QGP	Holography	Gravity Setting	QNMs	Conclusion
		0 00000	00 000000 0000	

Holographic Equilibration in Confining Gauge Theories Under External Magnetic Fields

Tuna Demircik

Sabanci University / Utrecht University

(arXiv:1605.08118v3 with U.Gursoy)

January 16, 2017

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion
		0 0 00000	00 000000 0000	

QGP

States of strongly interacting matter Heavy ion experiments and QGP Holography Holography QNMs

Gravity Setting

The glue sector

The flavour sector

Background at a finite magnetic field and temperature

QNMs

QNMs and Tensor decomposition Shear channel

Scalar channel

Conclusion

Conclusion

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

- ∢ ≣ ▶

QGP	Holography	Gravity Setting	QNMs	Conclusion
0		0 0 00000	00 000000 0000	
States of strong	gly interacting matter			

States of strongly interacting matter:

- i Confinement/Deconfinement transition:
 - $L(T) \sim \lim_{r \to \infty} \exp(-V(r)/T)$
 - $T < T_c \Rightarrow L \rightarrow 0 \Rightarrow Conf.$
 - $T > T_c \Rightarrow L \neq 0 \Rightarrow$ Deconf.
- ii Chiral symmetry restoration:
 - $T < T_c \Rightarrow M_q \neq 0 \Rightarrow \chi SB$. • $T > T_c \Rightarrow M_q \rightarrow 0 \Rightarrow \chi S$.

iii Diquark matter.

Figure 1: QCD phase diagram.

- 4 同 6 - 4 三 6 - 4 三

Lattice QCD: for $\mu_B = 0$, $T_c = 150 - 200 MeV$ and $n_c = 0.1 fm^{-3}$.

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion	
0		0 0 00000	00 000000 0000		
Heavy ion experiments and QGP					

Heavy ion experiments and QGP:

- \blacktriangleright ~ 10^{12} K, ~ 10fm/c, ~ 10fm.
- RHIC: $\sqrt{s} = 200 \, GeV$, LHC: $\sqrt{s} = 2.76 \, TeV$.
- ► RHIC: $e|\overrightarrow{B}|/m_{\pi}^2 \approx 1-3$, LHC: $e|\overrightarrow{B}|/m_{\pi}^2 \approx 10-15$.
- Extremely small $\eta/s \approx 1/4\pi$.

Figure 2: Heavy ion collisions.

イロト イポト イヨト イヨ

QGP is in strong interaction regime and η/s ratio is in very good agreement with AdS/CFT result.

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion
	0	0 0 00000	00 000000 0000	
Holography				

Holography:

- ► The glimpses:
 - i Holographic principle;)
 - ii Large- N_c theories;)
- Maldecena conjecture:
 - $\textit{N} = \texttt{4SYM} \leftrightarrow \texttt{SUGRA} \text{ on} \textit{AdS}_5 \times \textit{S}_5$

$$Z_{CFT(N_c \gg \lambda \gg 1)} = Z_{AdS_5}$$

In Nonequilibrium:

$$\langle \exp(i\int \phi^{(0)}O) \rangle = e^{\underline{S}[\phi|_{u=0}=\phi^{(0)}]}$$

Figure 3: GKB-W relation in nonequilibrium situation.

"boundary"

"source" **\$**^{(0)}

 $\mathbf{u} = 0$

"bulk"

bulk field **\$**

3 →

(asymptotically AdS)

horizon u = 1

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion
	•	0 0 00000	00 000000 0000	
QNMs				
	1			

QNMs:

Introducing a fluctuation to constituive equation in hydrodynamics:

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + P\eta^{\mu\nu} + \tau^{\mu\nu}$$

results in dispersion relation which corresponds to poles of retarded Green function. This dispersion relation is related with transport coeffecients. e.g.:

vector mode:
$$\omega = -i \frac{\eta}{Ts} q^2$$

Bulk field generally has the asymptotic behaviour:

$$\phi \sim Ar^{\Delta_-} + Br^{\Delta_+} \quad (r o 0), \quad \Delta_+ > \Delta_-$$

by following AdS/CFT prescription, the location of poles:

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

Holographic Equilibration in Confining Gauge Theories Under External Magnetic Fields

$$G_R \propto \frac{B}{A} \Longrightarrow$$

Tuna Demircik

D

QGP	Holography	Gravity Setting	QNMs	Conclusion
		0 0 00000	00 000000 0000	
The glue sector				

The action:

$$S = S_g + S_f \tag{1}$$

IHQCD with backreacting flavor branes with Veneziano limit:

$$N_c o \infty, \quad N_f o \infty$$
 and $rac{N_f}{N_c} \equiv x = {
m finite}$

$$\lambda = g_{YM}^2 N_c = fixed$$

The glue sector:

$$S_g = M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left(R - \frac{4}{3} (\partial \phi)^2 + V_g(\phi) \right)$$
(2)

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion
		00000	00 000000 0000	
The flavour sect	or			

The flavour sector:

$$S_{f} = -\frac{1}{2}M_{\rho}^{3}N_{c}\mathbb{T}r\int d^{5}x\left(V_{f}(\lambda, T^{\dagger}T)\sqrt{-\det \mathbf{A}_{L}} + V_{f}((\lambda, TT^{\dagger})\sqrt{-\det \mathbf{A}_{R}})\right)$$
$$\mathbf{A}_{L\mu\nu} = g_{\mu\nu} + w(\lambda, T)F_{\mu\nu}^{L} + \frac{\kappa(\lambda, T)}{2}\left[(D_{\mu}T)^{\dagger}(D_{\nu}T) + (D_{\nu}T)^{\dagger}(D_{\mu}T)\right]$$
$$\mathbf{A}_{R\mu\nu} = g_{\mu\nu} + w(\lambda, T)F_{\mu\nu}^{R} + \frac{\kappa(\lambda, T)}{2}\left[(D_{\mu}T)(D_{\nu}T)^{\dagger} + (D_{\nu}T)(D_{\mu}T)^{\dagger}\right]$$
$$D_{\mu}T = \partial_{\mu}T + iTA_{\mu}^{L} - iA_{\mu}^{R}T \qquad V_{f}(\lambda, TT^{\dagger}) = V_{f0}(\lambda)e^{-a(\lambda)TT^{\dagger}}$$

 $T = au(r) \mathbb{I}_{N_f}$ and au(r) = 0 (chiral symmetric phase)

$$S_{f} = -M_{\rho}^{3}N_{c}\operatorname{Tr} \int dx^{5}V_{f}(\lambda)\sqrt{-g}\sqrt{\det(\delta_{\nu}^{\mu}+w(\lambda)^{2}g^{\mu\rho}F_{\rho\nu})}$$
$$= -M_{\rho}^{3}N_{c}N_{f}\int dx^{5}V_{f}(\lambda)\sqrt{-g}\left(1+\frac{w(\lambda)^{2}}{4}F_{\mu\nu}F^{\mu\nu}\right) \qquad (3)$$

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

Tuna Demircik

QGP	Holography	Gravity Setting	QNMs	Conclusion			
		0 0 00000	00 000000 0000				
Background at	Background at a finite magnetic field and temperature						

The Einsteins equations:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R - \left(\frac{4}{3}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{2}{3}g_{\mu\nu}(\partial\phi)^{2} + \frac{1}{2}g_{\mu\nu}V_{eff}\right) -x\frac{V_{b}}{2}\left(F_{\mu}^{\ \rho}F_{\nu\rho} - \frac{g_{\mu\nu}}{4}F_{\rho\sigma}F^{\rho\sigma}\right) = 0 \quad (4)$$

The Maxwell equations:

$$\partial_{\mu} \left(\sqrt{-g} V_b F^{\mu\nu} \right) = 0 \tag{5}$$

The dilaton equation:

$$\frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}g^{\mu\nu}\partial_{\nu}\phi\right) + \frac{3}{8}\frac{\partial V_{eff}}{\partial\phi} - \frac{3x}{32}\frac{\partial V_{b}}{\partial\phi}F^{2} = 0 \qquad (6)$$

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

< 17 →

QGP	Holography	Gravity Setting	QNMs	Conclusion			
		0 0 0●000	00 000000 0000				
Background at	Background at a finite magnetic field and temperature						

Constant background magnetic field:

$$V_{\mu} = \left(0, -\frac{x_2 B}{2}, \frac{x_1 B}{2}, 0, 0\right)$$
(7)

Antsatz for the metric:

$$ds^{2} = e^{2A(r)} \left(-e^{g(r)} dt^{2} + dx_{1}^{2} + dx_{2}^{2} + e^{2W(r)} dx_{3}^{2} + e^{-g(r)} dr^{2} \right)$$
(8)

 $r \in [0, r_h]$: r_h is the location of the horizon where $g(r_h) = -\infty$. The UV boundary is at r = 0, where we demand AdS_5 asymtotics $(A \rightarrow -\log(r), g \rightarrow 0, W \rightarrow 0$ as $r \rightarrow 0$).

The dilaton:

$$\lambda = \lambda(r) = e^{\phi}(r) \tag{9}$$

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

・ロト ・回ト ・ヨト ・ヨト

3

QGP	Holography	Gravity Setting	QNMs	Conclusion		
			00			
		ŏo●oo	00000			
Background at a finite magnetic field and temperature						

The Potentials:

$$V_b(\lambda) = V_f(\lambda)w(\lambda)^2, \qquad V_{eff}(\lambda) = V_g(\lambda) - xV_{f0}$$
 (10)

i
$$V_g(\lambda) = \frac{12}{l^2} \left(1 + V_0 \lambda + V_1 \lambda^{4/3} \sqrt{\log(1 + V_2 \lambda^{4/3} + V_3 \lambda^2)} \right).$$

- In the UV, It matches the perturbative large-N_c β-function and corresponds to initial conditions of an RG flow with asymptotic freedom.
- In the IR, It guarantees that the dual field theory is confining with a gapped glueball spectrum.
- ii $V_{f0}(\lambda) = W_0(1 + W_1\lambda + W_2\lambda^2)$ and $w(\lambda) = \left(1 + \frac{3a_1}{4}\lambda\right)^{-\frac{4}{3}}$
 - In the UV, It matches the perturbative anomalous dimension of the quark mass operator.
 - In the IR, It satifies the requirement of chiral symmetry and the meson spectra.

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion		
		0 000●0	000000			
Background at a finite magnetic field and temperature						

Background at a finite magnetic field and temperature

- The Einstein's equations yield three 2nd order equations and one 1st order constraint equation.
- The solutions are only characterized by three parameters: B, T and Λ_{QCD} .
- The numerical solutions for x = 0.1 are constructed by UV matching procedure with B = 0 solutions:

 $T/T_c \in [1.00208, 1.84416]$ and $eB_{phys} \in [0.05978, 3.34753] GeV^2$.

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

< 回 > < 三 > < 三

Change in entropy density devided by T^3 in terms of T/T_c for different values of eB.

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

< 17 ▶

3 →

Holographic Equilibration in Confining Gauge Theories Under External Magnetic Fields

Tuna Demircik

QGP	Holography	Gravity Setting	QNMs	Conclusion		
		0 0 00000	• 0 000000 0000			
QNMs and Tensor decomposition						

Quasinormal modes:

The background metric has SO(2) symmetry around the x_3 -axis, because of the presence of a constant magnetic field along that direction, hence we introduce the fluctuations in the form of:

$$g_{\mu\nu} = g^{(0)}_{\mu\nu} + g^{(1)}_{\mu\nu} \qquad V_{\mu} = V^{(0)}_{\mu} + V^{(1)}_{\mu}$$
 (11)

where

$$g_{\mu\nu}^{(1)} = e^{i(kx_3 - \omega t)} h_{\mu\nu}(r) \qquad V_{\mu}^{(1)} = i e^{i(kx_3 - \omega t)} v_{\mu}(r)$$
(12)

After imposing the radial gauge:

$$h_{tr} = h_{x_3r} = h_{rr} = h_{r\alpha} = 0$$
 $v_r = 0$ (13)

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

Holographic Equilibration in Confining Gauge Theories Under External Magnetic Fields

Tuna Demircik

QGP	Holography	Gravity Setting	QNMs	Conclusion		
		0 0 00000	00 000000 0000			
QNMs and Tensor decomposition						

we end up with the classification:

 $\begin{array}{ll} \mbox{Spin2} & (\mbox{scalar channel}): & h_{\alpha\beta} - \delta_{\alpha\beta}h/2 \\ \mbox{Spin1} & (\mbox{shear channel}): & h_{t\alpha}, h_{x_3\alpha}, v_{\alpha} \\ \mbox{Spin0} & (\mbox{sound channel}): & h_{tt}, h_{tx_3}, h_{x_3x_3}, h, v_t, v_{x_3}, \phi \\ \end{array}$

where $\alpha = x_1, x_2$ and $h = \sum_{\alpha} h_{\alpha\alpha}$.

We note that the gauge does not completely fix the diffeomorphism invariance. Under infinitesimal diffeomorphisms, $x^{\mu} \rightarrow x^{\mu} + \xi^{\mu}$ (where $\xi_{\mu} = e^{i(kx_3 - \omega t)}\zeta_{\mu}(r)$):

$$\begin{split} g^{(1)}_{\mu\nu} &\to g^{(1)}_{\mu\nu} - \nabla^{(0)}_{\mu} \xi_{\nu} - \nabla^{(0)}_{\nu} \xi_{\mu} \\ V^{(1)}_{\mu} &\to V^{(1)}_{\mu} - g^{(0)\tau\lambda} V^{(0)}_{\tau} \nabla^{(0)}_{\mu} \xi_{\lambda} - g^{(0)\tau\lambda} \xi_{\lambda} \nabla^{(0)}_{\tau} V^{(0)}_{\mu} \\ \phi^{(1)} &\to \phi^{(1)} - \xi^{\mu} \nabla^{(0)}_{\mu} \phi^{(0)} \end{split}$$

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

A > < > > < >

QGP	Holography	Gravity Setting	QNMs	Conclusion
		0 0 00000	00 •00000 0000	
Shear channel				

Shear channel fluctuation:

$$g_{tx_2}^{(1)} = e^{i(kx_3 - \omega t)} e^{2A(r)} H_{tx_2}(r) \qquad g_{x_2x_3}^{(1)} = e^{i(kx_3 - \omega t)} e^{2A(r)} H_{x_2x_3}(r) \quad (14)$$

$$V_{x_1}^{(1)} = i e^{i(kx_3 - \omega t)} v_{x_1}(r)$$
(15)

For convenience:

$$H_{tx_2} = h_{x_2}^t \qquad H_{x_2x_3} = h_{x_2}^{x_3}$$

$$Z(\phi) = xV_f(\phi)w^2(\phi)$$

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

< ロ > < 回 > < 回 > < 回 > < 回 >

э

QGP	Holography	Gravity Setting	QNMs	Conclusion
			00	00
			00000	
		00000	0000	

Shear channel

Linear fluctuation equations:

$$\begin{aligned} H_{tx_{2}}^{\prime\prime}(r) + \left[3A^{\prime}(r) + W^{\prime}(r)\right]H_{tx_{2}}^{\prime}(r) + \left[\frac{-e^{2W(r)}k^{2}}{e^{g(r)}} - \frac{4B^{2}e^{-2A(r)}Z(\phi)}{e^{g(r)}}\right]H_{tx_{2}}(r) \\ - \frac{e^{-2W(r)}k\omega}{e^{g(r)}}H_{x_{3}x_{2}} - \frac{4Be^{2A(r)}\omega Z(\phi)}{e^{g(r)}}v_{x_{1}}(r) = 0 \end{aligned}$$

$$\begin{split} H_{x_{3}x_{2}}^{\prime\prime}(r) + \left[3A^{\prime}(r) + g^{\prime}(r) - W^{\prime}(r)\right] H_{tx_{2}}^{\prime}(r) + \left[\frac{\omega^{2}}{e^{2g(r)}} - \frac{4B^{2}e^{-2A(r)}Z(\phi)}{e^{g(r)}}\right] H_{x_{3}x_{2}}(r) \\ + \frac{k\omega}{e^{g(r)}} H_{tx_{2}} + \frac{4Be^{2A(r)}kZ(\phi)}{e^{g(r)}} v_{x_{1}}(r) = 0 \end{split}$$

$$\begin{aligned} v_{x_{1}}^{\prime\prime}(r) + \left(A^{\prime}(r) + g^{\prime}(r) + W^{\prime}(r) + \frac{Z^{\prime}(\phi)\phi^{\prime}(r)}{Z(\phi)}\right)v_{x_{1}}^{\prime}(r) + \left(\frac{\omega^{2}}{e^{2g(r)}} - \frac{e^{2W(r)}k^{2}}{e^{g(r)}}\right)v_{x_{1}}(r) \\ + \frac{B\omega}{e^{2g(r)}}H_{tx_{2}}(r) + \frac{Be^{2W(r)}k}{e^{g(r)}}H_{x_{3}x_{2}}(r) = 0 \end{aligned}$$

Constraint equation:

$$\frac{k}{2}H'_{x_{3}x_{2}}(r) + \frac{e^{2W(r)}\omega}{2e^{g(r)}}H'_{tx_{2}}(r) + 2Be^{2(W(r) - A(r))}Z(\phi)v'_{x_{1}}(r) = 0$$

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

< ロ > < 同 > < 回 > < 回

э

QGP	Holography	Gravity Setting	QNMs	Conclusion
			00	
		00000	00000	

Shear channel

Gauge invariant combinations:

$$Z_2(r) = kH_{tx_2}(r) + \omega H_{x_3x_2}(r)$$
(16)

$$Z_{3}(r) = v_{x_{1}} + \frac{B}{2k\omega}[kH_{tx_{2}}(r) - \omega H_{x_{3}x_{2}}(r)]$$
(17)

Gauge invariant fluctuation equations:

$$Z_2''(r) + C_1 Z_2'(r) + C_2 Z_2(r) + C_3 Z_3'(r) = 0$$
(18)

$$Z_3''(r) + D_1 Z_3'(r) + D_2 Z_3(r) + D_3 Z_2'(r) = 0$$
(19)

Boundary conditions:

i Infalling BC at the horizon:

$$Z_2(r_h - r) = (r_h - r)^{-\frac{i\omega}{4\pi T}} [b_0 + b_1(r_h - r) + ...]$$

$$Z_3(r_h - r) = (r_h - r)^{-\frac{i\omega}{4\pi T}} [c_0 + c_1(r_h - r) + ...]$$

ii Dirichlet BC on the boundary:

$$\lim_{r \to r_c} \det[H] = \lim_{r \to r_c} [Z_2^{(1)} Z_3^{(2)} - Z_2^{(2)} Z_3^{(1)}] = 0$$

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion
		00000	000000	
CI 1 1				

T-dependence:

Figure 6: T-dependence of quasinormal frequencies in the shear channel for temperature values varying between $T/T_c \in [1.0021, 1.8442]$ and for fixed $eB_{phys} = 0.2391 GeV^2$, $\bar{k} = 1$: (a) the real parts and (b) imaginary parts of the three lowest and the two purely imaginary modes. Blue curve is the hydrodynamic mode.

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

B-dependence:

Figure 7: B-dependence of quasinormal frequencies in the shear channel for magnetic field values varying between $eB_{phys} \in [0.1196, 3.3475] GeV^2$ and for fixed $T/T_c = 1.0221$, $\bar{k} = 1$: (a) the real and (b) the imaginary parts the three lowest and the two purely imaginary mode. Blue curve corresponds to the hydrodynamic mode. We observe that the hydrodynamic approximation breaks down at $eB_{phys} = 2.9291 GeV^2$.

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion
			000000	
		00000	0000	

Shear channel

k-dependence:

Figure 8: \bar{k} -dependence of quasinormal frequencies in the shear channel for momentum values varying between $\bar{k} \in [0, 2.2700]$ and for fixed $T/T_c = 1.0221$ and $eB_{phys} = 0.2391 GeV^2$: (a) the real parts and (b) the imaginary parts of the three lowest modes and the two purely imaginary modes. Blue curve corresponds to the hydrodynamic mode. We observe that the hydrodynamic approximation breaks down at $\bar{k}_{cp} = 1.3995$.

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion
			00	00
		00000	0000	
C				

Scalar channel fluctuations:

$$g_{x_1x_2}^{(1)} = e^{i(kx_3 - \omega t)} e^{2A(r)} H_{x_1x_2}(r)$$
(20)

For convenience:

$$H_{x_1x_2} = h_{x_2}^{x_1} = Z_1(r)$$

Gauge invariant fluctuation equations:

$$Z_{1}^{\prime\prime}(r) + [3A^{\prime}(r) + g^{\prime}(r) + W^{\prime}(r)] Z_{1}^{\prime}(r) + \left[\frac{\omega^{2}}{e^{2g(r)}} - \frac{k^{2}}{e^{2W(r) + g(r)}}\right] Z_{1}(r) = 0$$
(21)

Boundary conditions:

i Infalling BC at the horizon:

$$Z_1(r_h - r) = (r_h - r)^{-\frac{i\omega}{4\pi T}} [a_0 + a_1(r_h - r) + ...]$$

ii Dirichlet BC on the boundary: $Z_1(r_c) = 0$

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion
		0	000000	
		00000	0000	
Cooley sheeped				

T-dependence:

Figure 9: T-dependence of quasinormal frequencies in the scalar channel for temperature values varying between $T/T_c \in [1.0021, 1.8442]$ and for fixed $eB_{phys} = 0.2391 GeV^2$, $\bar{k} = 1$: (a) the real parts and (b) the imaginary parts of the four lowest modes and the purely imaginary mode. We observe crossing between the three lowest lying modes at $T/T_c = 1.1371$ and $T/T_c = 1.4185$.

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion
			00	
		00000	000000	
Carlan alamad				

B-dependence:

Figure 10: B-dependence of quasinormal frequencies in the scalar channel magnetic field values varying between $eB_{phys} \in [0.1196, 3.3475] GeV^2$ and for fixed $T/T_c = 1.0221$, $\bar{k} = 1$: (a) the real parts and (b) the imaginary parts the four lowest and the purely imaginary mode.

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion
			00 000000	
		00000	0000	

k-dependence:

Figure 11: \bar{k} -dependence of quasinormal frequencies in the scalar channel for momentum values varying between $\bar{k} \in [0, 2.93]$ and for fixed $T/T_c = 1.0221$ and $eB_{phys} = 0.2391 GeV^2$: (a) the real parts and (b) the imaginary parts of the four lowest modes and the purely imaginary mode. We observe various crossings between these modes in (b).

Tuna Demircik

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

QGP	Holography	Gravity Setting	QNMs	Conclusion
		0 0 00000	00 000000 0000	•0
Conclusion				

Conclusion:

Two classes of QNMs are observed:

i
$$Re|\omega| \neq 0$$
 and $Im|\omega| \neq 0$.
ii $Re|\omega| = 0$ and $Im|\omega| \neq 0$.

The latter is observed for first time for magnetic black brane.

- ► For most of the QNM: $B \uparrow \Rightarrow Re|\omega| \uparrow$ and $Im|\omega| \uparrow (\tau \downarrow)$.
- Several crossing phenomena are observed with changing k, T and B. This means that dominant mode that controls equilibration process depends on these parameters.
- Hydro breakdown observed with changing \overline{k} and B.

i
$$\bar{k}_c \cong 1.4$$
.
ii $eB_{phys} \cong 2.93 GeV^2$.

Sabanci University / Utrecht University (arXiv:1605.08118v3 with U.Gursoy)

・ 同 ト ・ ヨ ト ・ ヨ ト

QGP o o	Gravity Setting O O OOOOO	QNMs 00 000000 00000	Conclusion ⊙●
Conclusion	00000		

Thank you for your attention.

Tuna Demircik

র্বাচনর বিষয়ের বিষয়ের বিষয়ের বিষয়ের বিষয়ের বিষয়ের বিরয়ের বিরযের বিয