Asymptotics of the classical and quantum 6 symmbods

Bruve Bartleet (jlw Hosona Rancivomennona)

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} \\
j_{1} & j_{12} \\
j_{3} & j_{123} & j_{33}
\end{array}\right\} \quad \sim
$$

TQFT club seninar, Instituto Superior Técnico, $21 M_{a y} 2021$

1. The $6 j$ symbds

Recall that up to isomorphism, there is a unique irreducible rep V_{j} of Su(2) of dimension $2 j+1$ for each $j=0,1 / 2,1 / 2, \ldots$.

Recall that up to isomorphism, there is a unique irreducible rep V_{j} of SU(2) of dimension $2 j+1$ for each $j=0,12,1,3 / 2, \cdots$. Moreau:

$$
\operatorname{Hom}_{\text {Reposia) }}\left(V_{c}, V_{a} \otimes V_{b}\right)= \begin{cases}\mathbb{C} \cdot f_{a b}^{c} & \text { if }|a-b| \leqslant c \leqslant a+b \\ 0 & \text { otherwise }\end{cases}
$$

So there are two natural bases for

$$
\operatorname{Hom}_{R_{e p S U(2)}}\left(V_{e}, V_{a} \otimes V_{b} \otimes V_{d}\right)
$$

and the classical bi symbols are defined as the change-of-basis coefficients

So there are two natural bases for

$$
\operatorname{Hom}_{R_{\text {RPS UL) }}}\left(V_{e}, V_{a} \otimes V_{b} \otimes V_{d}\right)
$$

and the classical bi symbols are defined as the change-of-basis coefficients

Mathematically, the bj symbols encode the associatur on Rep SU(2).

From this definition, it is not hard to see that the $6{ }_{j}$ symbol can be computed via string diagrams as the "Mercedes graph":

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)=\binom{\text { normalization }}{\text { factors }} \times
$$

From this definition, it is not hard to see that the b_{j} symbol can be computed via string diagrams as the "Mercedes graph":

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)=\binom{\text { normalization }}{\text { factors }} \times
$$

(Racah,

$$
\begin{aligned}
& \stackrel{(19,2)^{\prime}}{\mathbf{K}^{19 c c h}} \Delta(a, b, c) \Delta(c, d, e) \Delta(a, e, f) \Delta(b, d f) \sum_{n} \frac{(-1)^{n}(n+1)!}{(n-a-b-c)!(n-c-d-e)!\cdots(b+c+e+f-n)!} \\
& \Delta(a, b, c)=\sqrt{\frac{(a r b-c)!(a-b+c)!(-a+b+c)!}{(a+b+c+1)!}}
\end{aligned}
$$

In physics, one thinks of V_{j} as spanned by

$$
\left.\left.\right|_{j ; m}\right\rangle, \quad m=j, j-1, \cdots,-j
$$

In physics, ore thinks of V_{j} as spanned by

$$
|j ; m\rangle, \quad m=j, j^{-1}, \cdots,-j
$$

Each basis vector $\left.\left.\right|_{j j m}\right\rangle$ is to be thought of as the quantummechanical avatar of an unknown vector \vec{J} in \mathbb{R}^{3} with magnitude j and z-component m.
actually, the magnitude is $\sqrt{j_{j}(j+1)}$ is somewhere on this circle.

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

as the amplitude for three quantum-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quontum-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quontum-mechonical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude $j_{12,}, j_{23}, j_{123}$:

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quontum-mechonical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude $j_{12,}, j_{23}, j_{123}$:

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quontum-mechonical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quontum-mechonical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

as the amplitude for three quontum-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

as the amplitude for three quontum-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quontum-mechonical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude $j_{12,}, j_{23}, j_{123}$:

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quantum-mechonical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

Wino (1959) All vectors \vec{J}_{23} on the green circle should be uniformly probable.

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quantum-mechonical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

Wine (1959) All vectors \vec{J}_{23} on the green circle should be uniformly probable.

$$
\text { i.e. } \frac{1}{2 \pi} d \theta=P\left(\dot{j}_{23}\right) d_{j_{23}}^{\circ}
$$

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

as the amplitude for three quontum-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

Wine (1959) All vectors \vec{J}_{23} on the green circle should be uniformly probable.

$$
\text { i.e. } \begin{aligned}
\frac{1}{2 \pi} d \theta & =p\left(\dot{o}_{j_{23}}\right) d d_{j_{23}} \\
& =\frac{\partial \theta}{\partial j_{23}}
\end{aligned}
$$

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

as the amplitude for three quontum-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

Wine (1959) All vectors \vec{J}_{23} on the green circle should be uniformly probable.

$$
\text { i.e. } \quad \begin{aligned}
\frac{1}{2 \pi} d \theta & =P\left(\dot{j}_{23}\right) d_{j_{23}} \\
& =\frac{\partial \theta}{\partial j_{23}}=\frac{j_{12} j_{23}}{1 / 6 V}
\end{aligned}
$$

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quantur-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

Wine (1959) All vectors \vec{J}_{23} on the green circle should be uniformly probable.

$$
\begin{aligned}
& \text { i.e. } \quad \frac{1}{2 \pi} d \theta=P\left(\dot{j}_{23}\right) d_{j_{23}} \\
& \\
& =\frac{\frac{\partial \theta}{\partial j_{23}}=\frac{j_{12} j_{23}}{1 / 6 \mathrm{~V}}}{\text { Wigner }} \begin{array}{l}
\text { derivative }
\end{array}
\end{aligned}
$$

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quantur-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude $j_{12,}, j_{23}, j_{123}$:

Wigner (1959) For large j 's,

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}^{2} \sim \frac{1}{24 \pi V}
$$

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quantur-mechonical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quantur-mechonical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

as the amplitude for three quontum-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

$$
\begin{aligned}
& \text { Pomano-Regge(1968) For large } j^{\prime} s, \\
& \left(\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right)^{2} \sim \frac{1}{12 \pi V} \cos ^{2}\left(\sum_{e} j_{e} \theta_{e}+\frac{\pi}{4}\right)
\end{aligned}
$$

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quantum-mechonical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

$$
\begin{aligned}
& \text { Pomeano-Regge (1968) For large } j^{\prime} \text {, } \\
& \left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}^{2} \sim \frac{1}{12 \pi V} \underbrace{\cos ^{2}\left(\sum_{e} j_{e} \theta_{e}+\frac{\pi}{4}\right)}_{\text {oscillatory term }}
\end{aligned}
$$

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

ass the amplitude for three quantum-mechonical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

Ponzano-Regge (1968) For large j's,

$$
\begin{array}{r}
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right)^{2} \sim \frac{1}{12 \pi V} \cos ^{2}\left(\sum_{e}^{\left.\sum_{e} j_{e} \theta_{e}+\frac{\pi}{4}\right)}\right. \\
\text { edges of the tetrahedron }
\end{array}
$$

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

as the amplitude for three quontum-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

Ponzano-Regge(1968) For large j 's,

$$
\left(\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}^{2} \sim \frac{1}{12 \pi V} \cos ^{2}\left(\sum_{e} j_{e} \theta_{e}+\frac{\pi}{4}\right)
$$

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

as the amplitude for three quontum-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

Ponzano-Regge (1968) For large j's,

$$
\begin{array}{r}
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}^{2} \sim \frac{1}{12 \pi V} \cos ^{2}\left(\sum_{e} j_{e} \theta_{e} \theta_{e}+\frac{\pi}{4}\right) \\
\text { exterior dihedadal angle } \\
\text { at edge }
\end{array}
$$

This gives a physical interpretation of the bi symbol

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}
$$

as the amplitude for three quontum-mechanical vectors with magnitude j_{1}, j_{2} and j_{3} to combine to give vectors with magnitude j_{12}, j_{23}, j_{123} :

Ponzano-Regge(1968) For large j 's,

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{123} & j_{23}
\end{array}\right\}^{2} \sim \frac{1}{12 \pi V} \cos ^{2}\left(\sum_{e} j_{e} \theta_{e}+\frac{\pi}{4}\right)
$$

Proved by Robots (1999) via geometric quantization.
2. The Ponzono-Kegge model

Wait!

Regge (1961) In a Riemamion 3-manifold (M, g) constrocted by gluing tetrahedra together along their faces,

$$
\int_{M} R_{v o l}=2 \sum_{\text {edges }} l_{e} \sum_{\substack{\text { terarahedra } \\ \text { incident to e }}}\left(\pi-\theta_{T, e}\right)
$$

merior dinedral angle ak edge e in T

This suggests that the quantum gravity idea of a "sum avo all geometries" can be implemented in a discrete way in Sd, using the bi symbols for SU(2)?

This suggests that the quantum gravity idea of a "sum over all geometries" can be implenerled in a disccele way in Sd, using the bo symbols for $S U(2)$!

Ponzono-Kegge model

$$
Z=\sum_{\left\{j_{j}\right\}} \prod_{\text {edges }}(-1)^{2_{j}}\left(2 j_{j+1}\right) \prod_{\text {triangles }}(-1)^{j_{1}+j_{j_{2}}+j_{3}} \prod_{\text {tetrubedra }}\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
0 & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right)
$$

This suggests that the quantum gravity idea of a "sum over all geometries" can be implemented in a discrete way in Sd, using the bo symbols for $S U(2)$!

Ponzono-Regge model

$$
Z=\sum_{\left\{j_{j}\right\}} \prod_{\text {edges }}(-1)^{2_{j}}\left(2 j_{j+1}\right) \prod_{\text {triangles }}(-1)^{j_{1}+j_{j_{2}}+j_{3}} \prod_{\text {tetrubedra }}\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
0 & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right)
$$

This suggests that the quantum gravity idea of a "sum over all geometries" can be implemented in a discrete way in Sd, using the bo symbols for SU(2)!

Ponzono-Regge model

$$
Z=\sum_{\{j\}} \prod_{\text {edges }}(-1)^{2_{j}^{0}}\left(2 j_{j+1}\right) \prod_{\text {triandes }}(-1)^{j_{1}+j_{2}+j_{3}} \prod_{\text {tetrutedaca }}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
0 & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right)
$$

This suggests that the quantum gravity idea of a "sum over all geometries" can be implemented in a discrete way in Sd, using the bo symbols for SU(2)!

Ponzono-Regge model

$$
Z=\sum_{\left\{j_{j}\right\}} \prod_{\text {edges }}(-1)^{2 j_{j}}\left(2 j_{+1}\right) \prod_{\text {triangles }}(-1)^{j_{1}+j_{2}+j_{3}} \prod_{\text {tetrunedra }}\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right)
$$

This suggests that the quantum gravity idea of a "sum over all geometries" can be implemented in a discrete way in Sd, using the bo symbols for SU(2)!

Ponzono- Reggae model

$$
Z=\sum_{\{j\}} \prod_{\text {edges }}(-1)^{2_{j}^{0}}\left(2 j_{j+1}\right) \prod_{\text {triandes }}(-1)^{j_{1}+j_{2}+j_{3}} \prod_{\text {tetrutedara }}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
0 & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right)
$$

This suggests that the quantum gravity idea of a "sum over all geometries" can be implenerled in a disccele way in Sd, using the bo symbols for $S U(2)$!

Ponzono-Kegge model

$$
Z=\sum_{\left\{j_{j}\right\}} \prod_{\text {edges }}(-1)^{2_{j}}\left(2 j_{j+1}\right) \prod_{\text {triangles }}(-1)^{j_{1}+j_{j_{2}}+j_{3}} \prod_{\text {tetrubedra }}\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
0 & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right)
$$

This suggests that the quantum gravity idea of a "sum over all geometries" can be implemented in a discrete way in Sd, using the 6 j sympds for $S U(2)$!

Ponzono-Regge model

$$
Z=\underbrace{\left.\sum_{\{j}^{\{j}\right\}} \prod_{\text {edges }}(-1)^{2_{j}}\left(2 j_{j+1}\right) \prod_{\text {triangles }}(-1)^{j_{1}+j_{j_{2}}+j_{3}} \prod_{\text {tetrubedra }}\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
0 & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right)
$$

a sum over all assignments of spins (i.e. irreps of $S U(2)$) to the edges of the triangulation

This suggests that the quantum gravity idea of a "sum over all geometries" can be implenerled in a disccele way in Sd, using the 6 j sympds for $S U(2)$!

Ponzono-Regge model

$$
\begin{aligned}
& Z=\sum_{\{j} \prod_{\text {edges }}(-1)^{2 j}\left(2 j_{j+1}\right) \prod_{\text {triandes }}(-1)^{j_{1}+j_{2}+j_{3}} \prod_{\text {tetrutedaca }}\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right) \\
& =" \int_{\substack{\text { metrics } \\
\text { on } M}} D_{g} e^{i \int_{M} R d_{g}}
\end{aligned}
$$

This suggests that the quantum graving idea of a "sum our all geometries" can be implemented in a discrete way in Sd, using the 6 j symbols for $S U(2)$!

Ponzono- Reggae model

$$
Z=\sum_{\{j\}} \prod_{\text {edges }}(-1)^{2_{j}^{j}}\left(2 j_{j+1}\right) \prod_{\text {triangles }}(-1)^{j_{1}+j_{2}+j_{3}} \prod_{\text {tetrutedara }}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
0 & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right)
$$

Problem: for many triangulated 3-manifolls, this sum diverges.

This discrete sum our irreps of Su(2) assigned to the edges of the polyhedral decomposition Δ can be rewritten as an integral over all connections (group elements assigned to the edges) on the dual polyhedral decomposition Δ^{*} !

This discrete sum our irreps of SU(2) assigned to the edges of the polyhedral decomposition \triangle can be rewritten as an integral over all connections (gray elements assigned to the edges) on the dual polyhedral decomposition Δ^{*} !

Consider the Mercedes graphs associated to two tetrahedra in Δ glued along a face:

This discrete sum our irreps of SU(2) assigned to the edges of the polyhedral decomposition Δ can be rewrites as an integral over all connections (grape elements assigned to the edges) on the dual polyhedral decomposition Δ^{*} !

Consider the Mercedes graphs associated to two tetrahedra in Δ glued along a face:

This discrete sum our irreps of SU(2) assigned to the edges of the polyhedral decomposition \triangle can be rewritten as an integral over all connections (gray elements assigned to the edges) on the dual polyhedral decomposition Δ^{*} !

Consider the Mlescedes graphs associated to two tetrahedra in Δ glued along a face:

Now use:

Now use:

This is simply the well-known representation theory identity that the projection $p: V \rightarrow V$ of a representation onto its trivial subspace is given by:

$$
\sum_{v}^{v}=\frac{1}{|G|} \sum_{g \in G} p_{v}(g)
$$

This discrete sum our irreps of SU(2) assigned to the edges of the polyhedral decomposition \triangle can be rewritten as an integral over all connections (gray elements assigned to the edges) on the dual polyhedral decomposition Δ^{*} !

Consider the Mlescedes graphs associated to two tetrahedra in Δ glued along a face:

This discrete sum our irreps of Su(2) assigned to the edges of the polyhedral decomposition \triangle can be rewritten as an integral over all connections (gray elements assigned to the edges) on the dual polyhedral decomposition Δ^{*} !

Consider the Mercedes graphs associated to two tetrahedra in Δ glued along a face:

This discrete sum our irreps of SU(2) assigned to the edges of the polyhedral decomposition \triangle can be rewritten as an integral over all connections (gray elements assigned to the edges) on the dual polyhedral decomposition Δ^{*} !

Consider the Mercedes graphs associated to two tetrahedra in Δ glued along a face:

Use:

$$
=\int_{g \in G}
$$

$$
\begin{gathered}
\sum_{a} \operatorname{dim}\left(V_{a}\right) x_{a}(g) \\
=\delta(g)
\end{gathered}
$$

We obtain:

$$
\begin{aligned}
L_{\text {Poneno-Regge }}= & \prod_{f \in \operatorname{faces}\left(\Delta^{*}\right)} \delta(\text { holonomy around } f) d\left\{g_{e}\right\} \\
& \left\{g_{e}, e \in \operatorname{edges}\left(\Delta^{*}\right)\right\}
\end{aligned}
$$

We obtain:

$$
\begin{aligned}
L_{\text {Poneno-Regge }} & \prod_{f \in \text { faces }\left(\Delta^{*}\right)} \delta(\underbrace{\text { holonomy avand } f}) d g_{e}, e \in \operatorname{edges}\left(\Delta_{e}^{*}\right)\} \\
& \text { holonomy }=g_{6} g_{5} g_{4} g_{3} g_{2} g_{1}
\end{aligned}
$$

We obtain:

$$
\begin{aligned}
& \begin{aligned}
L_{\text {Poneno-Regge }}= & \left.\prod_{f \in \text { faces }\left(\Delta^{*}\right)} \delta(\text { holonomy wound } f) d \xi_{e}\right\} \\
& \left\{g_{e}, e \in \operatorname{edges}\left(\Delta^{*}\right)\right\}
\end{aligned} \\
& \left.\begin{array}{c}
\left.\begin{array}{c}
\text { Barrett and } \\
\text { Naish-Gurman, }
\end{array}\right) \text { Ro08 } \\
=
\end{array}\right] \text { Reidemeister torsion } \\
& {[p] \in \operatorname{Ham}(\pi, M, G) / G}
\end{aligned}
$$

We obtain:

$$
\begin{aligned}
& Z_{\text {Pomeno-Regge }}=\int_{\substack{f \in f a c e s\left(D^{*}\right)}} \delta(\text { holonomy crand } f) d\left\{_{\left.g_{e}\right\}}\right\} \\
& \begin{array}{c}
\binom{\text { Borrett and }}{\text { Naish-Gurman, 2008 }} \\
=
\end{array} R_{[\rho]} \\
& {[p] \in \operatorname{Hom}(\pi, M, G) / G}
\end{aligned}
$$

providing $H^{2}\left(\Delta^{*},[\rho]\right)$ vanishes for all $[\rho]$.

Let's obsere something else.

Let's observe something else. The "fuse at a trivdent vertex" method,
allows us to compute the square of the $b j$ symbol as a group integral:

Let's observe something else. The "fuse at a trivdent vertex" method,
allows us to compute the square of the $b j$ symbol as a group integral:

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)^{2} \doteq
$$

Let's observe something else. The "fuse at a trivdent vertex" method,
allows us to compute the square of the bj symbol as a group integral:

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)^{2} \doteq \int_{g \in S O(2)} \underbrace{}_{d}
$$

Let's observe something else. The "fuse at a trivdent vertex" method,
allows us to compute the square of the bj symbol as a group integral:

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)^{2} \doteq \int_{g, h \in S O(2)}
$$

Let's observe something else. The "fuse at a trivdent vertex" method,
allows us to compute the square of the bj symbol as a group integral:

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)^{2} \doteq \int_{g, h, k \in S O(2)}^{a}
$$

Let's observe something else. The "fuse at a trivdent vertex" method,
allows us to compute the square of the bj symbol as a group integral:

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)^{2} \doteq \int_{g, h, k, l \in S U(2)} \underbrace{b}_{(l)}
$$

Let's observe something else. The "fuse at a trivdent vertex" method,

allows us to compute the square of the bj symbol as a group integral:

2. The quest for a lattice gauge theory description of the Turaev-Viro model

In 1989, Witter made the celebrated assertion that the Jones polynomial of a knot could be calcucled as a path integral:

In 1989, Witter made the celebrated assertion that the Jones polynomial of a knot could be calcucled as a path integral:

In 1989, Witter made the celebrated assertion that the Jones polynomial of a knot could be calculated as a path integral:

V_{k}
Jones polynomial of $K, \in \mathbb{Z}\left[q, q^{-1}\right]$

$$
=q+q^{3}-q^{4} \quad \text { for } k=\text { trefoil above }
$$

In 1989, Witter made the celebrated assertion that the Jones polynomial of a knot could be calculated as a path integral:

$$
\left.V_{k}\right|_{q=e^{\frac{2 \pi i}{k+2}}}
$$

k on arbikury positive integer

In 1989, Witter made the celebrated assertion that the Jones polynomial of a knot could be calculated as a path integral:

$$
\left.V_{k}\right|_{q=e^{\frac{2 \pi i}{K+2}}}=\int_{\substack{\text { all Su(2)-coneccions } \\ A \text { on } S^{3}}} \operatorname{Tr}\left(H_{A}(K)\right) e^{i k \operatorname{CS}(A)} 2 A
$$

In 1989, Witter made the celebrated assertion that the Jones polynomial of a knot could be calculated as a path integral:

$$
K \subseteq S^{3}
$$

$$
\begin{aligned}
& \left.V_{k}\right|_{q=e^{\frac{2 \pi i}{k+2}}}=\int_{\substack{\text { all } \operatorname{SU(2)} \text {-coneccios } \\
A \text { on } S^{3}}} \operatorname{Tr}\left(H_{A}(k)\right) e^{i k \operatorname{CS}(A)} \mathcal{D} \\
& \text { Chern-Simons } \\
& \text { invariant } \longrightarrow \\
& \text { of } A \longrightarrow C S(A)=\frac{1}{4 \pi} \int_{S^{3}} \operatorname{Tr}(A \wedge d A+2 / 3 A \wedge A \wedge A)
\end{aligned}
$$

In 1989, Witter made the celebrated assertion that the Jones polynomial of a knot could be calculated as a path integral:

$$
k \subseteq s^{3}
$$

$$
A \text { on } S^{3}
$$

holonomy of the comection around the kent

$$
\operatorname{CS}(A)=\frac{1}{4 \pi} \int_{S^{3}} \operatorname{Tr}(A \wedge d A+2 / 3 A \wedge A \wedge A)
$$ ESU(a)

In 1989, Witter made the celebrated assertion that the Jones polynomial of a knot could be calculated as a path integral:

$$
K \subseteq S^{3}
$$

$$
\begin{aligned}
&\left.V_{k}\right|_{q=e^{\frac{2 \pi i}{k+2}}}=\int_{\text {all SU(2)-coneciins }} \\
& A \text { on } S^{3} \\
& \operatorname{CS}(A)\left.=\frac{1}{4 \pi} \int_{S^{3}} \int_{S^{3}}(K)\right) e^{i k C S(A)} 2 A \\
& \operatorname{Tr}(A \wedge d A+2 / 3 A \wedge A \wedge A)
\end{aligned}
$$

In 1989, Witter made the celebrated assertion that the Jones polynomial of a knot could be calculated as a path integral:

$$
\begin{gathered}
\left.\begin{array}{l}
\text { Non coloured } \\
\text { Jones polynomial }
\end{array}\right|_{q=}=e^{\frac{2 \pi i}{k+2}}=\int_{\text {all Su(A)-cannecions }} \operatorname{Tr}\left(p\left(H_{A}(K)\right)\right) e^{i k C S(A)} \text { on } S^{3} A \\
C S(A)=\frac{1}{4 \pi} \int_{S^{3}} \operatorname{Tr}(A \wedge d A+2 / 3 A \wedge A \wedge A)
\end{gathered}
$$

In 1989, Witter made the celebrated assertion that the Jones polynomial of a knot could be calculated as a path integral:

If we doit bothers with a knot, then the path integral gives a topological invariant of M.

$$
\int_{\text {all }} e^{i k(2) \text { connections }} 2 A
$$

A on M \checkmark
giving a direct definition of this functional integral is the central question in mathematical physics

If we don't bother with a knot, then the path integral gives a topological invariant of M.

this talk

$$
:=R T_{k}(M)
$$

Reshetichin-Turaev invariant of M
A certain dissete sum over irreps of $U_{q} s l_{2}$ at $q=e^{\frac{2 \pi i}{k+2}}$.

If we doit bother with a knot, then the path integral gives a topological invariant of M.

this talk

$$
:=R T_{k}(M)
$$

Reshetichin-Turaer invariant of M A certain dissete sum over irreps of $U_{q} s l_{2}$ at $q=e^{\frac{2 \pi i}{k+2}}$.
At level k, the ireps of $\mathrm{U}_{q} \mathrm{Sl}_{2}$ are indexed by

$$
\begin{aligned}
& \text { indexed by } \\
& \{0,1,2, \cdots, k\} \text {. }
\end{aligned}
$$

If we doit bother with a knot, then the path integral gives a topological invariant of M.

this talk

$$
:=R T_{k}(M)
$$

Reshetichni-Turaev invowiut of M
A certain dissert sum over irreps of $U_{q} s l_{2}$ at $q=e^{\frac{2 \pi i}{k+2}}$.
At level k, the ines of $\mathrm{U}_{q} \mathrm{Sl}_{2}$ are indexed by

$$
\begin{aligned}
& \text { indexed by } \\
& \{0,1,2, \cdots, k\} .
\end{aligned}
$$

However, they have no straightforward relationship to the irreps of SU(2).

If we doit bother with a knot, then the path integral gives a topological invariant of M.

this talk

$$
:=R T_{k}(M)
$$

Reshetichni-Turaev invowiut of M
A certain dissert sum over irreps of $U_{q} s l_{2}$ at $q=e^{\frac{2 \pi i}{k+2}}$.
At level k, the ines of $\mathrm{U}_{q} \mathrm{Sl}_{2}$ are indexed by

$$
\begin{aligned}
& \text { indexed by } \\
& \{0,1,2, \cdots, k\} .
\end{aligned}
$$

However, they have no straightforward relationship to the irreps of SU(2).

If we doit bother with a knot, then the path integral gives a topological invariant of M.

$$
\int_{\text {all SU(2) connections }}^{\substack{\text { on } M}} e^{i k C S(A)} \not D A \quad \begin{aligned}
\text { thistalk } \\
T_{k}(M)
\end{aligned}
$$

If we doit bother with a knot, then the path integral gives a topological invariant of M.

$$
\int_{\text {all SU(2) connections }}^{\substack{\text { on } M}} e^{i k C S(A)} \not D A \quad \begin{aligned}
\text { thistalk } \\
T_{k}(M)
\end{aligned}
$$

We will rather work with $T V_{k}(M)=\left|R T_{k}(M)\right|^{2}$:

If we doit bother with a knot, then the path integral gives a topological invariant of M.

We will rather worth with $T V_{k}(M)=\left|R T_{k}(M)\right|^{2}$:

If we doit bother with a knot, then the path integral gives a topological invariant of M.

$$
\int_{\substack{\text { all sub() conecrios } \\ A \text { on } M}} e^{i k C S(A)} D A
$$

this talk

$$
:=R T_{k}(M)
$$

a sum over labelling of edges of Δ by irreps of $\mathrm{U}_{\text {ah }}$
We will rather work with $T V_{k}(M)=\left|R T_{k}(M)\right|^{2}$:

$$
T V_{k}(M)=\sum_{\{j\}} \prod_{\text {edges }}(-1)^{2 j} / \operatorname{dim}_{\text {din }}\left(V_{j}\right) \prod_{\text {triangles }}(-1)^{j_{1}+j_{2}+j_{3}} \prod_{\text {tetrutherca }}\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right]_{q}
$$

If we doit bother with a knot, then the path integral gives a topological invariant of M.

$$
\int_{\substack{\text { all Suva) connections } \\ A \text { in } M}} e^{i k C S(A)} D A
$$

this talk

$$
:=R T_{k}(M)
$$

the $6 j$ symbols for $\mathrm{Reg}\left(\mathrm{U}_{\mathrm{a}} \mathrm{Sl}_{2}\right)$

We will rather worth with $T V_{k}(M)=\left|R T_{k}(M)\right|^{2}$:

$$
T V_{k}(M)=\sum_{\{j\}} \prod_{\text {edges }}(-1)^{2_{j}} q \operatorname{dim}\left(v_{j}\right) \prod_{\text {triandes }}(-1)^{j_{1}+j_{22}+j_{3}} \prod_{\text {tetrahedral }}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
1 & j^{2} & j_{3} \\
j_{4} & j_{5} & j_{b}
\end{array}\right\}_{q}
$$

So we have recast the question of making sense of Witter's path integral into the question:

So we have recast the question of making sense of Witter's path integral into the question:

Can we rewrite $T V(M)$ as a finite-dimensional integral over the space of $\operatorname{SU}(2)$ connections on Δ^{*} ?

So we have recast the question of making sense of Witter's path integral into the question:

Can we rewrite $T V(M)$ as a finite-dimensional integral our the space of $S U(2)$ connections on Δ^{*} ?

We'd like to follow the same procedure Barrett and Naish-Gurman used to do this for the Pone cno-Regge model.

So we have recast the question of making sense of Witter's path integral into the question:

Can we rewrite $T V(M)$ as a finite-dimensional integral over the space of $\operatorname{Su}(2)$ connections on Δ^{*} ?

Wed like to follow the same procedure Barrett and Naish-Gurman used to do this for the Pons cno-Regge model.

State sum model	dual lattice gauge theory description
Ponzono- Regge	Barrett and Naish-Gurman
Turaev-Viro	$? \quad$ " $\int e^{i k S(A)} D A "$

So we have recast the question of making sense of Witter's path integral into the question:

Can we rewrite $T V(M)$ as a finite-dimensional integral our the space of $S \cup(2)$ connections on Δ^{*} ?

We'd like to follow the same procedure Barrett and Naish-Gurman used to do this for the Pone cno-Regge model.
$\left.\begin{array}{cc|c}\text { algebraic: } \\ \text { uses irreps }\end{array}\right)$ State sum model \quad dual lattice gauge theory description

So we have recast the question of making sense of Witter's path integral into the question:

Can we rewrite $T V(M)$ as a finite-dimensional integral our the space of $S U(2)$ connections on Δ^{*} ?

We'd like to follow the same procedure Barrett and Naish-Gurman used to do this for the Pone cno-Regge model. geometric: should use G

What wed really like is a version of the "fusing identity"
valid when V_{a}, V_{b} and V_{c} are irreps of $V_{q} s \ell_{2}$.

What wed really like is a version of the "fusing identity"
valid when V_{a}, V_{b} and V_{c} are ireps of $V_{q} s K_{2}$. Sadly, I doit know how to ever formulate this.

What wed really like is a version of the "fusing identity"
valid when V_{a}, V_{b} and V_{c} are ireps of $V_{q} s K_{2}$. Sadly, I doit know how to ever formulate this.

Let's try something weaker.

Can we generalize the integral formula for the classical bo symbols,

to the quantum bo symbols?

Can we generalize the integral formula for the classical bo symbols,

$$
\begin{array}{r}
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right\}^{2}=\int_{\operatorname{SU(2})^{4}} \prod_{i<j} \chi_{m_{i j}}\left(g_{i} g_{j}^{-1}\right) d g_{0} d g_{1} d g_{2} d g_{3} \\
\text { where } m_{12}=a, \overline{23}=12 \mathrm{etc} .
\end{array}
$$

to the quantum bo symbols? (Recall this formula followed from the "fusing itarrity")

Can we generalize the integral formula for the classical bo symbols,

$$
\begin{aligned}
& \left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)^{2}=\int_{\text {SU(2) }} \prod_{i<j} X_{m_{i j}}\left(g_{i} g_{j}^{-1}\right) d g_{0} d g_{1} d g_{2} d g_{3} \\
& \text { where } m_{12}=a, \quad \overline{23}=12 \text { etc. }
\end{aligned}
$$

to the quantum bo symbols? (Recall this formula followed from the "fusing inanity")

$$
\left\{\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right\}_{q=e^{\frac{\pi i}{k+2}}}^{2}=\int_{s u(2)^{4}} \cdots
$$

Can we generalize the integral formula for the classical bo symbols,

to the quantum by symbols? (Recall this formula followed from the "fusing iderity".)

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right\}_{q=e^{\frac{\pi i}{k+2}}} \stackrel{?}{=} \int_{S U(2)^{4}} \prod_{i<j} \chi_{m_{i i j}}\left(g_{i} g_{j}^{-1}\right) e^{i k C S\left(g_{0}, g_{1}, g_{2}, g_{3}\right)^{\prime \prime}} \prod_{?}^{n} d g_{0} d g_{1} d g_{2} d g_{3}
$$

3. The quest for an integral formula for the quantum bi symbols

We need to figure out what ${ }^{(S S}\left(g_{0}, g_{1}, g_{2}, g_{3}\right)$ means.

We need to figure out what ${ }^{(S S}\left(g_{0}, g_{1}, g_{2}, g_{3}\right)$ m eons.
The Chen-Simons path integral is classified b a "level", ie. a class in $H^{4}(B G ; \mathbb{Z})$.

We need to figure out what ${ }^{(S S}\left(g_{0}, g_{1}, g_{2}, g_{3}\right)$ means.
The Chen-Simons path integral is classified b a "level", ie. a class in $H^{4}(B G ; \mathbb{Z})$ If we work to write this down on a lattice, we will need a doss in $H_{\text {group }}^{3}(G ; V(11)$.

We need to figure out what ${ }^{(S S}\left(g_{0}, g_{1}, g_{2}, g_{3}\right)$ means.
The Chen-Simons path integral is classified b a "level", ie. a class in $H^{4}(B G ; \mathbb{Z})$ If we work to write this down on a lattice, we will need a class in $H_{\text {group }}^{3}\left(G_{j} U(1)\right)$. Chen and Simmons gave an injective map:

$$
\begin{aligned}
f: H^{4}(B G ; Z) & \longrightarrow H_{\text {gap }}^{3}(G ; V C(1)) \\
C_{2} & \longmapsto
\end{aligned}
$$

We need to figure out what " $\operatorname{CS}\left(g_{0}, g_{1}, g_{2}, g_{3}\right)^{n}$ means.
The Chern-Simans path integral is classified ba "level", ie. a class in $H^{4}(B G ; ~ \mathbb{Z})$ If we want to write this down on a lattice, we will need a class in $H_{\text {grape }}^{3}\left(G_{j} U C I I\right)$. Chen and Simons gave an injective map:

$$
\left.f: H^{4}(B G ; \mathbb{Z}) \longleftrightarrow H_{\text {grap }}^{3}(G ; U C l)\right)
$$

a class in
here is a natural assignment for all manifolds M

We need to figure out what " $C S\left(g_{0}, g_{1}, g_{2}, g_{3}\right)^{n}$ means.
The Chen-Simons path integral is classified b a "level", ie. a class in $H^{4}(B G ; \mathbb{Z})$ If we work to write this down on a lattice, we will need a class in $H_{\text {group }}^{3}\left(G_{j} U(1)\right)$. Chen and Simmons gave an injective map:

$$
f: H^{4}\left(B G_{;} \gtrless\right) \Longleftrightarrow H_{\text {gap }}^{3}(G ; U C(1))
$$

and Chen
class, generate $\longrightarrow \mathrm{C}_{2}$

$$
\underset{\underset{M}{p}}{\underset{M}{p}} \longmapsto \frac{1}{8 \pi^{2}} \operatorname{Tr}(F \wedge F) \in H_{\text {Deehmen }}^{\text {ningal }}(M ; \mathbb{R})
$$

We need to figure out what ${ }^{(S S}\left(g_{0}, g_{1}, g_{2}, g_{3}\right)$ means.
The Chen-Simons path integral is classified b a "level", ie. a class in $H^{4}(B G ; \mathbb{Z})$ If we work to write this down on a lattice, we will need a class in $H_{\text {group }}^{3}\left(G_{j} U(I)\right)$. Chen and Simmons gave an injective map:

$$
\begin{aligned}
f: H^{4}(B G ; \mathbb{Z}) & \longmapsto H^{3}\left(G_{\delta} ; \mathbb{R} / \mathbb{z}\right) \\
C_{2} & \longmapsto
\end{aligned}
$$

We need to figure out what " $C S\left(g_{0}, g_{1}, g_{2}, g_{3}\right)^{n}$ means.
The Chen-Simons path integral is classified b a "level", ie. a class in $H^{4}(B G ; \mathbb{Z})$ If we work to write this down on a lattice, we will need a class in $H_{\text {group }}^{3}\left(G_{j} U(1)\right)$. Chen and Simmons gave an injective map:

$$
f: H^{4}(B G ; \mathbb{Z}) \longleftrightarrow H^{3}\left(G_{\delta} ; \mathbb{R} / \mathbb{z}\right)
$$

$\mathrm{C}_{2} \quad$ a class in here is a nature assigmenest

We need to figure out what ${ }^{(C S}\left(g_{0}, g_{1}, g_{2}, g_{3}\right)$ means.
The Chern-Simons path integral is classified by a "level", ie. a class in $H^{4}(B G ; \mathbb{Z})$ If we work to write this down on a lattice, we will need a class in $H_{\text {group }}^{3}\left(G_{j} U(1)\right)$. Chen and Simmons gave an injective map:

$$
\begin{aligned}
& f: H^{4}\left(B G_{;} \mathbb{Z}\right) \longmapsto H^{3}\left(G_{\delta} ; \mathbb{R} / \mathbb{z}\right) \\
& C_{2} \longmapsto C S_{2} \\
& C_{2}(A)=\frac{1}{8 \pi^{2}} \operatorname{Tr}\left(A \wedge d A+2 / 3 A \wedge A_{n} A\right) \in H^{3}(M ; \mathbb{R}) / H^{3}(M ; \tau)
\end{aligned}
$$

Theorem (Cheege-Simons 1985) In the bor resolution model for $H_{\text {gp }}^{3}\left(S U(2) ; 1 \mathbb{R} / z_{2}\right)$, CS_{2} is given by the group 3-cocyde
$\operatorname{vol}\left(g_{0}, g_{1}, g_{2}, g_{3}\right):=$ volume of spherical terchatron in S^{3} with vertices at $g_{0}, g_{1}, g_{2}, g_{3}$

This caused me to speculate that as $k \rightarrow \infty$ and the spins $a, b, c, d, e, f \rightarrow \infty$ with the ratios $\frac{a}{k}, \cdots, \frac{f}{h}$ held fixed,

This caused me to speculate that as $k \rightarrow \infty$ and the spins $a, b, c, d, e, f \rightarrow \infty$ with the ratios $\frac{a}{k}, \cdots, \frac{f}{h}$ held fixed,

$$
\left.\left\{\begin{array}{lll}
a & b & c
\end{array}\right\}^{2} \quad e \quad f \quad\right\}_{q=e^{\frac{\pi i}{k n}}} \cong \int_{\text {Gu }(2)^{4}} \prod_{i<j} \chi_{m_{5}}\left(g_{i} g_{j}^{-1}\right) e^{\frac{2 i k V o l(T)}{\pi}} \quad d g_{0} d g_{2} d g_{2} d g_{3}
$$

$$
T\left(g_{0}, g_{1}, g_{2}, g_{3}\right)=
$$

This caused me to speculate that as $k \rightarrow \infty$ and the spins $a, b, c, d, e, f \rightarrow \infty$ with the ratios $\frac{a}{k}, \cdots, \frac{f}{k}$ held fixed,

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right\}_{q=e^{\frac{\pi i}{k n 2}}} \cong \int_{\operatorname{su(2})^{4}} \prod_{i<j} \frac{\sin \left(\left(m_{i j}+1\right) \theta_{i j}\right)}{\sin \theta_{i j}} e^{\frac{2 i k \operatorname{Vol}(T)}{\pi}} \quad d g_{0} d g_{2} d g_{2} d g_{3}
$$

$$
T\left(g_{0}, g_{1}, g_{2}, g_{3}\right)=\underbrace{\theta_{03}}_{\frac{\pi b}{k} \downarrow_{g_{1}}^{0}}
$$

This caused me to speculate that as $k \rightarrow \infty$ and the spins $a, b, c, d, e, f \rightarrow \infty$ with the ratios $\frac{a}{k}, \cdots, \frac{f}{h}$ held fixed,

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right\}_{q=e^{\frac{\pi i}{k+2}}}^{2} \cong \int_{\operatorname{su}(2)^{4}} \frac{\sin \left(\left(m_{i j}+1\right) \theta_{i j}\right)}{\sin \theta_{i j}} e^{\frac{2 i k V o l(T)}{\pi}} \lg _{0} d g_{1} d g_{2} d g_{3}
$$

I asked my PhD student Hosana Ranaivomanana to investigate this.

The point is that there is a known asymptotic formula fer the quantum bo symbols in terms of the geometry of a spherical tetrahedron, due to Taylor-Woodund:

The point is that there is a known asymptotic formula for the quantum bo symbols in terms of the geometry of a spherical tetrahedron, due to Taylor-Woodurd

$$
\left\{\begin{array}{l}
k \alpha k \beta \\
k \delta k \in k \delta
\end{array}\right)_{q=e^{\frac{\pi i}{k n}}} \sim \sqrt{\frac{4 \pi^{2}}{k^{3} \sqrt{\operatorname{def} f}}} \cos \left(\sum_{e}\left(k l_{e}+1\right) \frac{\theta_{e}}{2}-\frac{k V}{\pi}+\frac{\pi}{4}\right)
$$

The point is that there is a known asymptotic formula for the quantum bo symbols in terms of the geometry of a spherical tetrahedron, due to Taylor-Woodured

$$
\begin{aligned}
& \eta\binom{k \alpha k \beta k \gamma}{k \delta k \in k S}_{q=e^{\frac{\pi i}{k+2}}} \sim \sqrt{\frac{4 \pi^{2}}{k^{3} \sqrt{\operatorname{det}(\sigma}}} \cos \left(\sum_{e}\left(k l_{e}+1\right) \frac{\theta_{e}}{2}-\frac{k V}{\pi}+\frac{\pi}{4}\right) \\
& \alpha=\frac{a}{k} \text { (fixed ratio) } \\
& \text { etc. } \\
& \text { Note: using integer } \\
& \text { spins converticn now }
\end{aligned}
$$

The point is that three is a known asymptotic formula for the quantum bo symbols in terms of the geometry of a spherical tetrahedron, due to Taylor-Woodurd

$$
\left(\begin{array}{lll}
k \alpha \\
k \delta & k \in k \delta
\end{array}\right)_{q=e^{\frac{\pi i}{k n}}} \sim \sqrt{\frac{4 \pi^{2}}{k^{3} \sqrt{\operatorname{det} G}}} \cos \left(\sum_{e}\left(k l_{e}+1\right) \frac{\theta_{e}}{2}-\frac{k V}{\pi}+\frac{\pi}{4}\right)
$$

The point is that there is a known asymptotic formula for the quantum bo symbols in terms of the geometry of a spherical tetrahedron, due to Taylor-Woodurd

$$
\left\{\begin{array}{l}
k \alpha k \beta k \gamma \\
k \delta k \in k S
\end{array}\right)_{q=e^{\frac{\pi i}{k n 2}}} \sim \sqrt{\frac{4 \pi^{2}}{k^{3} \sqrt{\operatorname{det} G}}} \cos \left(\sum_{e}\left(k l_{e}+1\right) \frac{\theta_{e}}{12}-\frac{k}{\pi} V+\frac{\pi}{4}\right)
$$

exterior dihedral angle or edge e

The point is that there is a known asymptotic formula for the quantum bo symbols in terms of the geometry of a spherical tetrahedron, due to Taylor-Woodured

$$
\left(\begin{array}{l}
k \alpha k \beta \quad k \gamma \\
k \delta k \in k 5
\end{array}\right\}_{q=e^{\frac{\pi i}{k+2}}} \sim \sqrt{\frac{4 \pi^{2}}{k^{3} \sqrt{\operatorname{det} G}}} \cos \left(\sum\left(k l_{e}+1\right) \frac{\theta_{e}}{2}-\frac{k V}{\pi} \uparrow+\frac{\pi}{4}\right)
$$

volume of the tetrahedron

The point is that there is a known asymptotic formula for the quantum bo symbols in terms of the geometry of a spherical tetrahedron, due to Taylor-Woodurd

$$
\left\{\begin{array}{l}
k \alpha k \beta k y \\
k \delta k \in k b
\end{array}\right\}_{q=e^{\frac{\pi i}{k n}}} \sim \sqrt{\frac{4 \pi^{2}}{k^{3} \sqrt{\operatorname{det} G}}} \cos \left(\sum_{e}\left(k l_{e}+1\right) \frac{\theta_{e}}{2}-\frac{k V}{\pi}+\frac{\pi}{4}\right)
$$

4.4 Gram matrix

$$
G_{i j}=\cos \left(\ell_{i j}\right)
$$

The point is that three is a known asymptotic formula for the quantum bo symbols in terms of the geometry of a spherical tetrahedron, due to Taylor-Woodurd

$$
\left\{\begin{array}{l}
k \alpha k \beta k \gamma \\
k \delta k \in k b
\end{array}\right\}_{q=e^{\frac{\pi i}{k n}}} \sim \sqrt{\frac{4 \pi^{2}}{k^{3} \sqrt{\operatorname{det} G}}} \cos \left(\sum_{e}\left(k l_{e}+1\right) \frac{\theta_{e}}{2} \frac{-k V}{\pi}+\frac{\pi}{4}\right)
$$

an error! should be +

The point is that there is a known asymptotic formula for the quantum bo symbols in terms of the geometry of a spherical tetrahedron, due to Taylor-Woodured

$$
\left\{\begin{array}{l}
k \alpha k \beta k \gamma \\
k \delta k \in k b
\end{array}\right\}_{q=e^{\frac{\pi i}{k n}}} \sim \sqrt{\frac{4 \pi^{2}}{k^{3} \sqrt{\operatorname{det} G}}} \cos \left(\sum_{e}\left(k l_{e}+1\right) \frac{\theta_{e}}{2}+\frac{k V}{\pi}+\frac{\pi}{4}\right)
$$

Does our integral match this asymptotic behaviour?

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right\}_{q=e^{\frac{\pi i}{k+2}}}^{2} \cong \int_{\operatorname{SU}(2)^{4}} \prod_{i<j} \frac{\sin \left(\left(m_{i j}+1\right) \theta_{i j}\right)}{\sin \theta_{i j}} e^{\frac{2 i k \operatorname{Vol}(T)}{\pi}} \quad d g_{0} d g_{1} d g_{2} d g_{3}
$$

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)_{q=e^{\frac{\pi i}{k+2}}}^{2} \int_{\operatorname{su}(2)^{4}} \prod_{i<j} \frac{\sin \left(\left(m_{i j}+1\right) \theta_{i j}\right)}{\sin \theta_{i j}} e^{\frac{2 i k \operatorname{Vol}(T)}{\pi}} d g_{0} d g_{1} d g_{2} d g_{3}
$$

 in S^{3}

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right\}_{q=e^{\frac{\pi i}{k+2}}}^{2} \cong \int_{\operatorname{su}(2)^{4}} \prod_{i<j} \frac{\sin \left(\left(m_{i j}+1\right) \theta_{i j}\right)}{\sin \theta_{i j}} e^{\frac{2 i k \operatorname{Vol}(T)}{\pi}} \quad d g_{0} d g_{1} d g_{2} d g_{3}
$$

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)_{q=e^{\frac{\pi i}{k+2}}}^{2} \int_{\operatorname{su}(2)^{4}} \prod_{i<j} \frac{\sin \left(\left(m_{i j}+1\right) \theta_{i j}\right)}{\sin \theta_{i j}} e^{\frac{2 i k \operatorname{Vol}(T)}{\pi}} d g_{0} d g_{1} d g_{2} d g_{3}
$$

The known asymptotics of the square of the quantum bs symbols (Taylor and Woodward's formula) can also be spit up into two contributions:

$$
\left\{\begin{array}{l}
k \alpha k \beta k \gamma \\
k \delta k \in k \zeta
\end{array}\right\}_{q=e^{\frac{\pi i}{k n}}} \sim \sqrt{\frac{4 \pi^{2}}{k^{3} \sqrt{\operatorname{det} G}}} \cos \left(\sum_{e}\left(k l_{e}+1 \frac{\theta_{e}}{2}+\frac{k V}{\pi}+\frac{\pi}{4}\right)\right.
$$

The known asymptotics of the square of the quantum bs symbols (Taylor and Woodward's formula) can also be split up into two contributions:

$$
\left\{\begin{array}{l}
k \alpha k \beta k \gamma \\
k \delta k \in k \zeta
\end{array}\right\}_{q=e^{\frac{\pi i}{k n}}}^{2} \sim \frac{4 \pi^{2}}{k^{3} \sqrt{\operatorname{det} G}} \cos ^{2}\left(\sum_{e}\left(k l_{e}+1\right) \frac{\theta_{e}}{2}+\frac{k V}{\pi}+\frac{\pi}{4}\right)
$$

The known asymptotics of the square of the quantum bs symbols (Taylor and Woodward's formula) can also be split up into two contributions:

$$
\left\{\begin{array}{l}
k \alpha k \beta k \gamma \\
k \delta k \in k S
\end{array}\right)_{q=e^{\frac{\pi i}{k n}}}^{2} \sim \frac{2 \pi^{2}}{k^{3} \sqrt{\operatorname{det} G}}\left[1-\sin \left(\sum_{e}\left(k l_{e}+1\right) \theta_{e}+2 h V\right)\right]
$$

The known asymptotics of the square of the quantum bs symbols. (Taylor and Woodward's formula) can also be split up into two contributions:

$$
\left.\left\{\begin{array}{l}
k \alpha k \beta k \gamma \\
k \delta k \in k S
\end{array}\right)_{q=e^{\frac{\pi i}{k+2}}}^{2} \sim \frac{2 \pi^{2}}{k^{3} \sqrt{\operatorname{det} G}}-\frac{2 \pi^{2}}{} \sin \left(\sum_{e}\left(k l_{e}+1\right) \theta_{e}+2 k V\right)\right]
$$

Hosanna's results so for:

$$
\left.\int_{\operatorname{suc}(2)^{4}} \prod_{i<j} \frac{\sin \left(\left(m_{i+1}+1\right) \theta_{i j}\right)}{\sin \theta_{i j}} e^{\frac{2 i h V_{0}(T)}{\pi}} \sim\binom{\text { deg. }}{\text { contribution }}-\frac{\pi^{2}}{4 k^{3} \sqrt{\operatorname{det} G}} \cos \left(\sum_{e}\left(k l_{e}+1\right) \theta_{e}+2 h V\right)\right]
$$

The known asymptotics of the square of the quantum bs symbols. (Taylor and Woodward's formula) can also be split up into two contributions:

$$
\left.\left\{\begin{array}{l}
k \alpha k \beta k \gamma \\
k \delta k \in k S
\end{array}\right)_{q=e^{\frac{\pi i}{k+2}}}^{2} \sim \frac{2 \pi^{2}}{k^{3} \sqrt{\operatorname{det} G}}-\frac{2 \pi^{2}}{} \sin \left(\sum_{e}\left(k l_{e}+1\right) \theta_{e}+2 k V\right)\right]
$$

Hosanna's results so for:

$$
\begin{aligned}
& \left.\int_{\operatorname{SUC}(2)^{4}} \prod_{i<j} \frac{\sin \left(\left(m_{i-1}+1\right) \theta_{i j}\right)}{\sin \theta_{i j}} e^{\frac{2 i k V I(T)}{\pi}} \sim\binom{\text { deg. }}{\text { contribution }}-\frac{\pi^{2}}{4 k^{3} \sqrt{\operatorname{det} f}} \cos \left(\sum_{e}\left(k l_{e}+1\right) \theta_{e}+2 h V\right)\right] \\
& \text { See also: }
\end{aligned}
$$

Bartlett and Ronaivomanana, Recipociing of the Wigner derivative for spherical tetrahedra (ar $\left.X_{i v}: 2011.1000 a\right)$

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

