regions correspond
to electron and hole puddles respectively. It is clear from these
two images that the variation in the energy of the Dirac point is
much smaller on hBN. The spatial extent of each puddle is also
much smaller in the graphene on SiO2, consistent with an increased
density of impurities13.

We can further quantify the disorder in the graphene by
looking at a histogram of the energy of the Dirac point, Fig. 4d.
The main part of the histogram for the Dirac point energy on
hBN is well-fitted by a Gaussian distribution (red line) with
a standard deviation of 5.4 ± 0.1meV. In addition, there is
a small extra bump in the distribution from the hole-doped
region near the bottom right of Fig. 4b. In comparison, the
distribution on SiO2 is much broader, with a standard deviation of
55.6±0.7meV. These distributions in energy can be converted to
charge fluctuations using n= E

2
d/⇡( ¯hvF)2. We find that the charge

fluctuations in graphene on hBN are �
n

= 2.50±0.13⇥109 cm�2,
whereas they are more than 100 times larger for graphene
on SiO2, �

n

= 2.64 ± 0.07 ⇥ 1011 cm�2. Our measurements for
the charge fluctuations on SiO2 are consistent with previous
single electron transistor3 and STM (refs 4,5) measurements.
Furthermore, our measurements for the charge fluctuations in
graphene on hBN show a very similar value to those extracted from
electrical transportmeasurements in suspended graphene samples6,
implying that using hBN as a substrate provides a similar benefit

284 NATUREMATERIALS | VOL 10 | APRIL 2011 | www.nature.com/naturematerials
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Figure 1: testingFigure 1: A comparison of our hydrodynamic theory of transport with the experimental results of
[33] in clean samples of graphene at T = 75 K. We study the electrical and thermal conductances
at various charge densities n near the charge neutrality point. Experimental data is shown
as circular red data markers, and numerical results of our theory, averaged over 30 disorder
realizations, are shown as the solid blue line. Our theory assumes the equations of state described
in (27) with the parameters C
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⇡ 110, �

0

⇡ 1.7, and (28) with
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0

⇡ 0.13. The yellow shaded region shows where Fermi liquid behavior is observed and the
Wiedemann-Franz law is restored, and our hydrodynamic theory is not valid in or near this
regime. We also show the predictions of (2) as dashed purple lines, and have chosen the 3
parameter fit to be optimized for (n).

where e is the electron charge, s is the entropy density, n is the charge density (in units of length�2),
H is the enthalpy density, ⌧ is a momentum relaxation time, and �q is a quantum critical e↵ect, whose
existence is a new e↵ect in the hydrodynamic gradient expansion of a relativistic fluid. Note that up to
�q, �(n) is simply described by Drude physics. The Lorenz ratio then takes the general form
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L(n) can be parametrically larger than L
WF

(as ⌧ ! 1 and n ⌧ n

0

), and much smaller (n � n

0

).
Both of these predictions were observed in the recent experiment, and fits of the measured L to (3) were
quantitatively consistent, until large enough n where Fermi liquid behavior was restored. However, the
experiment also found that the conductivity did not grow rapidly away from n = 0 as predicted in (2),
despite a large peak in (n) near n = 0, as we show in Figure 1. Furthermore, the theory of [25] does not
make clear predictions for the temperature dependence of ⌧ , which determines (T ).

In this paper, we argue that there are two related reasons for the breakdown of (2). One is that the
dominant source of disorder in graphene – fluctuations in the local charge density, commonly referred to as
charge puddles [43, 44, 45, 46] – are not perturbatively weak, and therefore a non-perturbative treatment
of their e↵ects is necessary.3 The second is that the parameter ⌧ , even when it is sharply defined, is

3See [47, 48] for a theory of electrical conductivity in charge puddle dominated graphene at low temperatures.
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where e is the electron charge, s is the entropy density, n is the charge density (in units of length�2),
H is the enthalpy density, ⌧ is a momentum relaxation time, and �q is a quantum critical e↵ect, whose
existence is a new e↵ect in the hydrodynamic gradient expansion of a relativistic fluid. Note that up to
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Both of these predictions were observed in the recent experiment, and fits of the measured L to (3) were
quantitatively consistent, until large enough n where Fermi liquid behavior was restored. However, the
experiment also found that the conductivity did not grow rapidly away from n = 0 as predicted in (2),
despite a large peak in (n) near n = 0, as we show in Figure 1. Furthermore, the theory of [25] does not
make clear predictions for the temperature dependence of ⌧ , which determines (T ).

In this paper, we argue that there are two related reasons for the breakdown of (2). One is that the
dominant source of disorder in graphene – fluctuations in the local charge density, commonly referred to as
charge puddles [43, 44, 45, 46] – are not perturbatively weak, and therefore a non-perturbative treatment
of their e↵ects is necessary.3 The second is that the parameter ⌧ , even when it is sharply defined, is

3See [47, 48] for a theory of electrical conductivity in charge puddle dominated graphene at low temperatures.
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Observation of the Dirac fluid
and the breakdown of the Wiedemann-Franz law in graphene
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Interactions between particles in quantum many-body systems can lead to collective behavior
described by hydrodynamics. One such system is the electron-hole plasma in graphene near the
charge neutrality point which can form a strongly coupled Dirac fluid. This charge neutral plasma
of quasi-relativistic fermions is expected to exhibit a substantial enhancement of the thermal con-
ductivity, due to decoupling of charge and heat currents within hydrodynamics. Employing high
sensitivity Johnson noise thermometry, we report the breakdown of the Wiedemann-Franz law in
graphene, with a thermal conductivity an order of magnitude larger than the value predicted by
Fermi liquid theory. This result is a signature of the Dirac fluid, and constitutes direct evidence of
collective motion in a quantum electronic fluid.

Understanding the dynamics of many interacting parti-
cles is a formidable task in physics, complicated by many
coupled degrees of freedom. For electronic transport in
matter, strong interactions can lead to a breakdown of
the Fermi liquid (FL) paradigm of coherent quasiparti-
cles scattering o↵ of impurities. In such situations, the
complex microscopic dynamics can be coarse-grained to
a hydrodynamic description of momentum, energy, and
charge transport on long length and time scales [1]. Hy-
drodynamics has been successfully applied to a diverse
array of interacting quantum systems, from high mobility
electrons in conductors [2], to cold atoms [3] and quark-
gluon plasmas [4]. As has been argued for strongly inter-
acting massless Dirac fermions in graphene at the charge-
neutrality point (CNP) [5–8], hydrodynamic e↵ects are
expected to greatly modify transport coe�cients as com-
pared to their FL counterparts.

Many-body physics in graphene is interesting due to
electron-hole symmetry and a linear dispersion relation
at the CNP [9, 10]. In particular, the Fermi surface van-
ishes, leading to ine↵ective screening [11] and the forma-
tion of a strongly-interacting quasi-relativistic electron-
hole plasma, known as a Dirac fluid [12]. The Dirac fluid
shares many features with quantum critical systems [13]:
most importantly, the electron-electron scattering time is
fast [14–17], and well suited to a hydrodynamic descrip-
tion. A number of exotic properties have been predicted
including nearly perfect (inviscid) flow [18] and a diverg-
ing thermal conductivity resulting in the breakdown of
the Wiedemann-Franz law [5, 6].

Away from the CNP, graphene has a sharp Fermi sur-
face and the standard Fermi liquid (FL) phenomenology
holds. By tuning the chemical potential, we may mea-
sure thermal and electrical conductivity in both the Dirac

fluid (DF) and the FL in the same sample. In a FL,
the relaxation of heat and charge currents is closely re-
lated as they are carried by the same quasiparticles. The
Wiedemann-Franz (WF) law [19] states that the elec-
tronic contribution to a metal’s thermal conductivity e

is proportional to its electrical conductivity � and tem-
perature T , such that the Lorenz ratio L satisfies

L ⌘ e

�T

=
⇡

2

3

✓
kB

e

◆2

⌘ L0 (1)

where e is the electron charge, kB is the Boltzmann con-
stant, and L0 is the Sommerfeld value derived from FL
theory. L0 depends only on fundamental constants, and
not on specific details of the system such as carrier den-
sity or e↵ective mass. As a robust prediction of FL the-
ory, the WF law has been verified in numerous metals
[19]. However, in recent years, an increasing number of
non-trivial violations of the WF law have been reported
in strongly interacting systems such as Luttinger liquids
[20], metallic ferromagnets [21], heavy fermion metals
[22], and underdoped cuprates [23], all related to the
emergence of non-Fermi liquid behavior.
The WF law is expected to be violated at the CNP

in a DF due to the strong Coulomb interactions between
thermally excited charge carriers. An electric field drives
electrons and holes in opposite directions; collisions be-
tween them introduce a frictional dissipation, resulting
in a finite conductivity even in the absence of disorder
[24]. In contrast, a temperature gradient causes electrons
and holes to move in the same direction inducing an en-
ergy current, which grows unimpeded by inter-particle
collisions (Fig. 3C inset). The thermal conductivity is
therefore limited only by the rate at which momentum is
relaxed due to residual impurities.
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!  
! ! Electron!transport!is!conventionally!determined!by!the!momentum5relaxing!

scattering!of!electrons!by!the!host!solid!and!its!excitations.!Hydrodynamic!fluid!flow!through!

channels,!in!contrast,!is!determined!partly!by!the!viscosity!of!the!fluid,!which!is!governed!by!

momentum5conserving!internal!collisions.!A!long5standing!question!in!the!physics!of!solids! !

has!been!whether!the!viscosity!of!the!electron!fluid!plays!an!observable!role!in!determining!

the!resistance.!Here!we!report!experimental!evidence!that!the!resistance!of!restricted!

channels!of!the!ultra5pure!two5dimensional!metal!PdCoO!!! has!a!large!viscous!contribution.!

Comparison!with!theory!allows!an!estimate!of!the!electronic!viscosity!in!the!range!between!

!×!!!!! kg(ms)!!!! and! !×!!!!! kg(ms)!!!,!to!be!compared!with! 1×10!!! kg(ms)!!!! for!

water!at!room!temperature.! !  
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! ! Fig.! 4.! ! Hydrodynamic! effect! on! transport.! (A,! B)! The! measured! resistivity! of!

PdCoO!!! channels! normalised! to! that! of! the!widest! channel! (!!),! plotted! against! the! inverse!

channel!width!1/W!multiplied!by! the!bulk!momentumK! relaxing!mean! free!path! !!" ! (closed!

black!circles).!Blue!solid! line:! ! prediction!of!a!standard!Boltzmann!theory! including!boundary!

scattering!but!neglecting!momentumKconserving!collisions!(Red!line:prediction!of!a!model!that!

includes! the! effects! of! momentumKconserving! scattering! (see! text).! In! (C)! we! show! the!

predictions!of!the!hydrodynamic!theory!over!a!wide!range!of!parameter!space. 
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Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but 
electron-electron collisions are sufficiently frequent to provide local equilibrium above liquid nitrogen 
temperature. Under these conditions, electrons can behave as a viscous liquid and exhibit 
hydrodynamic phenomena similar to classical liquids. Here we report strong evidence for this 
long-sought transport regime. In particular, doped graphene exhibits an anomalous (negative) voltage 
drop near current injection contacts, which is attributed to the formation of submicrometer-size 
whirlpools in the electron flow. The viscosity of graphene’s electron liquid is found to be |0.1 m2 s-1, an 
order of magnitude larger than that of honey, in agreement with many-body theory. Our work shows a 
possibility to study electron hydrodynamics using high quality graphene.  
 

 

Collective behavior of many-particle systems that undergo frequent inter-particle collisions has been 
studied for more than two centuries and is routinely described by the theory of hydrodynamics (1,2). The 
theory relies only on the conservation of mass, momentum and energy and is highly successful in 
explaining the response of classical gases and liquids to external perturbations varying slowly in space 
and time. More recently, it has been shown that hydrodynamics can also be applied to strongly 
interacting quantum systems including ultra-hot nuclear matter and ultra-cold atomic Fermi gases in the 
unitarity limit (3-6). In principle, the hydrodynamic approach can also be employed to describe 
many-electron phenomena in condensed matter physics (7-13). The theory becomes applicable if 
electron-electron scattering provides the shortest spatial scale in the problem such that κee ,ܹا κ 
where κee is the electron-electron scattering length, ܹ the characteristic sample size, κ ؠ  ୊߬ theݒ
mean free path, ݒ୊  the Fermi velocity, and ߬  the mean free time with respect to 
momentum-non-conserving collisions such as those involving impurities, phonons, etc. The above 
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Fig. 1. Viscous backflow in doped graphene. (A,B) Calculated steady-state distribution of current 

injected through a narrow slit for a classical conducting medium with zero ߥ (A) and a viscous Fermi 

liquid (B) E. (C) Optical micrograph of one of our SLG devices. The schematic explains the measurement 

geometry for vicinity resistance. (D,E) Longitudinal conductivity ߪ௫௫  and ܴ୚  as a function of ݊ 

induced by applying gate voltage. ܫ = 0.3 PA; ܮ = 1 Pm. The dashed curves in (E) show the 

contribution expected from classical stray currents in this geometry (18). 

To reveal hydrodynamics effects, we employed the geometry shown in Fig. 1C. In this case, ܫ is injected 

through a narrow constriction into the graphene bulk, and the voltage drop ୚ܸ is measured at the 

nearby side contacts located at the distance 1 ~ ܮ Pm away from the injection point. This can be 

considered as nonlocal measurements, although stray currents are not exponentially small (dashed 

curves in Fig. 1E). To distinguish from the proper nonlocal geometry (24), we refer to the linear-response 

signal measured in our geometry as “vicinity resistance”, ܴ୚ = ୚ܸ/ܫ. The idea is that, in the case of a 

viscous flow, whirlpools emerge as shown in Fig. 1B, and their appearance can then be detected as sign 

reversal of ୚ܸ, which is positive for the conventional current flow (Fig. 1A) and negative for viscous 

backflow (Fig. 1B). Fig. 1E shows examples of ܴ୚ for the same SLG device as in Fig. 1D, and other SLG 

and BLG devices exhibited similar behavior (18). One can see that, away from the CNP, ܴ୚ is indeed 

negative over a wide range of intermediate ܶ, despite a significant offset expected due to stray 

currents. Figure 2 details our observations further by showing maps ܴ୚(݊,ܶ) for SLG and BLG. The two 

Fermi liquids exhibited somewhat different behavior reflecting their different electronic spectra but ܴ୚ 

was negative over a large range of ݊ and ܶ for both of them. Two more ܴ୚ maps are provided in fig. 
S9. In total, seven multiterminal devices with ܹ from 1.5 to 4 Pm were investigated showing the 

vicinity behavior that was highly reproducible for both different contacts on a same device and different 

devices, independently of their ܹ, although we note that the backflow was more pronounced for 

devices with highest ߤ and lowest charge inhomogeneity.  



Disorder and localization



• Strong disorder

• Anderson: disorder can localize charged excitations

electromagnetic field are extended, not localized. Finally,
the condition that e0 + eMuc, > 0 everywhere translates into
the requirement that the energy eigenvalue be always
greater than the effective potential (&>2/c2)eMucl(x)|.
Therefore, unlike the familiar picture of electronic local-
ization, what we are really seeking when searching for
localized light is an intermediate frequency window
within the positive energy continuum that lies at an
energy higher than the highest of the potential barriers!
(See figure 2.) It is for this simple reason that ordinary die-
lectrics appearing in nature do not easily localize light.

Independent scatterers
The physics underlying the high- and low-frequency limits
in the case of light can be made more precise by
considering scattering from a single dielectric sphere.
Consider a plane wave of wavelength A impinging on a
small dielectric sphere of radius a 4A of dielectric constant
ea embedded in a uniform background of dielectric

POSITION

Photon

POSITION

Scattering potential for electrons in a solid
(black curve, top) and for photons in a
random dielectric medium (black curve,
bottom). The effective scattering potential for
photons is (&>2/c2) eMuu, where eUuu is the
spatially varying part of the dielectric. The
electron (blue) can have a negative energy,
and it can be trapped in deep potentials. By
contrast, the eigenvalue (a>2/c2) e0 (gray line)
of the photon (red) must be greater than the
highest of the potential barriers if the dielectric
constant (e0 + e,lua ) is to be real and positive
everywhere. Figure 2

constant ef, in which the spatial dimension d = 3. The
scattered intensity 7sc.,tl at a distance R from the sphere
can be a function only of the incident intensity /„, the
dielectric constants ea and eh and the lengths R, A and a.
In particular /scaU must be proportional to the square of
the dipole moment induced in the sphere, which scales as
the square of the sphere volume, and by conservation of
energy, it must fall off as R'1 ' with distance from the
scattering center:

fM,e,,,eh)——I()
hi

(3)

Since the ratio /scatt //„ is dimensionless, it follows that
/"i W, £„, eb) = fkea> eb )i'A.'1 ' ', where f2 is another dimen-
sionless function of the dielectric constants. The vanish-
ing of the scattering cross section for long wavelengths as
A "' ' ", obtained here by purely dimensional arguments,
is the familiar result explaining the blue of the sky.

The weak A "'H " scattering is the primary reason
that electromagnetic modes are extended in most natural-
ly occurring three-dimensional systems. This behavior
holds also for a dense random collection of scatterers. In
that case, the elastic mean-free path / is proportional to
A'1 + ' for long wavelengths (see figure 3). This generaliza-
tion of Rayleigh scattering to d spatial dimensions is also
applicable to anisotropic dielectric scattering systems.
For example, a layered random medium in which scatter-
ing is confined to directions perpendicular to the layers
would be described by setting d=l. Alternatively, a
collection of randomly spaced uniaxial rods4 in which
scattering is confined to the plane perpendicular to the
axes of the rods would be described by setting d = 2. A
consequence of the scaling theory of localization, which
applies to both electrons in disordered solids and electro-
magnetic waves in disordered dielectrics, is that all states
are localized in one and two dimensions. For electromag-
netic waves in disordered dielectrics the localization
length g|OC diverges due to Rayleigh scattering in the low
frequency limit, behaving as £loc ~ / in one dimension and
giot. ~ / exp{(ol/c) in two dimensions.

It is likewise instructive to consider the opposite limit,
one in which the wavelength of light is small compared to
the scale of the scattering structures. It is well known that
for scattering from a single sphere, the cross section
saturates at a value of 2ira2 when A -4a. This is a result of
geometric optics; the factor of two arises because of rays
that are weakly diffracted out of the forward direction
near the surface of the sphere. When discussing a dense
random collection of scatterers, it is useful to introduce the
notion of a correlation length a. On scales shorter than a,
the dielectric constant does not vary appreciably except
for the occasional interface where the physics of refraction
and diffraction apply. The essential point is that the
elastic mean-free path never becomes smaller than the
correlation length. This classical elastic mean-free path I
plays a central role in the physics of localization. Wave in-
terference effects lead to large spatial fluctuations in the
light intensity in the disordered medium. If 1^>A, however,
these fluctuations tend to average out to give a physical
picture of essentially noninterfering, multiple scattering
paths for electromagnetic transport. But when l-*A/2tr,
interference between multiply scattered paths drastically
modifies the average transport properties and a transition
from extended to localized normal modes takes place. If
one adopts the most naive version of the Ioffe-Regel5
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free electron:

p̂2

2m
 = E 

localized electron:

kx̂
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2

 = E 



• Strong disorder

• Anderson: disorder can localize charged excitations



Strong disorder

• Strong disorder in weakly interacting systems

• Anderson: disorder can localize charged excitations 
 
                                groundstate is always an insulator  
 

• Strong disorder in strongly interacting systems/many-body-
theory

• Many-body-localization

Connected to quantum entanglement

Failure to thermalize  
 
A lot of work in 1+1 dimensions

Ideal playground for holography

Basko, Aleiner, Altschuler

relevant: d = 1, 2
marginal: d = 3

(No eigenstate thermalization; no quantum chaos;  
“do not decohere” ... quantum computer)

Sent;t=0 |Ai⌦|Bi ⇠ log(t)



• Generic holographic disordered system has no disorder-driven 
insulating phase

� � 1

e2
= 1

Grozdanov, Lucas, KS, Sachdev



• Generic holographic disordered system has no disorder-driven 
insulating phase

• Note: this is not a 1/N artifact. It is a strong coupling 
phenomenon.

• Can prove a similar bound for thermal conductivity.  
 
 
 
 
 

Bound follows from the fact that any Area a distance R from the horizon obeys

� � 1

e2
= 1

Grozdanov, Lucas, KS
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Grozdanov, Lucas, KS, Sachdev



Absence of localization in holography

• Classical gravity is infinitely strongly coupled system

• Hydrodynamics “always” applies

• No possibility for  
“random interference”.

• A metal is a weakly coupled system

• Wave interference
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e↵ective IR fluid
emerges

µ̄(x)

S(x)

⇠

L

l

Figure 2: We employ a separation of 3 length scales in this paper. µ̄, and the local fluid properties
such as entropy density S, may vary substantially over the distance scale ⇠. We require l ⌧ ⇠
for a hydrodynamic description to be sensible. We will often put our fluids in a large but finite
box of length L � ⇠ as well.

The chemical potential in the fluid is thus µ̄. We also assume that the temperature is uniformly T , and
that there is no fluid velocity, in our background state. This forms the basis of a consistent solution to
hydrodynamic equations, driven by the coupling µ̄ to an external bath, as we will derive below. The
steady-state hydrodynamic equations read (in relativistic notation) [8]

@
i

T iµ = F̄µ⌫J
⌫

, (6a)

@
i

J i = 0, (6b)

where Greek indices denote spacetime indices and Latin indices denote spatial indices and Tµ⌫ is the
energy-momentum current. We have implicitly taken expectation values over all operators in (6) and will
do so for the remainder of the paper. Because we have sourced disorder in our fluid entirely through µ̄(x),
we do not need to couple any other dynamical sectors to the theory, though we will point out how this
may be done perturbatively in Section 3.1, when additional scalars contribute to disorder. The coupling
of the fluid to an external chemical potential means that both energy and momentum may be exchanged
with the external bath.

In order for hydrodynamics to be valid, it is necessary that µ̄ vary slowly in space, on a length
scale ⇠ which is large compared to the (possibly position-dependent) mean free path of the fluid l. In
our strongly interacting fluid, l is the analogue of the electron-electron scattering length in traditional
solid-state physics. Without quasiparticles, it is best interpreted as the minimal length scale at which a
hydrodynamic description is sensible. The requirement that µ̄ vary slowly is often written as

����
@
x

µ̄

µ̄

���� ⌧ 1

l
, (7)

though this should not be taken literally (µ̄ may vary slowly through µ̄ = 0). The requirement we will
assume henceforth in calculations is that, in Fourier space, µ̄(k) is only non-negligible for |k|⇠ . 1. It is
not necessary that µ̄ be approximately the same at all points at space:5 disorder can be non-perturbative,
with hydrodynamic coe�cients such as viscosity and charge density, contained within Tµ⌫ and Jµ in (6),
varying substantially over distances large compared to l; see Figure 2. This was noted in [11] as well.

In a quantum critical theory of dynamical exponent z, one finds

l ⇠ T�1/z (8)

5|µ̄(x1)� µ̄(x2)| can be comparable to, or larger than, |µ̄(x1)|, so long as |x1 � x2| � l.
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Disorder and conductivity in holographic metals

• Disorder does not localize in ultra-strongly coupled systems

• There is a second incoherent metal phase 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Disorder and conductivity in holographic metals

• Disorder does not localize in ultra-strongly coupled systems

• There is a second incoherent metal phase 
 
 
 
 
 
 
 
 

• For localization in holography one has to go (far) beyond the 
classical approximation.

Lucas,
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• Linear-in-T resistivity

collective hydrodynamics plus disorder 

• Lots of Power law scaling

quantum critical sector supported by an ordered state

• Hall angle vs DC conductivity scaling

• Inverse Matthiessen law

quantum critical sector supported by an ordered state 
 
 
 
 
 
 
 

Postdictions from holography

⇢ ⌘ 1

�
⇠ T

✓ =
�
xy

�
xx

⇠ 1

T 2

� ⇠ �I + �II



The Hall Angle



Thermoelectric response and Momentum relaxation

• Hall angle in “strange metals” 
 
 

• Theory (e.g. Drude, memory matrix)  
 
 

• Holography (no quasiparticles) 

� ⇠ 1

T
✓H =

�xy

�xx
⇠ 1

T 2

✓H ⇠ ⌧� ⇠ ⌧

� = �
ccs

+ �
relax

�
css

does not contribute to �
xy

3

trick is to find quantities that are independent of the
bulk radial coordinate. These are provided for us by
the perturbed Maxwell equations, which give us the two
constant fluxes

Jx = �Z(�)U�a

0
x + Q�htx � BZ(�)U�hry

Jy = �Z(�)U�a

0
y + Q�hty + BZ(�)U�hrx (4)

from which we can evaluate the conductivities via the
ratios

�xx =
Jx

Ex
�xy =

Jy

Ex

Since Jx and Jy are constants, we can calculate these
ratios anywhere in the bulk. The simplest place to do
this is at the horizon, where the constraints of regularity
are enough to determine the conductivity. That is, we
demand the smooth behaviour

�axi = � Ei

4⇡T

ln(r � r+) + O(r � r+)

��i = O((r � r+)0)

�htxi = U�hrxi + O(r � r+) (5)

The quickest way to evaluate the conductivity is to plug
these requirements into the t�x component of Einstein’s
equations. This results in a pair of simultaneous equa-
tions for the value of �htxi at the horizon.

(B2
Z(�) + e

2V
k

2�(�))�htx � BZ(�)e2V
a

0
�hty

= �e

2V
Z(�)a0

Ex

(B2
Z(�) + e

2V
k

2�(�))�hty + BZ(�)e2V
a

0
�htx

= BZ(�)Ex

Inverting these equations gives the values of the graviton
at the horizon, from which we can proceed to extract the
Hall conductivity

�xx =
e

2V
k

2�(B2
Z

2 + Q2 + Ze

2V
k

2�)

(B2
Z + e

2V
k

2�)2 + B

2Q2

����
r+

�xy =
BQ(B2

Z

2 + Q2 + 2Ze

2V
k

2�)

(B2
Z + e

2V
k

2�)2 + B

2Q2

����
r+

(6)

We are now able to turn to the question of ultimate in-
terest, which is to calculate the Hall angle ✓H = �xy/�xx

for holographic theories in a magnetic field. Whilst trans-
port properties in a magnetic field can be unfamiliar, the
Hall angle is especially simple. In many ways it behaves
like the familiar DC conductivity- in the absence of a
lattice it is an infinite delta function, that will now be
resolved via momentum dissipation into a Drude peak.

The holographic results above imply that the Hall an-
gle takes the somewhat clumsy form

✓H =
BQ

e

2V
k

2�


B

2
Z

2 + Q2 + 2Ze

2V
k

2�

B

2
Z

2 + Q2 + Ze

2V
k

2�

�����
r+

(7)

Holes Particles

B

FIG. 2: In the presence of a magnetic field, the particle-hole
pairs responsible for �

ccs

are deflected in the same direction.
They therefore cannot carry a Hall current.

Whilst this formula is complicated, we can extract the
physics by noticing that for all geometries the quantity
in square brackets is simply a number bounded between
one and two. We can therefore deduce that the scaling of
the Hall angle is predominantly controlled by the overall
factor outside the brackets which may be written as

✓H ⇠ 4⇡BQ
k

2�(�)s

����
r+

(8)

Furthermore, for small magnetic fields the thermody-
namic and lattice factors appearing in (1) and (8) must
agree and so we may write

✓H ⇠ B

Q�diss (9)

The central point of this letter is the observation that,
in contrast to the DC conductivity, there is only a single
contribution to the Hall angle.

In particular, there is no additive contribution to the
Hall angle analogous to the ‘charge-conjugation symmet-
ric’ conductivity in �DC . In fact, at least at weak cou-
pling, it is easy to see why this should be the case. Re-
call that this current was carried by particle-hole pairs
moving in opposite directions. Upon adding a magnetic
field, these pairs are deflected in the same direction and
hence they do not contribute to the Hall conductivity �xy

(Fig. 2). This simple observation continues to hold in
strongly coupled theories - �xy is odd under charge con-
jugation symmetry and hence must vanish when Q = 0.

Motivated by the experimental results, our goal is to
understand how we can obtain di↵erent scalings in the
Hall angle and DC conductivity. It is easy to repro-
duce the original puzzle of the Hall angle. For geometries
where the lattice is very small, �diss � 1, then the DC
conductivity is dominated by the second term in (1), and
so scales in the same manner as the Hall angle.

This result should not be a surprise. In this regime, the
correct framework to describe strongly coupled transport
is the memory matrix [9, 19, 20]. Within this framework,
every operator that has a projection onto the momentum
operator, such as the electric and Hall currents, is con-
trolled by the momentum relaxation rate. The physics
is dominated by this single timescale and hence the Hall
angle and DC conductivity must agree.

2

We assume that the geometry has a regular horizon at
r = r+ where the gauge field vanishes a ⇠ (r � r+) and
U ⇠ 4⇡T (r � r+). As the radial coordinate r ! 1 we
assume that the metric approaches anti-de Sitter space
and that the gauge field approaches a constant which is
interpreted as the chemical potential, µ, in the boundary.

Associated to the chemical potential is a constant
charge density, Q, which is identified with the conserved
electric flux of the bulk theory Q = �e

2V
Z(�)a0. In

order to have a finite conductivity at Q 6= 0 we must
break translational invariance. This is done by demand-
ing that the scalar fields are non-vanishing on the bound-
ary �1 ! kx, �2 ! ky as r ! 1. This corresponds to
introducing oscillatory lattices in the scalar fields �i.

DC conductivity Before proceeding to calculate the
Hall conductivity, it will be important to first highlight
some features of the DC conductivity of these holographic
models. There has recently been a large amount of
progress in obtaining analytic expressions for the trans-
port properties of holographic theories [11–16]. The key
idea [11] is that the DC conductivity does not evolve in
the radial direction and hence can be expressed solely in
terms of horizon data. In particular, for the above holo-
graphic models, the resulting expression derived in [13]
is

�DC =


Z(�) +

4⇡Q2

k

2�(�)s

�

r+

(1)

where s = e

2V
/4⇡|r+ is the entropy density.

An important observation is the division of the con-
ductivity into two distinct terms. A precise distinction
can be made by comparison to the electrothermal con-
ductivity, ↵̄, computed in [16]

↵̄ =


4⇡Q

k

2�(�))

�

r+

(2)

from which we can see that the first term in the DC
conductivity, Z(�)|r+ , does not contribute to the elec-
trothermal conductivity. Such a term is already present
at Q = 0, where the theory is charge conjugation sym-
metric. In a weakly coupled system one can understand
this ‘charge conjugation symmetric’ conductivity as aris-
ing from particle hole pairs moving in opposite directions,
as illustrated in Fig. 1. However, we stress that for the
holographic theories discussed here, which are strongly
interacting and contain no quasiparticles, this intuition
is suggestive at best. Nevertheless, since �DC is even
under charge conjugation symmetry, there is a non-zero
conductivity for Q = 0 even at strong coupling.

A more surprising and novel feature of these holo-
graphic theories is that this ‘charge-conjugation symmet-
ric’ conductivity �ccs = Z(�)|r+ remains present even at
finite density. For the case of relativistic free fermions,
for instance in graphene, the addition of a chemical po-
tential would introduce a gap for particle-hole creation

Jx

Px

Holes Particles

FIG. 1: At weak coupling, the conductivity of a
charge-conjugation symmetric theory can be understood as

arising from particle hole pairs of opposite momenta.

proportional to µ and we would expect such a term to be
exponentially suppressed below this scale. In contrast,
for the strongly coupled holographic theories discussed
here, �ccs can have a power-law dependence on T even
at finite density [17].

When Q 6= 0 we also have to consider the second term
in (1). For a translationally invariant theory this term
would diverge, but is rendered finite in our models by
the presence of the lattice. As we outlined in the intro-
duction we will refer to this term, which is associated
with momentum dissipation, as �diss. The key point of
(1) is that the finite density conductivity consists of two
terms added together - that is they follow an ‘inverse-
Matthiessen’ law

�DC = �ccs + �diss (3)

In particular we reiterate that within these holographic
models both of these terms can remain at low energies,
even in the presence of a chemical potential.
Hall conductivity Having explained the salient fea-

tures of the DC conductivity, we now wish to generalise
the techniques of [13] to calculate the Hall conductiv-
ity. In Lorentz invariant theories, the conductivity in the
presence of a magnetic field is constrained to obey the
simple form �xx = 0, �xy = Q/B which was originally
reproduced from holography in [18].

Calculating the Hall conductivity in theories without
translational invariance is more complicated. To do this,
we consider the same class of models as before, but we
add a magnetic field Ay = Bx to the background. In
order to calculate the conductivity, we perturb the back-
ground solution by a constant electric field Ax = �Ext

as performed in [13]. The bulk equations then force us
to turn on other fields, for which a consistent ansatz is

Axi = �Eit + �axi(r)

gtxi = e

2V
�htxi(r)

grxi = e

2V
�hrxi(r)

�i = kxi + ��i(r)

where i runs over (1, 2) and we of course mean that x1 =
x, x2 = y. As is well-known in these calculations, the

�
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T
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Blake, Donos
PRL 114 (2015) 021601



• Linear-in-T resistivity

collective hydrodynamics plus disorder 

• Lots of Power law scaling

quantum critical sector supported by an ordered state

• Hall angle vs DC conductivity scaling

quantum critical sector supported by an ordered state

• Inverse Matthiessen law

quantum critical sector supported by an ordered state 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Scaling in the cuprates



• Hyperscaling violating quantum critical theories

•      had not been considered before

• Non-zero       requires a CFT (no quasiparticles) 

• Parameters

• Fitting from Linear resistivity, Hall Angle, Hall Lorentz ratio

• “postdicts” magnetoresistence and thermoelectric conductivity

predicts Hall thermoelectric conductivity, and heat conductivity

......  in conflict with specific heat

s ⇠ T (d�✓)/z

• There is invariance under:

xi → λ xi , t → λz t , r → λ r , ds → λ
θ
d ds

• The entropy scales as

S ∼ T
d−θ
z

which gives an interpretation to the hyperscaling violation exponent.

• There is a third exponent, associated with the charge density, the con-
duction exponent ζ:

Gouteraux+Kiritsis, Gouteraux

At = Q rζ−z

• If non-zero it also violates hyperscaling.

Holographic conductivity, Elias Kiritsis

10-

d = 2, z = 4/3, ✓ = 0, ⇣ = �2/3

⇣ Phillips

Hartnoll, Karch
PRB89 (2015) 155126

⇣



What is the holographic strange metal?



• Holographic strange metal: Generalization of a Fermi liquid 

Compressible 

Exhibits Fermi Surfaces

• Long range entangled

SEE ⇠ (LkF )
d�1 ln(LkF )

Regular Fermi Liquid Holography with ✓ = d� 1

S = Q
d�1
d A ln(Q

d�1
d A)

Huijse, Sachdev, Swingle,
PRB85 (2012) 035121

Q ⇠ kdLuttinger

G ⇠ 1

! � vF k + !2⌫
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Holographic Charge Oscillations

G ⇠ 1

! � vF k + !2⌫

Screening in RN

• Turn on a background chemical potential

µ = µ0 + Ce�r2/2R2

T/µ0 � 1• At high              the induced charge density 
falls off exponentially as in Schwarzchild.         

Tc ⇡ 0.33µ0

• Remarkably there is a phase transition at          

T < Tc• For            we begin to see oscillations in 
the charge density

Blake, Donos, Tong,
JHEP 1504 (2015) 019

S = Q
d�1
d A ln(Q

d�1
d A)

�(k) = h⇢(k)⇢(�k)i

@

@µ
F ⇠ µ↵

• Holographic strange metal: Generalization of a Fermi liquid 

Compressible 

Exhibits Fermi Surfaces

Long range entangled

• Holographic Charge Oscillations

Distinctive:  
Fall-off remains exponential even at T = 0



Quantum Oscillations

• Holographic strange metal: Generalization of a Fermi liquid

• Quantum Oscillations due to a conventional Fermi surface

 
 

�
osc

⇠ cos

AF

B

1X

n=0

e�cn
TAF
µB

Sebastian, Harrison, Lonzarich
PTRS A369 (2011) 1687

AF = ⇡k2F
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GF ⇠ 1
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Quantum Oscillations

• Holographic strange metal: Generalization of a Fermi liquid

• Quantum Oscillations due to NFL Fermi surface without quasiparticles

• Not been seen in the cuprates, so far.

Hartnoll, Hofman
PRB81 (2010) 155125



The theory of a strange metal

The theory of a strange metal



• The theory of a strange metal  

A quantum critical system --- a theory without quasiparticles, 
supported by an ordered state with transport characterized by 
collective behavior.  
 
 
 

Experiment: Excitations around the FS do not determine 
transport.

Theory: framework provided by an holography

S =

Z
ddx

⇥�(@�)2 + µ

2
�� ��

4 � �O�

⇤
+ Squant.crit[O]

Faulkner, Polchinski; 
Jensen; 

Iqbal, Liu, Mezei



• Linear-in-T resistivity

collective hydrodynamics plus disorder 

• Lots of Power law scaling

quantum critical sector supported by an ordered state

• Hall angle vs DC conductivity scaling

quantum critical sector supported by an ordered state

• Inverse Matthiessen law

quantum critical sector supported by an ordered state 
 
 
 
 
 
 
 

Postdictions from holography
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Predictions for strange metals from holography.



• ARPES

• NFL line-shapes

• Scaling near 

• Lattice dependence of the line-shape

• Charge oscillations

• Charge susceptibility: no          power-law

• Quantum oscillations

• Unconventional T dependence

Predictions from holography

⌫kF < 1/2 ⌫kF = 1/2 ⌫kF > 1/2
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Figure 2. The behavior of the di↵erent powers of !2⌫k�K ,!2⌫k ,!2⌫k+K in the lattice AdS2-metal

spectral function as a function of k. The IR of the Green’s function is controlled by the lowest

branch: !2⌫k+K in the ` = �1 Brillioun zone, !2⌫k in the ` = 0 Brillioun zone, and !2⌫k�K in the

` = 1 Brillioun zone.

logarithmic correction is easily understood as the leading term in the expansion

!2⌫

k

(µ) = !2⌫

k

(µ

0

)(1� 4k2�µ(x, y) ln! + . . .); (2.6)

it is present in the higher Brillioun corrections as well, but for ` > 0 these corrections

are subleading compared to the Umklapp correction. The logarithmic correction has an

interesting collusion right at the Brillioun zone boundary. Due to the “resonant” con-

dition in the bulk, at the boundary yet another scaling arises, associated with a factor

!2⌫

k | ln(!)|2. This takes over in the deep IR at the first Brillioun zone boundary, in a

regime �k
x

⌧ ⌫
k

/| ln(!)|, where �k
x

denotes the deviation of the momentum from the

boundary of the first Brillioun zone. This understanding allows us to immediately guess

what the answer will be at higher order in perturbation theory. At every next order in

perturbation theory one can Umklapp to one further Brillioun zone:

G
full

(!,~k) ⇠ !2⌫

~

k +✏2(!2⌫

~

k� ~

K + !2⌫

~

k+

~

K ) + ✏4(!2⌫

~

k�2

~

K + 2!⌫

~

k+2

~

K )

+ . . .+ ✏2n(!2⌫

~

k�n

~

K + !2⌫

~

k+n

~

K ) + . . . . (2.7)

This phenomenon of Umklapp imprinting on the scaling behavior of the fermion prop-

agators is most easily discerned in the AdS
2

metal. As we already emphasized, the AdS
2

-

metal is the ultimate “algebraic pseudo-gap” state, where the fermion spectra are charac-

terized by pseudogaps at all momenta, but where the algebraic rise of the spectral function

is characterized by the momentum dependence of the exponents. This result therefore

predicts that upon adding a periodic potential, the power law responses acquire generically

subdominant corrections. However, in the deep IR it is these subdominant corrections

– 8 –

! = 0 ⌧ EF

Models of non-Lifshitz Kosevich behaviour

For illustrative purposes, we show that scattering from soft bosonic modes could yield potential
non-Lifshitz Kosevich behaviour, simulated using a perturbative approach [55] or a nonpertur-
bative method [56, 57] (Figure S5A,B).

Fig. S5: Model comparison with observed non-Lifshitz Kosevich behaviour. Illustration of
simulated non-Lifshitz Kosevich temperature dependence of quantum oscillation amplitude. A

Simulation of quantum oscillation amplitude (in red) incorporating a form of self energy related
to that of Engelsberg and Simpson in ref. [55] but extended to the case of critical bosonic modes.
B Simulation of quantum oscillation amplitude (in red) for the case of unconventional quasi-
particles using the non-perturbative model of Hartnoll and Hofman in ref. [56]. Symbols are
from Fig. 4, and represent the measured quantum oscillation amplitude of the dominant 330 T
frequency over the magnetic field range 25 to 35 T, which steeply increases at low temperatures.
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Figure 4: T < T
c

, µ0 6= 0. The induced charge density oscillates at large distances, shown

here for an impurity of width Rµ0 = 1 and temperature T/µ0 = 0.2.

The equations governing these perturbations were derived in [5, 6], although the static

susceptibility was not calculated. We relegate details of this calculation to the Ap-

pendix. In brief, it proceeds by first eliminating �g

xx

to give three coupled, ordinary

di↵erential equations for the static perturbations �A

t

, �g
tt

and �g

yy

. We solve these

numerically and extract the static susceptibility �(k).

Armed with susceptibility, we can perform the Fourier transform and calculate the

induced charge density. For high temperatures, T � µ0, the response in charge density

is qualitatively similar to that of the Schwarzchild metric. In particular, the system

exhibits exponential Debye-like screening (2.6) at large distances. However, this be-

haviour changes below a critical temperature which, numerically, we find to be

T

c

⇡ 0.33µ0

For T < T

c

, the induced charge density oscillates. At long distances, the charge density

is given by ⇢(r) = ⇢0 + �⇢(r) where ⇢0 = µ0/z+ is the background charge, while �⇢

takes the form

�⇢(r) ⇠ e

�r/�

p
r

cos(r/⇠) (3.2)

with the length scales � and ⇠ set by µ0 and T . This charge density is shown in Figure 4.

As before, nodes in the charge density appear as cusps in log(|⇢|/Cµ). The appearance

of multiple cusps shows that the charge density is oscillating.

The origin of these oscillations can again be understood by looking in the complex

momentum plane. At temperatures T � T

c

, the susceptibility exhibits a string of poles

along the imaginary axis, just as we saw for the Schwarzchild black hole. This is the

10

T = 0



• ARPES

• NFL line-shapes

no quasiparticles

• Scaling near 

• Lattice dependence of the line-shape

Evidence of the quantum critical sector

• Charge oscillations

• Charge susceptibility: no          power-law

Evidence of the quantum critical sector

• Quantum oscillations

• Unconventional T dependence

no quasiparticles

⌫kF < 1/2 ⌫kF = 1/2 ⌫kF > 1/2
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spectral function as a function of k. The IR of the Green’s function is controlled by the lowest

branch: !2⌫k+K in the ` = �1 Brillioun zone, !2⌫k in the ` = 0 Brillioun zone, and !2⌫k�K in the

` = 1 Brillioun zone.
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dition in the bulk, at the boundary yet another scaling arises, associated with a factor
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denotes the deviation of the momentum from the
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This phenomenon of Umklapp imprinting on the scaling behavior of the fermion prop-

agators is most easily discerned in the AdS
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metal. As we already emphasized, the AdS
2
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metal is the ultimate “algebraic pseudo-gap” state, where the fermion spectra are charac-

terized by pseudogaps at all momenta, but where the algebraic rise of the spectral function

is characterized by the momentum dependence of the exponents. This result therefore

predicts that upon adding a periodic potential, the power law responses acquire generically

subdominant corrections. However, in the deep IR it is these subdominant corrections
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here for an impurity of width Rµ0 = 1 and temperature T/µ0 = 0.2.

The equations governing these perturbations were derived in [5, 6], although the static

susceptibility was not calculated. We relegate details of this calculation to the Ap-

pendix. In brief, it proceeds by first eliminating �g

xx

to give three coupled, ordinary

di↵erential equations for the static perturbations �A

t

, �g
tt

and �g

yy

. We solve these

numerically and extract the static susceptibility �(k).

Armed with susceptibility, we can perform the Fourier transform and calculate the

induced charge density. For high temperatures, T � µ0, the response in charge density

is qualitatively similar to that of the Schwarzchild metric. In particular, the system

exhibits exponential Debye-like screening (2.6) at large distances. However, this be-

haviour changes below a critical temperature which, numerically, we find to be

T
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⇡ 0.33µ0

For T < T
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, the induced charge density oscillates. At long distances, the charge density

is given by ⇢(r) = ⇢0 + �⇢(r) where ⇢0 = µ0/z+ is the background charge, while �⇢

takes the form
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with the length scales � and ⇠ set by µ0 and T . This charge density is shown in Figure 4.

As before, nodes in the charge density appear as cusps in log(|⇢|/Cµ). The appearance

of multiple cusps shows that the charge density is oscillating.

The origin of these oscillations can again be understood by looking in the complex

momentum plane. At temperatures T � T

c

, the susceptibility exhibits a string of poles

along the imaginary axis, just as we saw for the Schwarzchild black hole. This is the
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T = 0Models of non-Lifshitz Kosevich behaviour

For illustrative purposes, we show that scattering from soft bosonic modes could yield potential
non-Lifshitz Kosevich behaviour, simulated using a perturbative approach [55] or a nonpertur-
bative method [56, 57] (Figure S5A,B).

Fig. S5: Model comparison with observed non-Lifshitz Kosevich behaviour. Illustration of
simulated non-Lifshitz Kosevich temperature dependence of quantum oscillation amplitude. A

Simulation of quantum oscillation amplitude (in red) incorporating a form of self energy related
to that of Engelsberg and Simpson in ref. [55] but extended to the case of critical bosonic modes.
B Simulation of quantum oscillation amplitude (in red) for the case of unconventional quasi-
particles using the non-perturbative model of Hartnoll and Hofman in ref. [56]. Symbols are
from Fig. 4, and represent the measured quantum oscillation amplitude of the dominant 330 T
frequency over the magnetic field range 25 to 35 T, which steeply increases at low temperatures.
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•  Macroscopic signatures ....

• Two sectors contribute to transport

- collective diffusive vs ballistic  
 
 

• Instabilities: superconductivity

Predictions from holography

1. onset
2. gap physics
3. exotic phases be the most important open problem in the understanding of quantum

materials, and it is here that radically new ideas, including those derived
from recently developed non-perturbative studies in string theory, may
be useful.

More unique to the copper oxides is the behaviour observed in a range
of temperatures immediately above Tc in what is referred to as the
‘pseudogap’ regime. It is characterized by a substantial suppression of the
electronic density of states at low energies that cannot be simply related to
the occurrence of any form of broken symmetry. Although much about
this regime is still unclear, convincing experimental evidence has recently
emerged that there are strong and ubiquitous tendencies towards several
sorts of order or incipient order, including various forms of charge-
density-wave, spin-density-wave, and electron-nematic order. There is
also suggestive, but far from definitive, evidence of several sorts of novel
order—that is, never before documented patterns of broken symmetry—
including orbital loop current order and a spatially modulated super-
conducting phase referred to as a ‘pair-density wave’. There are many
fascinating aspects of these ‘intertwined orders’ that remain to be under-
stood, but their existence and many aspects of their general structure were
anticipated by theory7. Superconducting fluctuations also have an important
role in part of this regime, although to an extent that is still much debated.

The high-temperature superconducting phase itself has a pattern of
broken symmetry that is distinct from that of conventional superconduc-
tors. Unlike in conventional s-wave superconductors, the superconduct-
ing wavefunction in the copper oxides has d-wave symmetry8,9, that is, it
changes sign upon rotation by 90u. Associated with this ‘unconventional
pairing’ is the existence of zero energy (gapless) quasiparticle excitations
at the lowest temperatures, which make even the thermodynamic prop-
erties entirely distinct from those of conventional superconductors (which
are fully gapped). The reasons for this, and its relation to a proximate anti-
ferromagnetic phase, are now well understood, and indeed were also anti-
cipated early on by some theories10–12. However, while various attempts

to obtain a semiquantitative estimate of Tc have had some success13, there
are important reasons to consider this problem still substantially unsolved.

Highly correlated electrons in the copper oxides
The chemistry of the copper oxides amplifies the Coulomb repulsions
between electrons. The two-dimensional copper oxide layers (Fig. 3) are
separated by ionic, electronically inert, buffer layers. The stoichiometric
‘parent’ compound (Fig. 2, zero doping) has an odd-integer number of
electrons per CuO2 unit cell (Fig. 3). The states formed in the CuO2 unit
cells are sufficiently well localized that, as would be the case in a collec-
tion of well-separated atoms, it takes a large energy (the Hubbard U) to
remove an electron from one site and add it to another. This effect pro-
duces a ‘traffic jam’ of electrons14. An insulator produced by this classical
jamming effect is referred to as a ‘‘Mott insulator’’15. However, even a
localized electron has a spin whose orientation remains a dynamical degree
of freedom. Virtual hopping of these electrons produces, via the Pauli
exclusion principle, an antiferromagnetic interaction between neighbour-
ing spins. This, in turn, leads to a simple (Néel) ordered phase below room
temperature, in which there are static magnetic moments on the Cu sites
with a direction that reverses from one Cu to the next16,17.

The Cu-O planes are ‘doped’ by changing the chemical makeup of
interleaved ‘charge-reservoir’ layers so that electrons are removed (hole-
doped) or added (electron-doped) to the copper oxide planes (see the
horizontal axis of Fig. 2). In the interest of brevity, we will confine our
discussion to hole-doped systems. Hole doping rapidly suppresses the
antiferromagnetic order. At a critical doping of pmin, superconductivity
sets in, with a transition temperature that grows to a maximum at popt,
then declines for higher dopings and vanishes for pmax (Fig. 2). Materials
with p , popt are referred to as underdoped and those with popt , p are
referred to as overdoped.

It is important to recognize that the strong electron repulsions that
cause the undoped system to be an insulator (with an energy gap of 2 eV)
are still the dominant microscopic interactions, even in optimally doped
copper oxide superconductors. This has several general consequences. The
resulting electron fluid is ‘highly correlated’, in the sense that for an elec-
tron to move through the crystal, other electrons must shift to get out of
its way. In contrast, in the Fermi liquid description of simple metals, the
quasiparticles (which can be thought of as ‘dressed’ electrons) propagate
freely through an effective medium defined by the rest of the electrons.
The failure of the quasiparticle paradigm is most acute in the ‘strange metal’
regime, that is, the ‘normal’ state out of which the pseudogap and the
superconducting phases emerge when the temperature is lowered. None-
theless, in some cases, despite the strong correlations, an emergent Fermi
liquid arises at low temperatures. This is especially clear in the overdoped
regime (Fig. 2). But recently it has been shown that even in underdoped
materials, at temperatures low enough to quench superconductivity by
the application of a high magnetic field, emergent Fermi liquid behaviour
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Figure 2 | Phase diagram. Temperature versus hole doping level for the
copper oxides, indicating where various phases occur. The subscript ‘onset’
marks the temperature at which the precursor order or fluctuations become
apparent. TS, onset (dotted green line), TC, onset and TSC, onset (dotted red line for
both) refer to the onset temperatures of spin-, charge and superconducting
fluctuations, while T* indicates the temperature where the crossover to the
pseudogap regime occurs. The blue and green regions indicate fully developed
antiferromagnetic order (AF) and d-wave superconducting order (d-SC)
setting in at the Néel and superconducting transition temperatures TN and Tc,
respectively. The red striped area indicates the presence of fully developed
charge order setting in at TCDW. TSDW represents the same for incommensurate
spin density wave order. Quantum critical points for superconductivity and
charge order are indicated by the arrows.
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Figure 3 | Crystal structure. Layered copper oxides are composed of CuO2

planes, typically separated by insulating spacer layers. The electronic structure
of these planes primarily involves hybridization of a 3dx2 { y2 hole on the
copper sites with planar-coordinated 2px and 2py oxygen orbitals.
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1. Far superior method to compute real time  
finite temperature/density correlation functions

1. Generating functional for new non-trivial  
unknown IR fixed points



Holography gives a consistent, predictive framework
 that captures the right physics of experimental strange metals.



Holography gives a consistent, predictive framework
 that captures the right physics of experimental strange metals.

One step remains: to write down the quantitative theory.
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