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Part I

Introduction
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Path-integral

In this talk, we would begin with the asymptotic form of a
path-integral in 1D (Euclidean) QM:

Z (~) =

∫
Dx e−S(x,~)

=
∞∑
j=0

an~j +
∞∑

n,k=1

∞∑
j=0

bn,k,je
− nSB

~ ~j(log ~)k .

The path-integral can be expressed by transseries generated by

transmonomials, (~, e−
SB
~ , log ~).

~ ... PT fluctuationg

e−
SB
~ ... Instanton (Bion) energy

log ~ ... Quasi-zero modes
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Path-integral

Path-integral for 1D QM Z (~) =

∫
Dx e−S(x ,~)

Perturbative expansion around a vacuum.

Zp(~) ∼ a0 + a1~ + a2~2 + · · · .

The PT expansion is a divergent series in general.

rc :=
1

lim supk→∞ |ak |1/k
= 0.

What does the PT expansion mean when rc = 0?
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Path-integral

Why a divergent series appears?

This implies that there exists NPT sectors (bions).

Typical examples: V (x) = (x2 − 1)2, V (x) = 1− cos x .

Nonperturbarive information is available from the perturbative
series via the Borel resummation (Borel transform + Laplace
integral)

PT sector ⇔ NPT sectors : Resurgence relation
[J.Ecalle ’81, A.Voros ’81, D.Sauzin ’14]
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Borel resummation

Schematic figure of Borel resummation
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Borel summability

When acting the Laplace integration to B[Z̃ ](ξ), (S := L ◦ B)

Z̃ (~) is Borel summable if it is integrable.

Z̃ (~) is Borel nonsummable if it is not integrable due to a
pole (branchcut).

Example:

Z̃(~) ∼ n!An~n+1 as n→∞

⇒ B[Z̃ ](ξ) =
∞∑
n=0

(Aξ)n =
1

1− Aξ

⇒ S[Z̃ ](~) =

∫ ∞
0

dξ
e−ξ/~

1− Aξ

Nonsummable if A ∈ R+.
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Borel summability

To avoid from the singularity, we introduce the small complex
phase to ~. However, the resulting function becomes complex and
depends on the integration ray, S+ or S− (imaginary ambiguity).
By taking the Hankel contour, the NPT contribution is available
from the PT sector (Resurgence):

(S+ − S−)[Z̃ ](~) ∝ ie−
Sb
~ (1 + O(~))

The singularity corresponds to
the bion (IĪ) energy.

n-th sector → (n + k)-sectors
(k ∈ N)

People expect the ambiguity
should be cancelled by the
NPT sectors in some way.
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Questions and Problems

General questions and problems...

1 How to obtain the resurgence including all NP sectors?

2 How to get the mechanism of the imaginary ambiguity
cancellation in full sectors?

3 To do it in the path-integral, all of coefficients are needed
(but it is extremely difficult).
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Schrödinger equation

Instead of beginning with the path-integral, we also have the
Schöredinger equation.

[
−~2

2

d2

dx2
+ V (x)

]
ψ(x , ~) = Eψ(x , ~).

By putting an ansatz of asymptotic form for ψ(x , ~), its coefficients
are easily calculable by the Schöredinger Eq.

In general, a resurgence mechanism can be argued based on the
structure of a given differential equation. [e.g. (non)linear,
(non)autonomous, etc...]

One has to consider Schöredinger eq ⇒ path-integral. It is possible
through the resolvent method.
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Resolvent method

By using the Laplace transform, one can obtain the resolvent G (E )
which is a function of E from Z (β), as

G(E) =

∫ ∞
0

Z(β)eβEdβ, Z(β) =
1

2πi

∫ ε+i∞

ε−i∞
G(E)e−βEdE .

The resolvent G (E ) can be written by D(E ) called the Fredholm
determinant,

G(E) = tr
1

Ĥ − E
= −∂ logDFD(E)

∂E
, DFD(E) := det

(
Ĥ − E

)
DFD(E ) = 0 gives the spectral form. Indeed, from the argument
principle,

Z(β) =
1

2πi

∫ ε+i∞

ε−i∞

D ′FD(E)

DFD(E)
e−βEdE =

∞∑
k=1

nke
−βEk = tr

[
e−βĤ

]
,

where DFD(Ek) = 0 and nk is the number of zero of DFD(Ek).
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Gutzwiller trace formula (GTF)

Gutzwiller trace formula
– semiclassical construction of the resolvent G (E ).

Normally, it is defined for ”Lorentzian” partition function.

Z (T ) = tre−i ĤT =

∫
periodic

Dx e iS

⇒ G (E ) = −itr 1

Ĥ − E
=

∫ ∞
0

dT

∫
periodic

Dx eΓ(~),

where Γ = S + ET = n
∮
pdx −

∫ T
Hdt + ET .

We evaluate it by the stationary phase approximation.
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Gutzwiller trace formula (GTF)

By taking up to the sub-leading contribution, G (E ) can be
expressed by

G (E ) = i
∑
p.p.o

∞∑
n=1

T (E )eni
∮
p.p.o.

pdx(−1)n |det(Hess(S))|−1/2
,

where p.p.o. denotes a prime periodic orbit, T (E ) is the period of

each cycle whose energy is E , and (−1)n = e
πi
4
sgn(Hess(S)) is the

Maslov index.
(See Gutzwiller’s book for the derivation

[M. Gutzwiller, Springer-Verlag New York ’90])

In general, it is a tough problem to determine all p.p.o.
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Strategy

We start with the Schrödinger equation and obtain the
quantization condition by the exact-WKB analysis.

DFH(E ) = 0 → DWKB(E ) = 0

DWKB(E ) keeps all informations such as transseries, ambiguity
cancellation, and resurgence structure for E . This gives the
genralized B-S quantization.

DWKB(E ) can be expressed by a kind of periodic orbits. This gives
the Gutzwiller trace formula through the resolvent G (E ).

As we saw, DWKB(E ) gives the spectral form. Furthermore, by
taking integral by parts for ∂E logDWKB(E ), it gives the
path-integral.
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Strategy

We would take the following steps:

1 Obtain the quantization condition by using the
exact-WKB analysis.

2 Then, consider the resurgence relation for the quantization
condition.

3 Derive expressions such as GTF and path-integral from the
quantization condition through the resolvent method.
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Outline

(− ~2

2
d2

dx2 + V (x))ψ(x) = Eψ(x)

Schrödinger eq.

D(E) = 0
exact quantization condition

1
2πi

∮
pdx ' (N + 1

2
) + O(e

− S
~ )

generalized Bohr-Sommerfeld

G(E) = −∂E log D(E)
G(E) '

∑
n

∑
p.p.o.

(−1)ne in
∮

pdx

Gutzwiller trace formula

Z(β) = 1
2πi

∫ ε+i∞
ε−i∞ G(E)e−βE dE

Z(β) =
∑
n

e−βEn

spectral summation form

Z(β) =
∑
n

an~n + e
− S1

~
∑
n

bn~n + e
− S2

~
∑
n

cn~n + ...

path-integral(trans-series) form

exact-WKB

expand
inverse Laplace transform

calculate the residues

integral by parts and expand log D(E)

Syo Kamata Exact-WKB, complete resurgent structure, and ...



17/56

Anomaly and the cosine model

(Mixed) ’t Hooft anomaly
[G.’t Hooft ’80, D.Gaiotto et al. ’17, Y.Kikuchi et al. ’17, etc.]

A obstruction to promoting the global symmetry to local gauge symmetry

Global symmetry G ⇒ Gauging (background gauge A)

Take the G -gauge transform. We say that the theory has an ’t
Hooft anomaly if it gives

Z [A + dλ] = Z [A] exp (iA[λ,A]) .

The phase can not be canceled by a local counter term.

If G = G1 × G2, it is said to be a mixed ’t Hooft anomaly.
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Anomaly and the cosine model

Cosine model

L =
ẋ2

2
+ V (x)− iθ

2π
ẋ ,

V (x) = 1− cos(Nx), x ∼ x + 2π, N ∈ N.

Symmetry

ZN shift U : x(t) 7→ x(t) +
2π

N
(UN = 1)

Time reversal (Z2) T : (x(t), ẋ(t)) 7→ (x(−t),−ẋ(−t)) (θ = 0, π)

Hamiltonian

Ĥ =
1

2

(
p̂ − θ

2π

)2

+ V (x̂), [x̂ , p̂] = 1.

Syo Kamata Exact-WKB, complete resurgent structure, and ...



19/56

Anomaly and the cosine model

We consider when θ = 0 or π.

Ĥ =
1

2

(
p̂ − θ

2π

)2

+ V (x̂), [x̂ , p̂] = 1.

TĤT−1 = Ĥ can be satisfied by

Tx̂T−1 = x̂ , Tp̂T−1 =

{
−p̂ θ = 0

−p̂ + 1 θ = π
.

By using the coordinate basis, U and T can be expressed by

U = exp

[
2πi

N
∂x

]
, T =

{
K θ = 0

exp [ix ]K θ = π
, (K: c.c. operator)

⇒ TUT−1 =

{
U θ = 0

exp
[
− 2πi

N

]
U θ = π

.
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Anomaly and the cosine model

Suppose that θ = π. We redefine U as

U′ := exp

[
−2πi

N
k

]
U, (k ∈ ZN)

⇒ TU′T−1 = exp

[
−2πi

N
(2k − 1)

]
U′.

U′ and T is commutative if there exists a solution satisfying
2k − 1 = 0 (modN) for k ∈ ZN .

If N ∈ 2N, no solution exists ⇒ Mixed ’t Hooft anomaly
All the energy spectra is two-fold degenerate.

If N ∈ 2N + 1, k = N+1
2 ⇒ Global incosistency

A energy singlet state at θ = 0 is not continuously
connected to a singlet state at θ = π.
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Anomaly and the cosine model

ZN background gauge (A,B) (NA = dB)

S [x ,A,B] =

∫
dt

[
1

2
(ẋ + A0)2 + 1− cos(Nx + B)

]
− i

θ

2π

∫
(dx + A) + ik

∫
A,

with the Chern-Simons level k ∈ ZN .

N

∫
A =

∫
dB ∈ 2πZ.

Gauge transform

x 7→ x − λ, A 7→ A + dλ, B 7→ B + Nλ.

Partition function

Zθ,k [(A,B)] =

∫
Dx exp (−S [x ,A,B]) .
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Anomaly and the cosine model

We take the gauge fixing condition as B = 0 (modN). Thus,

A =
∑
`∈Z

2π`

N
δ(t − t`)dt, B =

∑
`∈Z

=
2π`

N
Θ(t − t`),

with the step function and the delta function, Θ(t) and δ(t), respectively.
The partition function can be evaluated as

Zθ,k [(A,B)] =

〈∏
`∈Z

(
e−2πik/NU(t`)

)`〉
.

By acting T, one finds

Zθ,k [T(A,B)] =

〈∏
`∈Z

(
e−2πik/NTU(t`)T−1

)`〉
= Zθ,k [(A,B)]e iA[k,A]

e iA[k,A] =

{∏
`∈Z e

2π`i(2k)/N = e2ki
∫
A for θ = 0∏

`∈Z e
2π`i(2k−1)/N = e(2k−1)i

∫
A for θ = π

.

No solution for k ∈ ZN such that e iA[k,A] = 1 when θ = π and N ∈ 2N.
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Part II

Exact-WKB analysis
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Exact-WKB analysis

Consider the Schrödinger equation given by (~, x ∈ C,E ∈ R+)
(See e.g.[T.Kawai et al. AMS, c2005] in technical details.)[

−~2 d2

dx2
+ Q(x)

]
ψ(x) = 0, Q(x) = 2(V (x)− E ),

Put ansatz for a formal solution

ψ(x , ~) = e
∫ x S(x ,~)dx ,

S(x , ~) = ~−1S−1(x) + S0(x) + ~S1(x) + ~2S2(x) + · · ·

where S(x , ~) satisfies the nonlinear Riccati equation.

S(x , ~)2 +
∂S(x , ~)

∂x
= ~−2Q(x), S−1(x) = ±

√
Q(x) .
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Exact-WKB analysis

Since the Sch eq is the 2nd order diff eq, there exists two
independent solutions.

S±(x , ~) = ±Sodd(x , ~) + Seven(x , ~) ,

Sodd(x , ~) =
∞∑
n=0

S2n−1(x)~2n−1, Seven(x , ~) =
∞∑
n=0

S2n(x)~2n.

By the Riccati eq, one finds

Seven(x , ~) = −1

2

∂ log Sodd(x , ~)

∂x
,

hence, the formal solution can be expressed only by Sodd(x , ~).

ψ±a (x , ~) =
e±

∫ x
a
Sodd(x,~)dx√

Sodd(x , ~)
= e±

ξ0(x)
~

∞∑
n=0

ψ±a,n(x)~n+1/2.
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Exact-WKB analysis

Let us look at the Borel resummation of the wavefunction.

Sθ[ψ±a (x)](~) =

∫ ∞e iθ

∓ξ0(x)

e−
ξ
~B[ψ±a (x)](ξ)dξ, θ = arg(~) ,

B[ψ±a (x)](ξ) =
∞∑
n=0

ψ±a,n(x)

Γ
(
n + 1

2

) (ξ ± ξ0(x))n−
1
2 , ξ0(x) =

∫ x

a

dx Sodd,−1(x) .

The Borel summablity is determined from

ξ0(x)

~
=

1

~

∫ x

a

dx Sodd,−1(x) =
1

~

∫ x

a

dx
√
Q(x).

The Stokes phenomenon (in other words Borel nonsummable)
happens when

Im
ξ0(x)

~
= −Imξ0(x)

~
.
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The Stokes graph

Since the Borel summability is relevant to 1
~
∫
Sodd,−1 : C→ C, it

is natural to see the Riemann surface defined by 1
~
∫
Sodd,−1, so

called the Stoke graph.

Example: Double-well potential

-2 -1 1 2
x

1

2

3

4

5

6

V(x) �

+

a1 +

�

a4

+

+

a2 a3

+

�

�

+

� �

x
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The Stokes graph

Since the Borel summability is relevant to 1
~
∫
Sodd,−1 : C→ C, it

is natural to see the Riemann surface defined by 1
~
∫
Sodd,−1, so

called the Stoke graph.

Constitutive ingredients:

Turning point (a1, a2, · · · )
Def: Q(x) = 0 (V (x)− E = 0)

Stokes line (black line)
Def: Im 1

~
∫
Sodd,−1 = 0

± labels
∫
Sodd,−1 → ±∞

Branch cut (red wave)
+Sodd(x , ~)↔ −Sodd(x , ~)

�

+

a1 +

�

a4

+

+

a2 a3

+

�

�

+

� �

x

Example of the Stokes graph.

Double-well with arg(~) > 0.
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The Stokes graph

For getting the Q.C, we consider the analytic continuation of ψ(x)
for a given Stokes graph and a B.C. To do it, we have to know the
effect of crossing Stokes line for S[ψ](x).

S[ψI](x) = M̂S[ψII](x).

�

+

a1 +

�

a4

+

+

a2 a3

+

�

�

+

� �

x

arg(~) > 0

�

+

a1 +

�

a4

+

+

a2 a3

+

�

+

� ��

x

arg(~) < 0
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Connection formula for the Airy-type

Consider crossing the Stoke line from I to II.

ψ = (ψ+, ψ−)>,

ψI
a = M+ψ

II
a , ψI

a = M−ψ
II
a ,

M+ =

(
1 +i
0 1

)
, M− =

(
1 0

+i 1

)
.

�

�

+
α

I

II
x
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Connection formula for the Airy-type

Connection matrix

M+ =

(
1 +i
0 1

)
, M− =

(
1 0

+i 1

)
,

Branchcut matrix

T =

(
0 −i
−i 0

)
,

Normalization matrix (Voros multiplier)

Nba =

(
e+

∫ b
a
dx Sodd(x,~) 0

0 e−
∫ b
a
dx Sodd(x,~)

)
.

�

�

+
α

I

II
x
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Cycle expression (Voros multiplier)

For the WKB analysis, it is convenient to introduce cycle
expression, which is known as the Voros multipliers.

A-cycle (PT)

A(~) := e
∮
A
dx Sodd(x,~),∮

A

dx
√

2(V (x)− E ) ∈ iR.

B-cycle (NPT)

B(~) := e
∮
B
dx Sodd(x,~),∮

B

dx
√

2(V (x)− E ) ∈ R.

Note: We would take the orientation such that B(~) ∝ e−
Sb
~ .
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The Stokes graph

The Stokes graph generally depends on arg(~). In the below
example, arg(~) = 0 gives a Borel nonsummable wavefunction.
But it can be resolved, i.e. Borel summable, when
0 < |arg(~)| � 1 (except exactly on the Stokes line).

�

+

a1 +

�

a4

+

+

a2 a3

+

�

�

+

� �

x

arg(~) > 0

�

+

a1 +

�

a4

+

+

a2 a3

+

�

+

� ��

x

arg(~) < 0
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Example 1: Harmonic oscillator V (x) = 1
2x

2

I→ II : ψI
a1

= M+ψ
II
a1

(1→ 2) : ψI
a1

= Na1,a2ψ
II
a2

II→ III : ψII
a2

= M+ψ
III
a2

(2→ 1) : ψIII
a2

= Na2,a1ψ
III
a1

⇒ ψI
a1

=

(
1 i(1 + A)
0 1

)
ψIII
a1
.

�

+

a1

+

�a2

++

I II III

x

Boundary condition for ψa = (ψ+,a, ψ−,a)>:

ψI
a1

(x , ~)→ 0 as x → ±∞
⇒ ψI

−,a1
(x , ~) = 0 and D(~) := (1 + A(~)) = 0

where A(~) := e
2
∫ a2
a1

dx Sodd(x ,~)
= e

∮
A dx Sodd(x ,~).
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Example 1: Harmonic oscillator V (x) = 1
2x

2

Since Q(x) = x2 − 2E with E > 0, the turning points are given by

a1 = −
√

2E , a2 = +
√

2E . Hence,

2

∫ a2

a1

dx Sodd(x , ~) = −2πiE

~
.

From the quantization condition, i.e. D = (1 + A) = 0,

1 + e−
2πiE
~ = 0 ⇒ E =

(
1

2
+ n

)
~, n ∈ Z

From the positive energy condition,

E =

(
1

2
+ n

)
~, n ∈ N0
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Part III

Application:
the cosine model
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The cosine model

Let us consider the cosine model and the path from x = 0 to
x = 2π with −1� Im x < 0 to obtain the Q.C.

Q(x) = 2(V (x)− E ), V (x) = 1− cos(Nx), (N ∈ N)

ψa1 (x) = M̂ψa1+2π∼a1

M̂ =

{
[M+TNa1a2M−Na2a3M−]N =:M+ for arg(~) > 0

[M+TNa1a2M−M+Na2a3 ]N =:M− for arg(~) < 0
.

�+

+�

+
x

�

+

a1

+

�

a4

+

+

a2

a3
+

�

+

�

�
�

x

�

+

a 1

+

�

a 4

+

+

a 2
a 3

+

�

+

�
�

�

x�

+a 1
+

�

a 4

+

+

a 2
a 3

+

�

+

�
�

�

x

�
+

a1

+

�

a4

+

+
a2

a3

+
�

+

�

�
�

x

�

+

a1

+ �

a4

+

+

a
2

a3

+

�

+

�
�

�

x �

+ a
1

+

�

a
4

+

+

a
2

a
3

+

�

+

�
�

�

x

�

�+

+�

+

�

+

a1

+

�

a4

+

+

a2

a3
+

�

+

�

�
�

x

�

+

a 1

+

�

a 4

+

+

a 2
a 3

+

�

+

�
�

�

x�

+a 1
+

�

a 4

+

+

a 2
a 3

+

�

+

�
�

�

x

�
+

a1

+

�

a4

+

+
a2

a3

+
�

+

�

�
�

x

�

+

a1

+ �

a4

+

+

a
2

a3

+

�

+

�
�

�

x �

+ a
1

+

�

a
4

+

+

a
2

a
3

+

�

+

�
�

�

x
�

…… a1 a2 a3 a4

arg(~) > 0

�+

+

�

+

x

�

�

+

a1

+

�

a4

+

+

a2

a3
+

�

+

�

�
�

x

�

+

a 1

+

�

a 4

+

+

a 2
a 3

+

�

+

�
�

�

x�

+a 1
+

�

a 4

+

+

a 2
a 3

+

�

+

�
�

�

x

�
+

a1

+

�

a4

+

+
a2

a3

+
�

+

�

�
�

x

�

+

a1

+ �

a4

+

+

a
2

a3

+

�

+

�
�

�

x �

+ a
1

+

�

a
4

+

+

a
2

a
3

+

�

+

�
�

�

x

�+

+

�

+�

�

+

a1

+

�

a4

+

+

a2

a3
+

�

+

�

�
�

x

�

+

a 1

+

�

a 4

+

+

a 2
a 3

+

�

+

�
�

�

x�

+a 1
+

�

a 4

+

+

a 2
a 3

+

�

+

�
�

�

x

�
+

a1

+

�

a4

+

+
a2

a3

+
�

+

�

�
�

x

�

+

a1

+ �

a4

+

+

a
2

a3

+

�

+

�
�

�

x �

+ a
1

+

�

a
4

+

+

a
2

a
3

+

�

+

�
�

�

x

… …
a1 a2 a3 a4

arg(~) < 0

Syo Kamata Exact-WKB, complete resurgent structure, and ...



38/56

The cosine model

Set the twisted boundary condition, ψ(x) = e iθψ(x + 2π). Thus,

D± := det(M± − Ie iθ)/e iθ. (θ: boundary condition)

=
1

(A∓1B)N/2

N−1∏
p=0

D±p = 0 for sign(Im(~))± 1

D±p := 1 + A∓1(1 + B)− 2
√
A∓1B cos

(
θ + 2πp

N

)
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Delabaere-Dillinger-Pham (DDP) formula

Cycles have the resurgence relation called the DDP formula.
[E.Delabaere et al. ’97, K.Iwaki et al. ’14]
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In the case of the cosine potential, it is given by

S+[
√
A] = S−[

√
A](1 + S[B]), S+[B] = S−[B] =: S[B].

(See DDP paper for details and generic cases.)
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Resurgence for the quantization condition

Since D±(E ) is a function of cycles, from the DDP formula given
by

S+[
√
A] = S−[

√
A](1 + S[B]), S+[B] = S−[B] =: S[B],

one finds that

S+[(A−1B)−1/2D+
p (A,B)] = S−[(A+1B)−1/2D−p (A,B)]

Since D± = (A∓1B)−N/2
∏N−1

p=0 D±p (E ) = 0, the energy spectrum
is given by each of p-sectors. This fact means that the resurgence
structure is closed on the fixed-p sector. Trivially,

S+[D+(A,B)] = S−[D−(A,B)]
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Degeneracy of energy

When N = 2K with K ∈ N and θ = π (APBC), one can
immediately see the degeneracy of energy spectrum:

D±p = 1 + A∓1(1 + B)− 2
√
A∓1B cos

(
θ + 2πp

N

)
⇒ D±p = 1 + A∓1(1 + B)− 2

√
A∓1B cos

[
π(p + 1/2)

K

]
, (p ∈ Z2K )

Hence, one finds

D±p = D±2K−p−1

This degeneracy is a sign of an ’t Hooft anomaly.
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Gutzwiller trace formula

We derive the GTF through G± = −∂E logD±. (N = 1 for simplisity.)

G±(E) = G±pt(E) + G±np(E),

G±pt(E) := −∂EA∓1 ·
∞∑
n=0

(−1)nA∓n, G±np(E) := −∂EK± ·
∞∑
n=0

(−1)n(K±)n,

K± := B
∞∑
n=0

(−1)nA±n − 2
√
A±1B

∞∑
n=0

(−1)nA±n cos θ.

We define “period” TA,B as

∂EA =

∮
A

dx

(
−1

~
√

2V (x)− E
+ O(~)

)
· A =: − i

~
TAA,

∂EB =

∮
B

dx

(
−1

~
√

2V (x)− E
+ O(~)

)
· B =: − i

~
TBB,

Notice that lim~→0 TA ∈ R and lim~→0 TB ∈ iR.
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Gutzwiller trace formula

Maslov index

G±pt(E) := −∂EA∓1 ·
∞∑
n=0

(−1)nA∓n, G±np(E) := −∂EK± ·
∞∑
n=0

(−1)n(K±)n,

K± := B
∞∑
n=0

(−1)nA±n − 2
√
A±1B

∞∑
n=0

(−1)nA±n cos θ.

G±pt and G±np constitute of the periodic orbits, A±1 and K±,
respectively. These give (−1), which is the Maslov index.

K± is has fundamental nonpertubative orbits, BA±n and√
A±1BA±n. A±1 and B also give (−1) there.

The exact form of the GTF for the cosine model could be obtained.
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Gutzwiller trace formula

K± := B
∞∑
n=0

(−1)nA±n − 2
√
A±1B

∞∑
n=0

(−1)nA±n cos θ.
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Relation of cycles between Airy- and DW-types

We consider the ground state energy and its nonpertubative correction.
When considering the energy spectrum by solving the Q.C. and it gives
E (~) = O(~), it is useful to employ the degenerate Weber (DW)-type
Stokes graph.

Two Airy-type (E0 > 0) → One DW-type (E0 = 0)
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Relation of cycles between Airy- and DW-types

When considering the Q.C. based on the DW-type graph, one has
to compute the DW connection formula.

In principle, the result by the DW-type graph is available by
replacing E → E~ in the results by the Airy type. But, it is difficult
in the generic cases.

Instead the reduction from the Airy-type graph, one can make a
dictionary between the cycles of Airy-type (A,B) and the ones of
the DW-type (A,B).

The cycles expression based on Voros multipliers is kept.
(But, the functional forms are different from each others.)

e.g. D(A,B) → D(A,B).
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Quantization condition by degenerate Weber-type

We replace (A,B) with (A,B) given by

A→ A ≈ e−
2πiE
N , B → B ≈ 2πB0

Γ( 1
2 + E

N )2

(
N~
32

)− 2E
N

, B0 = e−
16
N~ .

(Here, E (~) ≈ E~) Thus, D± becomes

D± ≈
N−1∏
p=0

[
1√

B0Γ( 1
2 − E

N )

(
N~
32

)E/N

+

√
B0e

±πiE/N

Γ( 1
2 + E

N )

(
N~
32

)−E/N
−
√

2

π
cos

(
θ + 2πp

N

)]
= 0.

Syo Kamata Exact-WKB, complete resurgent structure, and ...



48/56

Nonperturbative contribution to the energy

The ground state energy is obtained by the 1st. term of Q.C.,
E/N = 1/2. In order to consider the NPT contribution to the
ground state energy, we substitute E/N = 1/2 + δ into Q.C. where
δ = O(

√
B0). The solution is given by

δ±p = −
√

64B0

Nπ~
cos

(
θ + 2πp

N

)
+

64B0

Nπ~
·
[

cos2

(
θ + 2πp

N

)
·
(
γ − log

N~
32

)
± πi

2

]
+ O(B

3/2
0 ).
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Nonperturbative contribution to the energy

For N = 1 and 2,

δ± = −
√

64B0

π~
cos θ +

64B0

π~
·
[

cos2 θ ·
(
γ − log

~
32

)
± πi

2

]
+ O(B

3/2
0 ),

δ±p = −(−1)p
√

32B0

π~
cos

θ

2
+

32B0

π~
·
[

cos2 θ

2
·
(
γ − log

~
16

)
± πi

2

]
+ O(B

3/2
0 ).

N = 1
O(B

1/2
0 ) ... (Anti-)instanton [I] [Ī]

O(B0) ... (Anti-)instantons pair [II] [ĪĪ]
Bion [IĪ]±.

N = 2 (If θ = π, instanton contributions disappear, and δ±0 = δ±1 .)

O(B
1/2
0 ) ... (Anti-)instanton [I1][I2][Ī1][Ī2]

O(B0) ... (Anti-)instantons pair [I1I2][Ī1Ī2]
Bion [I1Ī1]± [I2Ī2]±.
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Partition function

We obtain the partition function via the resolvent method.

Z±(β) = − 1

2πi

∫ ε+i∞

ε+i∞

∂ logD±

∂E
e−βEdE

= − β

2πi

∫ ε+i∞

ε+i∞
logD±e−βEdE .

Since the DDP formula gives S+[D+] = S−[D−] and S± is
homomorphism for summation and multiplication, one can easily
find

S+[Z+(β)] = S−[Z−(β)]

Since the path-integral is now expressed by cycles, the resurgenct
relation for each sector can be traced.
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Partition function

In order to see the details, we factorize the Q.C. as

D± ∝
N−1∏
p=0

[
1 + A∓1(1 + B)− 2

√
A∓1B cos

(
θ + 2πp

N

)]

= (D±A )N ·
N−1∏
p=0

[
1 +

A∓1B

D±A
− 2

√
A∓1B

D±A
cos

(
θ + 2πp

N

)]
(D±A := 1 + A±1)

Each of the factors give

(D±A )N ... (N copies of) pertubative sector,

[· · · ] ... (p-th) nonpertubative sector,

by expanding logD±A and log[· · · ] around 1.
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Partition function

The partition function is given by

Z± = NZ±pt +
N−1∑
p=0

∑
(Qp ,Kp)∈Z⊗N0
|Qp |+Kp>0

Z±np(p,Qp,Kp)

= NZ±pt + N
∑

(Q,K)∈Z⊗N0
|Q|+K>0

Z±np(0,NQ,K),

where

Z±pt :=
β

2πi

∫ ε+i∞

ε−i∞

∞∑
n=1

(−A±1)n

n
e−βEdE ,

Z±np(p,Qp,Kp) :=
β

2πi

∫ ε+i∞

ε−i∞

e2πipQp/N

|Qp|+ Kp

(
|Qp|+ Kp

Kp

)(
B

K2

)|Qp |/2+Kp

· 2F1(1− Kp,−Kp; |Qp|+ 1;−A±1)(−A∓Kp )e−βE+iQpθ/NdE ,

(K :=
√
A +
√
A
−1

)
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Hilbert space ⇔ Partition function

Let us look at the resurgence structure of the Hilbert space and the
partition function. We express the Q.C. using α± and β±:

D± =
N−1∏
p=0

α±
(

1− β±e i(θ+2πp)/N
)(

1− β±e−i(θ+2πp)/N
)
∝

N−1∏
p=0

D±p ,

α± := ξ± +
√

(ξ±)2 − 1, β± := ξ± −
√

(ξ±)2 − 1, ξ± :=
1 + A±1 + B√

A±1B
,

S+[ξ+] = S−[ξ−] ⇒ S+[α+] = S−[α−] and S+[β+] = S−[β−].

Ep is given by D±p = 0, thus the resurgent relation of corresponding

Hilbert space Hp is closed.
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Hilbert space ⇔ Partition function

The partition function can be also expressed by α± and β±:

Z± =
β

2πi

∫ ε+i∞

ε−i∞
e−βEdE

·
N−1∑
p=0

− log
(√

A∓1Bα±
)

+
∑

Qp∈Z\{0}

(β±)|Qp |

|Qp|
e i(θ+2πi)Qp/N

 .
We can see that the resurgent structure is closed in [· · · ]. Not only that,
each of the Qp-sectors is also closed.
(The topological charge Qp arises as powers by Taylor expansion.)

Thus,
∑∞

Kp=0 Z
±(p,Qp,Kp) is irreducible for the Stokes automorphism

S, and the resrugent structure is labeled by (p,Qp).
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Hilbert space ⇔ Partition function
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Summary

We considered QM of a particle on S1 in the presence of a periodic
potential with N-minima (N ∈ N) by the exact-WKB method.

We derived the energy spectrum, the Gutzwiller trace formula, and
the partition function from the quantization condition.

All orders perturbative/non-perturbative resurgent relation is shown.

Our result obtained by the DW-type correctly reproduces the energy
eigenvalues conjectured by Zinn-Justin[J.Zinn-Justin et al. 04], and
obtained earlier by using uniform WKB method for N = 1 [G.Dunne

et al. 14].

The exact quantization condition naturally captures the mixed ’t
Hooft anomaly or global inconsistency.
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