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Rationale of research idea

Neural network

System of many
interacting spins

New phases/
classes of
patterns?

Retrieval of
stored information
(patterns)

Non-equilibrium

dynamics Stationary state

of dynamics can
be analysed

using statistical
mechanics

methods =2

Dynamics can

be augmented

with quantum
effects

Are there physical realisation/manifestation
of this physics in quantum many-body systems
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Introduction

- Hopfield neural network

- pattern storage and retrieval %
- statistical physics perspective
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Quantum effects 01

- bringing classical and quantum dynamics together
- thermal vs. quantum fluctuations
- limit cycle phase = ,,novel quantum pattern“?

Manifestation in physical systems

- realisation of Hopfield neural network dynamics
with atoms coupled to light




Hopfield network

- simple model of associative memory
[).J. Hopfield, PNAS 79, 2554 (1989)] A= A

- if input is “similar enough to stored pattern” it will be retrieved

Input Output pattern

- “neurons” are represented by binary variables: g}

Time evolution




Hopfield network

patterns are represented

by N-dimensional vectors §# first row second row
| |
| l |

I
> & ={-1-1-1,-1,-1,-1,+1,+1,+1,-1,..,—1}

Discrete dynamics with coupling constants J is
constructed such that patterns are fixed points

[

basin of attraction basin of attraction

of pattern 1 of pattern 2
Order parameter = overlap of spin § e & 52
configuration with pattern 2 :éo\\\}\ @) ®
1 s| & Initial
H__z =
mé = — o © state , ,
KON z Sk O =) Configuration
i € () £ space
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Statistical mechanics perspective

- Hopfield network can be
interpreted as spin glass

(network of “randomly”
coupled spins)

Spin glass energy function 2 J12
1
1
Eyp = —EZJijO'iZO']-Z N Capacity: number of
ij 1 & . ., Patterns N, that can be
with coupling constants Jij = N_z fi fj stored ~ 0.138 X N
(Hebbian rule) P u=1
retrieval phase (Np < N rit) spin glass phase (Np > Ncrit)
> () >
v\ 5
Q ()

51 EZ states' states



Statistical mechanics perspective

- Statistical mechanics approach allows to I_>l
introduce temperature = thermal fluctuations '

Thermal equilibrium state: piermal X €Xp(—BEyr)

. Inverse
- temperature
[o]4]
gt
? kT
51 62 states
Retrieval phase Paramagnetic phase
- energy minima correspond to patterns - thermal fluctuations are
- which pattern is selected (basin of so large that more than
attraction) depends on initial conditions a single pattern is populated

- Thermal fluctuations are small

increasing temperature

I
>

Amit et al., PRA 32, 1007 (1985)



Formulation of dynamics

Glauber dynamics

- dynamics performs flips of individual spins
- stationary state is thermal equilibrium state

2cosh(,8 AEy) f L e
is change of energy
B exp( B AE}) under fIip.ping
= 7 2 cosh(B AEy) of k-th spin

- Probability of having a certain spin configuration

is encoded in classical probability vector p TS Efpilae
pr

z 1-‘k+(0-k [1 nk]) + Fk (O-k — le) p = Pl

Pir

flip up flip down PL



Quantum effects

- goal: lets make this “guantum”
- starting point: formulate classical stochastic dynamics in terms
of quantum master equation propagating the density matrix p

classical
o + —_
P = z [t(og —[1—ng]) + (o —1g) | P
probability k
vector
guantum
) = L L L LT L
p = kaPLlka _E{ kaLlikar P}
density . ‘7=+ N
matrix  with jump operators Lyt = /105
“square root” of Hopfield
Glauber rates

- master equation is direct translation of classical stochastic dynamics
- both lead to identical time evolution and stationary state



Quantum effects

- Formulation in terms of quantum master equation
permits inclusion of quantum effects

1
. _ +
p= 2 LxaPLicq — 5 WkaLlka: P}
ka=1+
classical Glauber dynamics
(controlled by temperature,

i.e. thermal fluctuations)

- next step: explore competition between classical noise and
quantum fluctuations = new patterns/phases?

- our choice: guantum process that flips spins coherently T Qz o
(transverse magnetic field): f

Quantum

evolution exp(—i H t) l) = cos(Qt) |) — isin({1t) |)



Order parameter and dynamics

- To analyse dynamics we use the pattern-overlap as order parameter
(overlap of the state of the system with a pattern &)

order parameter equations of motion

: 1
my = _z<€£alg> m? = 20m” +Nz & tanh(BE; - m?) — m”

1 1
y _ u_y ‘v A
m, _Nz@ko-k) mYy =-20m _Emy
7 -
component does not exist pattern &

classical Hopfield dynamics

. . . Overlap with one
solutions in retrieval phase: m* = {0, ...,0,1,0, ... 0} specif'?c pattern
No overlap

solution in paramagnetic phase: m” = {0,0, ... 0} with any pattern



Stationary state

stationarity condition: m?Z =mY =0 y-component is trivially
related to z-component
at stationarity
1 1
0:mmy_m”ﬁzatanh(ﬁfi-mz) 0=-20m* —-m”
l. 2
\ )
|
1+8Q2

5 pm” =¢tanh($ - fm?)

- this equation of state is identical to classical Hopfield model
- new effective temperature T - T(1 + 8Q?)

- stationary points of dynamics are unchanged but transition temperature
between retrieval phase and paramagnetic phase is shifted

Is this really everything?



Phase diagram

Analysis of dynamics:

(i) numerically solve dynamical equations for
small number of patterns, assuming that
patterns are random sequences of -1 and +1
with probability distribution

p(et) = 5 [6(et —1) + (gt +1)]

(ii) perform stability analysis around stationary points



Phase diagram

- quantum fluctuations do more than Fixed points
just rescale temperature (Qquantum patterns ?) ‘
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Physical realisation

Cavity: atom mimics a spin
- Excited
+1 —
state
Ground
state

Cavity QED

(Rydberg)
ions

) Impurities
in BEC/
mixtures

- dynamics of density matrix p is governed by
quantum master equation

. . 1
p=Lp=—ilH, pl+ Y L,pL - E{L,ZZLH, p)
n=lI,g

Coherent dynamics

M M N N
H = Z wu-”’j:% + Z Z Qi;ﬂf(ai +a,) +Q Z o
i=1

p=1 p=1 i=1

bosons coupling between spins  spins

and bosons

- Patterns encoded in spin-boson coupling constants
U
§; © Jiu
Dissipative processes

Boson gain

L, = Jxa'

Boson loss

LIZWG,



Dynamics (classical limit)

Strong dissipation: dynamics becomes effectively classical
Classical master equation: Pz = Z(Wa’aapa’ _ W(;_N;. Prob'abilitY of s;pin
(non-thermal stationary state) 5 configuration o

Transition rates depend on
energy change of single spin flip

W(’r—)&’ = 2 /\OOLZT()_%?(\}F(T)‘FT)COS {1@ 5%)] AEl = E(O'lz = 1) — E(O'lz — _1)
- - 0 ~

,Energy function” is determined

2 2 n )_%T fa L c
f(r) = 8—’7[1 — e 37 cos(T)] — 85 sin(z) by spin-photon coupling constants
n(n* + 4) 14 1 N
(t) dnle~ 27 cos(t /1_]\—|— n — 37 sin(t) = _Zzzgmgmo-l 0;
ij u

Hebbian rule

o
o)
T

Parameter controling the crossover

strength of fluctuations

0.5F

04r

pattern
03[ retrieval
0.2r  phase

paramagnetic

Yy —k _ photon loss — photon gain phase

pattern overlap

w photon frequency 0.1

o 1 2 3 4 5 6 71



Beyond the classical limit

- Problem can be solved (to some extent) considering quantum effects
- Equations of motion become that of multi-mode Dicke model

Meanfield equations of motion

Dynamics of pattern overlap m,;, (a =x,y,z)

m a.k

I I

coupling

constants
Bosonic mode amplitude |

A
>

dverlaps

-boson coupling strength>

- mean field equations are exact in thermodynamic limit

proof in arXiv:2009.13932 (2020)
- steady-state solution shows pattern retrieval phase transition
- Pattern retrieval signalled by boson mode occupation



Summary and outlook

- Hopfield neural networks can be studied within a statistical mechanics framework
- Ability to retrieve patterns is connected to a phase transitions within an
all-to-all connected spin system

- Quantum effects can change the nature of the observed phases
- Patterns can feature quantum coherence (oscillatory motion)
- Mixed quantum-classical phase
- Is this useful?

- Hopfield neural network can be physically realised with atom-cavity system
- Reminiscent of multi-mode Dicke model
- Patterns are encoded in atom-light coupling constants
- Features phase transition between paramagnetic and retrieval phase

P. Rotondo et al., Journal of Physics A 51, 115301 (2018)

E. Fiorelli et al., Physical Review A 99, 032126 (2019)

E. Fiorelli et al., Physical Review Research 2, 013198 (2020)
E. Fiorelli et al., Physical Review Letters 125, 070604 (2020)
F. Carollo and IL, arXiv:2009.13932 (2020)



Summary and outlook

Open questions spin
- Can quantum effects enhance the capabilities of (Hopfield) mw%

neural networks, e.g. pattern retrieval speed?
- Can study be generalised beyond Hopfield model?

&
[ongoing work with M. Mller (Aachen)] L ’io‘:;’%%
- Is link to modern machine learning problems possible?

(Would dynamical spin-boson coupling parameter
allow to implement learning?)

LA
ga&n,

Other recent works

Many-body quantum engines  Kinetically constrained systems  Many-body interactions

PRL 125, 240602 (2020) PRL 125, 033602 (2020) PRL 125, 133602 (2020)
PRL 124, 170602 (2020) PRL 126, 103002 (2021) ML open system dynamics
Time crystals Sub- and superradiance PRR 3, 023084 (2021)

PRE 100, 060105(R) (2019) PRL 124, 093601 (2020) Quantum Mpemba effect

PRL 122, 015701 (2019) PRA 102, 043711 (2020) arXiv:2103.05020



Physical realisation

Many-body cavity electrodynamics

An atom mimics a spin

Sign-Changing Photon-Mediated Atom Interactions in Multimode
Cavity Quantum Electrodynamics

Yudan Guo, Ronen M. Kroeze, Varun D. Vaidya, Jonathan Keeling, and Benjamin L. Lev EXCItEd
Phys. Rev. Lett. 122, 193601 — Published 14 May 2019 +1 —
state

Ground
state

PhYST(:‘S See Synopsis: A

Quantum dynamics governed by

© Rey Group (JILA Colorado)

H= Z wuala, + Z Z ginoi(al, + a,) +Q Z o

==

- Cavity ,traps” photons

. g . : t

- atoms are confined inside cavity p= —ilH, p] + Z L,pL, — _{Ln ns Pl
- Photons interact with atoms n=l.g

- Photons can be ,,integrated out” Photon loss Photon gain

to yield spin-only model L = /ya L, = Jka'




Dynamics

Strong dissipation: dynamics becomes effectively classical

) Probability of spin
Classical master equation: Ps — Z(Waf_)(;paf - WE%'_ configuration &

; . Transition rates depend on
o0 2020 . el )] . q q
Wiz = 2 dreor FO+D oo 1@ TRANE, energy change of single spin flip
O—>0 w . 0)2(772 + 4) J
8 — 2’ Be 2T AE; = E(6? = 1) — E(6f = —1)
7)) = ——— [l —e 27 cos(t)] — sin(t l L L
f(T) 77(?72+4)[ (7)] 1A (7)
(t) = 4nle™27 cos(r) — 1]+ [n? — 4]e™2" sin(7) »Energy function” is determined
N Qi9+ 4 by spin-photon coupling constants
Parameter controling the 4 & HIJREL )

strength of fluctuations

y —k _ photon loss — photon gain

w photon frequency E. Fiorelli et al.,

PR Research 2, 013198 (2020)



Pattern retrieval

Energy function

- interaction between spins is described by 1
energy function reminiscent of Hopfield model F = —— z giugju-o'izo'jz
- patterns are encoded in coupling constants 4 7 T
ij

- retrieval dynamics is not thermal
- many-body system behaves similar to
,heural network”

Paramagnet — Retrieval Phase Transition

c -

3 0.6 | crossover

g 0.5 }/l

2 04} y

2 3l retrieval paramagnetic

= U ohase phase

& 02f .

g 0.1 - : : . 1 : :

8 0 1 2 3 4 5 6 7 8

n PRL 125, 070604 (2020)



Beyond the classical limit — Dicke model

Problem: full guantum dynamics (including bosons) can only
be simulated for few spins

Paramagnet : Retrieval phase
6f T
Simpler model ' m;W-
4 - T J
Boson + macroscopic spin ol | pattern

4

|
|
|
|
A
H=wa'a+ 08" + gS*(a+a) o 0f < .
\"
()
Boson loss > 2 \ . ]
g ;1 »anti“-pattern
— — 4 [ 1 1
L=/ © | m =92
(%] _6_ [ | | | | | +
o 'o5 1 15 2 25 3

w/g=1/n

- For one memory this is exactly the problem we have been dealing with so far

- In fact, this is essentially the dissipative Dicke model

- Monte-Carlo simulations show crossover between paramagnet and retrieval phase
- basin of attraction (pattern/anti-pattern) chosen by initial condition




Beyond the classical limit — Dicke model

- multi-memory case (N spins, M bosons) is reminiscent of multi-mode Dicke model
- not exactly solvable either (for finite N), but amenable to mean field treatment

Meanfield equations of motion

Thfa.,k = —2() E ExabMb k — 29 E :€zab I, k L —|_ Oé#) My k
b,

QJVI 1
Gy, = ZQ# - ﬁ;”
bosonic mode coupling pattern
amplitude constants overlap
1 Pattern
- mean field equations can be proven £, =0,y retrievy

to be exact when N — oo
- steady-state solution shows transition
between retrieval and paramagnetic phase

Overlaps

€al # 0

for some [z

No pattern
retrieval

Spin-boson coupling strength>
F. Carollo and IL, arXiv:2009.13932 (2020)



