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Quantum Entanglement

Spooky action at distance

e Quantum entanglement is the property of quantum correlations
in a system

Consider a partition of the Hilbert space H = H1 ® H, ® ... and a
state
W) e H

We define the (pure state) density matrix as

p=[¥)® (T



Quantum Entanglement

For a partitioned system with a generic p € H ® H* we also define
the reduced density matrix

P1 = Tr'Hz,H_g,... (p)

o punentangled if V Hy, pr = |Vk) @ (V| for some |Wy)

e p entangled otherwise

Example: In the EPR (Bell) state, the spins are entangled

Linein+inem

|W1a) = 7



Quantum Entanglement

Measures of entanglement

e Entanglement (von Neumann) entropy
S(A) = —Tra(palogpa), pa = Trz(p)
e Relative entropy
S(A[|B) = —Tra(palogpp) — S(A)

e (Log) negativity (in terms of the eigenvalues of p'4)
ry A=A
N(p*) = ZT’ E(p) = log,(2N(p) + 1)
A

Example

1/2 0
EPR: pA:<(/) 1/2>, Sa = log2



Quantum Entanglement

Classification (3-partite systems)

e Greenberger-Horne-Zeilinger states
GHZ) = —
V2

projector | 1)(1 | ® 1 ® 1 (measurement of the first spin) makes
the state unentangled

(1) +13HD)

e W(olfgang Diir) states

1
V3
These are the only two classes of non-biseparable states, which

cannot be connected by Local Operations and Classical
Communication (LOCC)

W) (0 + D) + 1 HD)



Quantum Entanglement in TQFT

Quantum vs topological entanglement

Aravind’s conjecture ("97): classifies types of entanglement using
topology (linking)

e Bell state: [B) = %ﬂ N+

e GHZ state: [GHZ) = 5 (| 111) + | L14)

Recent elaborated map between link and QM states in the works of
R. André and G. Quinta @Lisbon



Quantum Entanglement in TQFT

Formal definition of a TQFT [Atiyah]

e Map (functor) Z between (the category of) topological spaces
and (the category of) linear spaces:

1. d-dimensional ¥ — vector space V = Z(¥)
2. d+ 1 dimensional M, ¥ = OM — vectorv = Z(M) € V
3. V¥, Yand M, OM = ¥ U 3, — linear map

ZM) : Z(2)) = Z(X,)

= )

Hilbert space is encoded by boundary .. Its elements are different
ways of gluing-in manifolds M, up to homeomorphisms, and possible
linear relations.



Quantum Entanglement in TQFT

Properties of the TQFT functor

e Inner product

@ — = ()

e For a disjoint union Z(X; LI Y,) = Z(X)) ® Z(X,)

e Composition of maps

QE_0C_D1O

This provides a heuristic representation of a tensor multiplication and
a path integral



Quantum Entanglement in TQFT

Functor as path integral in a QFT

State can be constructed from a path integral (—oco < ¢ < 0)

W) = [Da] e
=Aay

with fixed configuration Ay, at Cauchy surface > att =0
e partition function (¥(X)|¥ (X)) = Z
e density matrix p = |U (X)) @ (¥(X')|
e reduced density matrix, ¥ = X; UX,, p1(2;,3]) =Try, p

von Neumann entropy

Se(X1) = —Try, p1logp

How does one compute Sg? [Dong.Fradkin LeighNowling'08]



Quantum Entanglement in TQFT

How is entanglement characterized by topology?
[DM,Mimnovz,Morozov2 18]

Entangled vs. nonentangled

e Consider X = >4 U Y. Two classes of states:

T
0y) = )=\ 7

e We expect the left one to be unentangled



Quantum Entanglement in TQFT

Replica trick

e compute Tr p} Sg = —j—n Tr ply

(Unnormalized) density matrices




Quantum Entanglement in TQFT

Entanglement entropy

r (o) =1, Tr ()" =

Consequently,

Se(p1) = 0, Se(p2) = log [

The donut is a top. invariant, Tryy 1 = dimH = Z(X x §')

General observation: (Rényi) entropies are expressed in terms of
topological invariants of closed 3D manifolds.



Quantum Entanglement in TQFT

Rényi entropies

Relative entropy

. 1 B
S(ﬁlHPZ) = rlll_inlm(Tl‘ ol —Tr P1p§ 1) = log [ [




Quantum Entanglement in TQFT
Examples in SU(N); Chern-Simons

e X=5: Z(SxSH=1=S=0.
o Y= SZ\{Pi}: dimHy, = ZC Nape, Dy * Pp = DeNype P

) = ST g “‘, | 5!'

e N =T% Z(T*xS") = (k;LVIXIl ),keZ

v) =



Quantum Entanglement in TQFT
Local operations and entanglers

e Entanglement entropy is insensitive to local unitary operations

==

e Non-local operators can affect entanglement

T « &=

e Entangling operators are represented by manifolds of the form



Quantum Entanglement in TQFT

3-partite entanglement

e Count different ways to link 3, 3» and X3

i

U U

Separable
L 1
Bell J |_| | I—I
e |UL UL L
| | | ]| L || |
W

?

L |

| | L—1]




Knot and Knot Complement States

Quantum Chern-Simons theory on a torus

Hilbert Space

N-—-1

:‘@>, i=1,...,dimHp
Scalar product
= { &) @ >

dimHTz=<k+N_1)

Basis vectors




Knot and Knot Complement States

TOI‘US kl’lOt StateS, Km7n = m«x + nﬁ [Labastida,Llatas,Ramalho‘91]

=|m,n;R) = Z WI(:;?”R,-)
i

Knot operators
° W1(e"}e7?) must be the topological invariants
e Torus knots can be obtained via the PSL(2, Z) action on T2

()= ()G

which produces (m, n)-knot from an unknot (1,0)

e The operator
m, s R) = W™|1,0;R)

must realize PSL(2, Z) representations



Knot and Knot Complement States

Unitary representations of PSL(2, Z)

e There exist unitary representations but they are not faithful:
linear dependencies between torus knot states.

e ForN =2,
2 2j+ 1)1+ 1 2mij(j+1)
Sr;,R = “k—&— 5 sin <7T( / k—f)—(Z )> v Triwy =e 2 0j,1
e ForN =1,
2 2mi i
Sqja = ﬁ exp (T‘]qu> s Tqq = €Xp <?qqu) i1

e Number of linearly-independent states is equal to the index of
the principal congruence subgroup I'(k + N) - finite,
|PSL(2,Z) /T k+N]|



Knot and Knot Complement States

KnOt Complemel’lt StateS [Balasubramanian et al’ 16]
e Choose a knot (link) in S> and cut its
tubular neighborhood
@ e Then ¥ is a disjoint union of tori
T>UT? U
H - HT2®HT2®"'
e The complement in S* corresponds to the state

L) = > Z(SiRi Ry R)IR) @ [R) @ -~ @ |Ry)
Ry ,Ra,...,RL

where L is the number of link components



Knot and Knot Complement States

Entanglement Of the knOt Complel’nent States [Balasubramanian et al]

e Unlinked components have zero
entanglement

e Hopf link has maximum entanglement,
Borromean rings are not GHZ, ...

e All torus links (Lm, Ln) have GHZ type of entanglement

Sk, S, S
|L (tmin)) = Z ZWSRQZ(IC(,”),QNR.,...R)

This state has simple coefficients in the basis |R) = Sg o|Q)

S - -
|L (i) = Z(SRi’Q_]Z(IC(m,,,),Q)\R,...R)

L
7o (So)



Complexity of Knot States

Motivation

e Recent discussion of complexity in holography and QFT.
Complexity=Volume [Susskind et al.]

_ Vvol(ERB)
~ 87LGy

e Attempts to understand the holographic proposals of complexity
in terms of circuit (network) constructions

e Path integral optimization [Takayanagi ct al.]

[ Do) &S5 (ol t0) — () =

In the path integral formulation, the complexity prefactor appears
similarly to the framing ambiguity of links



Complexity of Knot States
Circuit complexity

o |Wg) —reference state
e |Uy) —target state
e {U,} - set of “elementary” unitary operations (gates)

"I’T> = UN|\IJR>, UN: UnlUnz'”UnN

What is the minimum number of gates necessary to generate the target
state from the reference state?

Complexity : C = minN
Uy
Geometric interpretation: let {U,} be generators of a Lie algebra

Uln] = Pexp (i / anUn> ,  C = minLength(y)
0 v



Complexity of Knot States

Complexity of torus knot states [Camilo et al.]

Let the unknot be a reference state, while |¥'7) = |m, n; R). What is
the complexity of the (m, n) knot state?

e Define PSL(2,Z) in terms of S and T generators - gates
(S, TI$* = (ST)” = 1)

o write W) = T ST®S ... ST
e complexity can be defined as

r

C= min Y (la|+1)

{a17a27~~~7an} i—1

What is the shortest ST word for a given PSL(2,Z) element?



Complexity of Knot States

Continued fractions

m 1 1

—:al——z[al,az,...,ar]:b1+—

n 1 b 1
as i 2+.. +1
ar " b,

We note that this is equivalent to

m a a: a. 1 a 1

— ~T"SoT®S---0T"S , TS : z > a— -

n 0 Z

Theorem (Camilo et al.”’19)

The continued fraction with all b; > 0 and b, > 1 gives a shortest
word in terms of S and T generators. This presentation is unique.




Complexity of Knot States

Classical vs quantum

e Due to linear dependences the actual quantum complexity may
be lower, so C = ) _,(b; + 1) gives an upper bound

e In the semiclassical limit kK — oo the classical bound is saturated

Asymptotics and distribution of the classical complexity

/ Log(n)

Com
Number of knots




Complexity of Knot States

Geometric interpretation

Farey tesselation: arcs connect the Farey neighbors m/n and p/q,
imgq — np| =1

Each arc is an action of 7%S. In the hyperbolic geometry

e Curved triangles in the Farey tesselation have unit area

e Regularized area under the arc is proportional to the diameter



Complexity of Knot States

Geometric interpretation

e The complexity is a weighted length of the shortest path
connecting oo and °7, larger than #steps

e it asymptotically approaches the distance from the origin (the
area under the arc connecting 0 and °')

Similar behavior of the holographic subregion complexity

vol(ya)
C (A) = 87TLGN [Alishahiha’15]




Complexity of Knot States

Geometric interpretation

Given a continued fraction m/n = [by, ..., b;]

r

Cm,n = dCaley = Z(bt + 1) = dFarey + dFarey*
i=1
e ris the length of the shortest path

e The arc connecting m/n with 0 intersects Farey graph ), b;
times. This is the length of the path on the dual (Stern-Brocot)
graph



Conclusions

e [introduced a TQFT interpretation of quantum entanglement

e Complicated measures of entanglement are easy to evaluate in
TQFT

e TQFT suggests an intuitive way to classify entaglement patterns

T ==nyy




Conclusions

e Story of complexity was another investigation of TQFT states as
quantum resources

r

C= min Z(|al~\ +1)

{a17a27~~'7an} i=1
e More recent work on complexity in TQFT in
[Fliss’20,Leigh,Pai’20]

e Future directions: Quantum gravity looks like a possible field of
application



