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Rationale of research idea 

Neural network 
= 

System of many 
interacting spins 

Retrieval of  
stored information 

(patterns) 
= 

Non-equilibrium 
dynamics  Stationary state 

of dynamics can  
be analysed  

using statistical  
mechanics  

methods  phases 
and phase transitions 

Dynamics can  
be augmented 
with quantum  

effects 

New phases/ 
classes of 
patterns? 

Are there physical realisation/manifestation 
of this physics in quantum many-body systems 



Outline 

2) Quantum effects 

 - bringing classical and quantum dynamics together 
- thermal vs. quantum fluctuations 
- limit cycle phase = „novel quantum pattern“? 

1) Introduction 
- Hopfield neural network 
- pattern storage and retrieval 
- statistical physics perspective 

3) Manifestation in physical systems 

 - realisation of Hopfield neural network dynamics 
  with atoms coupled to light 
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Hopfield network 
- simple model of associative memory  

[J.J. Hopfield, PNAS 79, 2554 (1989)] 
- if input is “similar enough to stored pattern” it will be retrieved 
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Time evolution 

- “neurons” are represented by binary variables: 
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Hopfield network 
- patterns are represented  

by N-dimensional vectors 𝝃𝜇 
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Discrete dynamics with coupling constants Jij is 
constructed such that patterns are fixed points 

𝜎𝑗
𝑧 𝑡 + 1 = sign  𝐽𝑖𝑗𝜎𝑖

𝑧 𝑡

𝑖

  with 𝜎𝑗
𝑧 = ±1 



Capacity: number of 
patterns 𝑁𝑝 that can be  

stored ≈ 0.138 × N 

Statistical mechanics perspective 

Spin glass energy function 
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with coupling constants 
(Hebbian rule) 

- Hopfield network can be  
interpreted as spin glass  
(network of “randomly” 
coupled spins) 

𝝃1 𝝃2 states 
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retrieval phase (𝑵𝒑 < 𝑵𝒄𝒓𝒊𝒕) spin glass phase (𝑵𝒑 > 𝑵𝒄𝒓𝒊𝒕) 
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Statistical mechanics perspective 

𝝃1 𝝃2 states 
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Retrieval phase 
- energy minima correspond to patterns 
- which pattern is selected (basin of 

attraction) depends on initial conditions 
- Thermal fluctuations are small 

Paramagnetic phase 
- thermal fluctuations are  

so large that more than 
a single pattern is populated 

increasing temperature 

Amit et al., PRA 32, 1007 (1985) 

- Statistical mechanics approach allows to  
introduce temperature = thermal fluctuations 

Thermal equilibrium state:  𝜌thermal ∝ exp(−𝛽𝐸𝐻𝐹) 

𝛽 =
1

𝑘𝐵𝑇
 

Inverse  
temperature 



Formulation of dynamics 

Glauber dynamics 

- dynamics performs flips of individual spins 
- stationary state is thermal equilibrium state 

Γ𝑘− =
exp −𝛽 Δ𝐸𝑘
2 cosh(𝛽 Δ𝐸𝑘)

 

Γ𝑘+ =
exp 𝛽 Δ𝐸𝑘

2 cosh(𝛽 Δ𝐸𝑘)
 Δ𝐸𝑘 = 𝐽𝑖𝑘𝜎𝑗

𝑧

𝑖≠𝑘

 

is change of energy  
under flipping  
of k-th spin 

𝒑 =  Γ𝑘+ 𝜎𝑘
+ − 1 − 𝑛𝑘 + Γ𝑘− 𝜎𝑘

− − 𝑛𝑘
𝑘

 𝒑 

- Probability of having a certain spin configuration  
is encoded in classical probability vector 𝒑 

flip up flip down 

𝒑 =

𝑝↑↑
𝑝↑↓
𝑝↓↑
𝑝↓↓

 

Two spins 



Quantum effects 

- goal: lets make this “quantum” 
- starting point: formulate classical stochastic dynamics in terms  

of quantum master equation propagating the density matrix 𝜌 

- master equation is direct translation of classical stochastic dynamics 
- both lead to identical time evolution and stationary state 

𝒑 =  Γ𝑘+ 𝜎𝑘
+ − 1 − 𝑛𝑘 + Γ𝑘− 𝜎𝑘

− − 𝑛𝑘
𝑘

 𝒑 
classical 

probability 
vector 

𝜌 =  𝐿𝑘𝛼𝜌𝐿𝑘𝛼
+ −

1

2
{𝐿𝑘𝛼

+ 𝐿𝑘𝛼 , 𝜌}

𝑘,𝛼=±

 

𝐿𝑘± = Γ𝑘±𝜎𝑘
± with jump operators 

quantum 

density 
matrix 

“square root” of Hopfield 
Glauber rates 



Quantum effects 

𝜌 = −𝑖 𝐻, 𝜌 +  𝐿𝑘𝛼𝜌𝐿𝑘𝛼
+ −

1

2
{𝐿𝑘𝛼

+ 𝐿𝑘𝛼 , 𝜌}

𝑘,𝛼=±

 

- Formulation in terms of quantum master equation  
permits inclusion of quantum effects 

classical Glauber dynamics  
(controlled by temperature, 

i.e. thermal fluctuations) 

quantum 
fluctuations 

- next step: explore competition between classical noise and  
quantum fluctuations  new patterns/phases? 

 
- our choice: quantum process that flips spins coherently 

                                     (transverse magnetic field): 

Quantum  
evolution 

exp −𝑖 𝐻 𝑡 ∣       ⟩ = cos Ω𝑡 ∣       ⟩ − 𝑖 sin(Ω𝑡) ∣       ⟩ +1 -1 +1 

𝐻 = Ω 𝜎𝑘
𝑥

𝑘

 



component does not exist  
classical Hopfield dynamics  

Order parameter and dynamics 

- To analyse dynamics we use the pattern-overlap as order parameter 
(overlap of the state of the system with a pattern 𝝃𝜇) 
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order parameter equations of motion 

solution in paramagnetic phase:  𝒎𝑧 = {0,0, … 0} 

𝒎𝑦 = −2Ω 𝒎𝑧 −
1

2
𝒎𝑦 

𝒎𝑧 = 2Ω 𝒎𝑦 +
1

𝑁
 𝝃𝑖
𝑖

tanh 𝛽𝝃𝑖 ⋅ 𝒎
𝑧 −𝒎𝑧 

solutions in retrieval phase:  𝒎𝑧 = {0,… , 0,1,0, … 0} 

pattern 𝝃𝜇 

Overlap with one  
specific pattern 

No overlap 
with any pattern 



Stationary state 

- this equation of state is identical to classical Hopfield model 
- new effective temperature 𝑇 → 𝑇(1 + 8Ω2) 
- stationary points of dynamics are unchanged but transition temperature 

between retrieval phase and paramagnetic phase is shifted 

𝒎𝑧 = 𝒎𝑦 = 0 stationarity condition: 

0 = −2Ω 𝒎𝑧 −
1

2
𝒎𝑦 0 = 2Ω 𝒎𝑦 −𝒎𝑧 +

1

𝑁
 𝝃𝑖
𝑖

tanh 𝛽𝝃𝑖 ⋅ 𝒎
𝑧  

y-component is trivially 
related to z-component 
at stationarity 

Is this really everything? 

1+8Ω2

𝛽
 𝛽𝒎𝑧 = 𝝃 tanh 𝝃 ⋅ 𝛽𝒎𝑧  



Phase diagram 

Analysis of dynamics: 
 
(i) numerically solve dynamical equations for  

small number of patterns, assuming that  
patterns are random sequences of -1 and +1 
with probability distribution 

𝑝 𝜉𝑖
𝜇

=
1

2
𝛿 𝜉𝑖

𝜇
− 1 + 𝛿 𝜉𝑖

𝜇
+ 1  

 
 

(ii) perform stability analysis around stationary points 

+1 -1 



Phase diagram 
- quantum fluctuations do more than  

just rescale temperature (quantum patterns ?) 

Journal of Physics A 51, 115301 (2018) 

limit cycle 
(no classical 
counterpart) 
Is this a new 

type of  
patterns? 

coexistence 
between 

limit cycle 
and 

pattern 

Fixed points 



Physical realisation 

Cavity QED 

(Rydberg) 
ions 

Impurities 
in BEC/ 

mixtures 

- dynamics of density matrix 𝜌 is governed by  
quantum master equation 

𝜌 = 𝐿 𝜌 = 

bosons spins coupling between spins 
and bosons 

Coherent dynamics 

Boson loss Boson gain 

Dissipative processes 

Spin-boson model 

- Patterns encoded in spin-boson coupling constants 

𝜉𝑖
𝜇
↔ 𝑔𝑖𝜇 

Excited 
state 

Ground 
state 

Cavity: atom mimics a spin 

+1 

-1 



Dynamics (classical limit) 
Strong dissipation: dynamics becomes effectively classical 

Classical master equation: 
(non-thermal stationary state) 

Parameter controling the  
strength of fluctuations 

𝜂 =
𝛾 − 𝜅

𝜔
=
photon loss − photon gain

photon frequency
 

Probability of spin 
configuration 𝜎  
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pattern 

retrieval 

phase 
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Transition rates depend on  
energy change of single spin flip 

Δ𝐸𝑖 = 𝐸 𝜎𝑖
𝑧 = 1 − 𝐸 𝜎𝑖

𝑧 = −1  

„Energy function“ is determined 
by spin-photon coupling constants 

Hebbian rule 



Beyond the classical limit 
- Problem can be solved (to some extent) considering quantum effects 
- Equations of motion become that of multi-mode Dicke model 

- mean field equations are exact in thermodynamic limit  
proof in arXiv:2009.13932 (2020) 

- steady-state solution shows pattern retrieval phase transition 
- Pattern retrieval signalled by boson mode occupation 

Meanfield equations of motion 

Dynamics of pattern overlap 𝒎𝒂,𝒌  (𝒂 = 𝒙, 𝒚, 𝒛)  

Bosonic mode amplitude 

coupling 
constants 



- Hopfield neural networks can be studied within a statistical mechanics framework 
- Ability to retrieve patterns is connected to a phase transitions within an 

all-to-all connected spin system 
 

- Quantum effects can change the nature of the observed phases 
- Patterns can feature quantum coherence (oscillatory motion) 
- Mixed quantum-classical phase  

- Is this useful? 
 

- Hopfield neural network can be physically realised with atom-cavity system 
- Reminiscent of multi-mode Dicke model 
- Patterns are encoded in atom-light coupling constants 
- Features phase transition between paramagnetic and retrieval phase 

P. Rotondo et al., Journal of Physics A 51, 115301 (2018) 
E. Fiorelli et al., Physical Review A 99, 032126 (2019) 
E. Fiorelli et al., Physical Review Research 2, 013198 (2020) 
E. Fiorelli et al., Physical Review Letters 125, 070604 (2020) 
F. Carollo and IL, arXiv:2009.13932 (2020) 

Summary and outlook 



Summary and outlook 

- Can quantum effects enhance the capabilities of (Hopfield) 
neural networks, e.g. pattern retrieval speed? 

- Can study be generalised beyond Hopfield model? 
[ongoing work with M. Müller (Aachen)] 

- Is link to modern machine learning problems possible? 
(Would dynamical spin-boson coupling parameter  
allow to implement learning?) 

Open questions 

Other recent works 

Kinetically constrained systems 
PRL 125, 033602 (2020) 
PRL 126, 103002 (2021)  
Sub- and superradiance 
PRL 124, 093601 (2020) 
PRA 102, 043711 (2020) 

Many-body quantum engines 
PRL 125, 240602 (2020) 
PRL 124, 170602 (2020) 
Time crystals 
PRE 100, 060105(R) (2019) 
PRL 122, 015701 (2019) 

Many-body interactions 
PRL 125, 133602 (2020) 
ML open system dynamics 
PRR 3, 023084 (2021)  
Quantum Mpemba effect 
arXiv:2103.05020 



Physical realisation 

- Cavity „traps“ photons 
- atoms are confined inside cavity 
- Photons interact with atoms 
- Photons can be „integrated out“ 

to yield spin-only model 

Excited 
state 

Ground 
state 

An atom mimics a spin 

+1 

-1 

Many-body cavity electrodynamics 

© Rey Group (JILA Colorado) 

Quantum dynamics governed by 

photons atoms Coupling between 
atoms and photons 

+ dissipative processes Photon loss Photon gain 



Dynamics 

E. Fiorelli et al.,  
PR Research 2, 013198 (2020) 

Strong dissipation: dynamics becomes effectively classical 

Classical master equation: 

Parameter controling the  
strength of fluctuations 

𝜂 =
𝛾 − 𝜅

𝜔
=
photon loss − photon gain

photon frequency
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Transition rates depend on  
energy change of single spin flip 

Δ𝐸𝑖 = 𝐸 𝜎𝑖
𝑧 = 1 − 𝐸 𝜎𝑖

𝑧 = −1  

„Energy function“ is determined 
by spin-photon coupling constants 

Probability of spin 
configuration 𝜎  



Pattern retrieval 

PRL 125, 070604 (2020) 

- interaction between spins is described by 
energy function reminiscent of Hopfield model 

- patterns are encoded in coupling constants 
- retrieval dynamics is not thermal 
- many-body system behaves similar to  

„neural network“ 
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Energy function 
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Hopfield energy function 
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Paramagnet – Retrieval Phase Transition 



Beyond the classical limit – Dicke model 
Problem: full quantum dynamics (including bosons) can only  
                  be simulated for few spins 

Simpler model 

Boson + macroscopic spin 

Boson loss 

- For one memory this is exactly the problem we have been dealing with so far 
- In fact, this is essentially the dissipative Dicke model  
- Monte-Carlo simulations show crossover between paramagnet and retrieval phase 
- basin of attraction (pattern/anti-pattern) chosen by initial condition 

𝜔/𝑔 = 1/𝜂 

pattern 

„anti“-pattern 

Retrieval phase Paramagnet 

st
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Beyond the classical limit – Dicke model 
- multi-memory case (N spins, M bosons) is reminiscent of multi-mode Dicke model 
- not exactly solvable either (for finite N), but amenable to mean field treatment 

F. Carollo and IL, arXiv:2009.13932 (2020) 

Meanfield equations of motion 

bosonic mode 
amplitude 

pattern 
overlap 

- mean field equations can be proven 
to be exact when N → ∞ 

- steady-state solution shows transition 
between retrieval and paramagnetic phase 

coupling 
constants 


