PHYSIK

Topology of mixed states

Michael Fleischhauer

University of Kaiserslautern

QM³ - Quantum Matter meets Math, Lissabon, 07.06.2021

Phases of matter

PHYSIK

TECHNISCHE UNIVERSITÄT

Quantum Hall effect

v. Klitzing, PRL 1980

 $k\Omega$

no broken symmetries !

Thouless, Kohmoto, Nightingale, denNijs, (TKNN) PRL 1982:

topology of the wavefunction, characterized by integer quantum numbers!

PHYSIK Topological quantum systems

quantized bulk

transport

topological protection

exotic quantum states

protected edge states & edge transport

Hall conductivity & resistance normal

Abelian & non-Abelian anyons

topology at finite T: what is left ??

topology in non-equilibrium driven, open systems??

• topology at finite T: what is left ??

 topology in non-equilibrium driven, open systems??

steady state of open systems is an **attractor** of the dynamics:

- Gaussian mixed states and fictitious Hamiltonian
- **Topological invariants: Geometric Phases**
- Broken time-reversal symmetry: Z index
- Time-reversal symmetric systems: Z₂ index
- Interactions
- Measurable consequences

- Gaussian mixed states and fictitious Hamiltonian
- **Topological invariants: Geometric Phases**
- Broken time-reversal symmetry: Z index
- Time-reversal symmetric systems: Z₂ index
- Interactions
- Measurable consequences

- Gaussian mixed states and fictitious Hamiltonian
- **Topological invariants: Geometric Phases**
- Broken time-reversal symmetry: Z index
- Time-reversal symmetric systems: Z₂ index
- Interactions
- Measurable consequences

- Gaussian mixed states and fictitious Hamiltonian
- **Topological invariants: Geometric Phases**
- Broken time-reversal symmetry: Z index
- Time-reversal symmetric systems: Z₂ index
- Interactions
- Measurable consequences

- Gaussian mixed states and fictitious Hamiltonian
- **Topological invariants: Geometric Phases**
- Broken time-reversal symmetry: Z index
- Time-reversal symmetric systems: Z₂ index
- Interactions
- Measurable consequences

- Gaussian mixed states and fictitious Hamiltonian
- **Topological invariants: Geometric Phases**
- Broken time-reversal symmetry: Z index
- Time-reversal symmetric systems: Z₂ index
- Interactions

Measurable consequences

- Gaussian mixed states and fictitious Hamiltonian
- **Topological invariants: Geometric Phases**
- Broken time-reversal symmetry: Z index
- Time-reversal symmetric systems: Z₂ index
- Interactions
- Measurable consequences

PHYSIK

Classification of topological systems

Chiral transform $\hat{S} = \hat{T} \circ \hat{C}$ $\hat{S} \hat{a}_i \hat{S}^{-1} = u^s_{ij} \hat{a}^{\dagger}_j$ $\hat{S} i \hat{S}^{-1} = -i$

this is an exhaustive list !!!

Ten-fold way

There are only 10 different classes under Fock-space transformations !

- not invariant under trafo: "0"
- invariant and $\hat{G}^2 = +1$ "+1"
- Invariant and $\hat{G}^2 = -1$ "-1"

$$\hat{G}=\hat{T},\hat{C},\hat{S}$$

Т	0	+1	-1
С	0	+1	-1
S	0	+1	-

3 x 3 = 9 cases

only nontrivial if T = 0 and C = 0 1 additional case

PHYSIK

Non-interacting fermions

SFB/TR 185

PHYSIK

Gaussian open systems

Gaussian mixed states

determined by single-particle correlations: fictitious Hamiltonian

PHYSIK

$$\hat{\rho} \sim \exp\left\{-\frac{1}{2}\hat{\underline{c}}^{\dagger \top}\underline{\underline{\mathsf{G}}}\hat{\underline{c}}\right\} \qquad \langle \hat{c}_{i}^{\dagger}\hat{c}_{j}\rangle = \frac{1}{2}\left[1-\tanh\left(\frac{\underline{\mathsf{G}}}{2}\right)\right]_{ij}$$

• Gaussian states in thermal equilibrium require quadratic Hamiltonian

$$\underline{\underline{\mathsf{G}}} = \beta \left(\underline{\underline{H}} - \mu\right) \qquad \beta = 1/k_B T$$

• Gaussian non-equilibrium steady state (NESS) require linear Lindblad generators

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -i\left[\hat{H},\rho\right] + \frac{1}{2}\sum_{\mu}\left(2L_{\mu}\rho L_{\mu}^{\dagger} - \{L_{\mu}^{\dagger}L_{\mu},\rho\}\right) = 0 \qquad L_{j} \sim \alpha\,\hat{c}_{j}^{\dagger} + \beta\,\hat{c}_{j}$$

Topological invariants: Geometric phases

Topological invariants

PHYSIK

locally indistinguishable

PHYSIK

differ by global properties !

→ density matrix ?

Berry (Zak) phase: picked up at parallel transport cycle

$$\phi_{\rm Zak} = \int_{-\pi/a}^{\pi/a} dk \, \langle u_k | i \partial_k | u_k \rangle$$

U(1) Uhlmann phase

$$e^{i\phi} = \oint \mathrm{d}\lambda \, \mathrm{Tr} \left[w \partial_{\lambda} w^{\dagger} \right]$$

Chern number

TR-broken

• 1D: winding number $\hat{H} = \hat{H}(\lambda)$

$$\nu = \frac{1}{2\pi} \oint d\lambda \, \frac{\partial \phi_{\rm Zak}}{\partial \lambda}$$

• 2D: Chern number

PHYSIK

$$C = \frac{i}{2\pi} \iint_{\mathrm{BZ}} \mathrm{d}^2 k \sum_{\alpha} \left\{ \langle \partial_{k_y} u_k^{\alpha} | \partial_{k_x} u_k^{\alpha} \rangle - \langle \partial_{k_x} u_k^{\alpha} | \partial_{k_y} u_k^{\alpha} \rangle \right\}$$
$$= \frac{1}{2\pi} \int_{\mathrm{BZ}} \mathrm{d}k_y \frac{\partial \phi_x^{\mathrm{Zak}}}{\partial k_y} = -\frac{1}{2\pi} \int_{\mathrm{BZ}} \mathrm{d}k_x \frac{\partial \phi_y^{\mathrm{Zak}}}{\partial k_x}$$

29

Failure of the Uhlmann phase

SSH model at finite T (1D) (class BDI)

PHYSIK

Viyuela, Rivas, Martin-Delgado PRL (2014) Huang, Arovas PRL (2014)

asymmetric Qi-Wu-Zhang model at finite T (2D) (class A)

$$H(k) = \sum_{j} d^{j}(k) \hat{\sigma}_{j} \quad d^{1} = \sin(k_{x}) \quad d^{2} = 3\sin(k_{y}) \quad d^{3} = 1 - \cos(k_{x}) - \cos(k_{y})$$

$$C = \frac{1}{2\pi} \int dk_{y} \left(\frac{\partial \phi(k_{y})}{\partial k_{y}}\right) \neq C' = \frac{1}{2\pi} \int dk_{x} \left(\frac{\partial \phi(k_{x})}{\partial k_{x}}\right)$$
Budich, Diehl Phys.Rev. B (2015) 30

Thouless, Kohmoto, Nightingale, den Nijs (TKNN) PRL (1982)

$$\Delta n = \frac{1}{2\pi} \oint d\lambda \, \frac{\partial \phi_{\text{Zak}}}{\partial \lambda}$$

Charge pumps (Thouless) PHYSIK

SFB/TR 185

³⁴

SFB/TR 185

SFB/

TR 185

mixed states

SFB/TR 185

Charge pumps (Thouless)

particle transport no longer quantized

Wang, Troyer, Dai, PRL (2013)

Charge pumps (Thouless)

PHYSIK

SFB/TR 185

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

mixed states

D. Linzner et al. PRB (2016); Ch. Bardyn et al. PRX (2018)

$$\varphi_{\rm E} = {\rm Im} \ln {\rm Tr} \left(\rho \hat{T} \right)$$

$$\varphi_{\rm Zak} = {\rm Im} \ln \langle \psi_0 | \hat{T} | \psi_0 \rangle$$

$$\hat{T} = e^{i\frac{2\pi}{L}\hat{X}}$$

EGP and fictitious Hamiltonian

EGP and fictitious Hamiltonian

$$P(\rho_{\rm ss}) = P(|\psi\rangle\langle\psi|) + \mathcal{O}(L^{-1})$$

$$|\psi
angle$$
 ground state of $\mathcal{H}_{ ext{fict}} = \sum_{ij} G_{ij} \, c_i^\dagger c_j$

$$arphi_{
m EGP}\,$$
 = Zak phase of $\ket{\psi}$

Bardyn, Wawer, Altland, Fleischhauer, Diehl (PRX 2018)

Topological classification

$$\mathcal{H}_{ ext{fict}} = \sum_{ij} G_{ij} c_i^{\dagger} c_j$$

- symmetries of ficticious Hamiltonian classify topology
- topological phase transitions
 - (I) closing of the purity gap = gap of ficticious Hamiltonian

thermal equilibrium:
$$\underline{\underline{G}} = \beta \left(\underline{\underline{H}} - \mu \right)$$

(II) closing of the damping gap (criticality)

Z₂ number TR-symmetric

time-reversed Bloch eigenstate is again an eigenstate

Kramers degeneracy

$$|u_{\mathrm{II}}(-\vec{k})
angle = e^{i\chi(\vec{k})} \,\hat{\mathcal{T}} \,|u_{\mathrm{I}}(\vec{k})
angle$$

energy bands come in pairs

total Chern number vanishes

$$C = \frac{1}{2\pi} \int_{\mathrm{BZ}} d\kappa_y \frac{\partial P_{\mathrm{tot}}(\kappa_y)}{\partial \kappa_y} = 0$$

SFB/TR 185

Continuous TR polarization

Z₂ **invariant:** winding of continuous TR polarization over half Brillouin zone

$$\nu_2 = \int_0^{\pi} d\kappa_y \frac{\partial P_{\theta}(\kappa_y)}{\partial \kappa_y}$$

 $P_{\theta} = P^{\mathrm{I}} - P^{\mathrm{II}}$

$$P^{\mathrm{I}}(\kappa_{y}) \sim \arg \prod_{\kappa_{x}=-\pi}^{0^{-}} \langle u^{u}(\kappa_{x}+\delta\kappa) | u^{u}(\kappa_{x}) \rangle \times \prod_{\kappa_{x}=0^{+}}^{\pi} \langle u^{l}(\kappa_{x}+\delta\kappa) | u^{l}(\kappa_{x}) \rangle$$

Kane Mele model at finite T

individual EGPs

time-reversal EGP

fractional filling & topological order

• atomic limit

Degeneracy & Wilson loop

$$\hat{T} = e^{i\frac{2\pi}{L}\hat{X}} \quad U\hat{T}U^{-1} = \hat{T}e^{i2\pi N/L} \quad \hat{X} = \sum_{j} j\hat{n}_{j}$$

Wilson loop

$$\nu_{\rm tot} = \frac{1}{2\pi} \oint d\lambda \, \frac{\partial}{\partial \lambda} \, {\rm Im} \, {\rm ln} \, {\rm det} \, \mathsf{W}(\lambda)$$

$$\mathsf{W}(\lambda) = \mathcal{P} \exp\left\{i \int_{0}^{2\pi} d\theta \; \mathsf{A}(\theta)\right\}$$

$$\mathsf{A}_{\mu\nu}(\theta) = i \langle \Phi_0^{\mu} | \partial_{\lambda} \Phi_0^{\nu} \rangle$$

PHYSIK

d-fold degeneracy

Niu, Thouless, Wu, PRB 1985

$$|\Phi_0^{(1)}\rangle \xrightarrow{1} |\Phi_0^{(2)}\rangle \xrightarrow{2} \dots \rightarrow |\Phi_0^{(d)}\rangle \xrightarrow{d} |\Phi_0^{(1)}\rangle$$

$$\nu_{\rm tot} = \frac{1}{2\pi} \int_0^{2\pi} d\lambda \, \int_0^{2\pi d} d\theta \, \operatorname{Im} \langle \Phi_0^{\mu} | \partial_{\theta} \Phi_0^{\mu} \rangle$$

$$\hat{T} \to \hat{T}^d$$

Extended SL-Bose-Hubbard model PHYSIK generalized EGP $P^{(2)}$ d = 2transport 1.001.00 $1.0 \boxed{L = \infty}$ 0.5 0.75 0.752 ${\rm and} 0.50$ ° 0.50 L = 12 $-T = 0 \Delta_{\text{gap}}$ $-T = 0.25 \Delta_{\text{gap}}$ $-T = 0.415 \Delta_{\text{gap}}$ $T = 0 \Delta_{gap}$ $T = 0.415 \Delta_{gap}$ $T = 0.83 \Delta_{gap}$ 0.25 0.25 2 0.51.00.0()

SFB/TR 185

time in units of \mathcal{T} time in units of \mathcal{T} R. Unanyan et al. PRL (2020)

Measurable consequences?

64

• coupling of open (finite-T) system to closed auxiliary fermion system at T = 0

Topology transfer

dynamics of auxiliary fermions in mean-field approximation

$$H = -\eta \sum_{k,\alpha,\alpha'} c^{\dagger}_{\alpha k} c_{\alpha' k} a^{\dagger}_{\alpha k} a_{\alpha' k}$$

$$\begin{array}{l} a_{n}^{\dagger}a_{m} \rightarrow \langle a_{n}^{\dagger}a_{m} \rangle \sim \mathsf{G}_{mn} \longleftarrow \qquad \text{fictitious Hamiltonian} \\ H \sim -\eta \sum_{k,\alpha,\alpha'} \hat{c}_{\alpha k}^{\dagger} \hat{c}_{\alpha' k} \, \mathsf{G}_{\alpha \alpha'}(k) \end{array}$$

auxiliary system at T=0 \rightarrow quantized transport induced by topology transfer

PHYSIK

Topology transfer at T=0

coupling of Ext. SL-BHM to auxiliary fermion chain

 $\frown \land \land \land \land \land \land$ a_j, a_j^{\dagger} \uparrow η \uparrow c_j, c_j^\dagger

L. Wawer et al. arxiv 2009.04149 67

Topology transfer at T=0

charge transport in boson system

PHYSIK

FR 185

L. Wawer et al. arxiv 2009.04149 68

A - B

69

charge transport in auxiliary system

PHYSIK

Topology transfer at T > 0

PHYSIK

- Topology of Gaussian mixed states of fermions governed by symmetries of fictitious Hamiltonian (single-particle correlations)
- Z and Z₂ topological invariants in 1+1 and 2D: ensemble geometric phase = Zak phase of fictitious Hamiltonian
- Extension to interacting systems with fractional topological charges
- Measurable consequences: quantized transport through topology transfer

Thanks to

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Max Kiefer

Lukas Wawer

Razmik Unanyan Dominik Linzner Rui Li Christopher Mink

SFB TR 185

Charles Bardyn (Geneva)

Sebastian Diehl (Cologne)

Alex Altland (Cologne)

PHYSIK

