Asymptotic Bridgeland stability on 3-folds

Marcos Jardim joint work with Antony Maciocia

11 May 2021

A Bridgeland stability condition on a triangulated category \mathscr{T} is a pair $\sigma = (\mathcal{A}, Z)$ consisting of:

- the heart \mathcal{A} of a t-structure on \mathscr{T} ;
- a homomorphism of abelian groups Z : K₀(A) → C, called a central charge.

In addition, we assume that ${\cal Z}$ factors through a surjective group homomorphism

$$\tau: K_0(\mathcal{A}) \twoheadrightarrow \Lambda,$$

where Λ is a finite dimensional lattice equipped with a norm $||\cdot||$ on $\Lambda\otimes\mathbb{R}.$

Stability conditions on triangulated categories: axioms

(1)
$$\operatorname{Im}(Z(A)) \ge 0$$
 for every $A \in \mathcal{A}$, and
 $\operatorname{Im}(Z(A)) = 0 \implies \operatorname{Re}(Z(A)) < 0$; set
 $\mu_Z(A) := -\frac{\operatorname{Re}(Z(A))}{\operatorname{Im}(Z(A))}$

(2) Every $E \in A$ admits a Harder–Narasimhan filtration;

(3) the support property

$$\inf\left\{\frac{|Z(E)|}{||\tau(E)||} \ \Big| \ E \in \mathcal{A} \text{ semistable}\right\} > 0$$

An object $E \in \mathscr{T}$ is σ -(semi)stable if $E \in \mathcal{A}$ and every $F \hookrightarrow E$ in \mathcal{A} satisfies $\mu_Z(F) < (\leq) \mu_Z(E)$.

Basic example: sheaves on curves

Let X be a smooth projective curve, and let $\mathscr{T} = D^{\mathrm{b}}(X)$.

Take $\mathcal{A} = Coh(X)$ as the heart of the standard t-structure on $D^{\mathrm{b}}(X)$, and let the central charge be given by:

$$Z(E) := -\deg(E) + \sqrt{-1}\operatorname{rk}(E) \ , \ E \in \operatorname{\mathcal{C}oh}(X).$$

Set $\Lambda = H^0(X, \mathbb{Z}) \oplus H^2(X, \mathbb{Z})$ with basis $(1, \omega)$, equipped with the usual euclidean norm; set

$$\tau(E) = (\mathsf{rk}(E), \mathsf{deg}(E)\omega).$$

The support property is trivially satisfied because $\frac{|Z(E)|}{||\tau(E)||} = 1$ for every sheaf *E*.

In this context, σ -stability coincides with the usual slope stability.

Stability manifold, walls and chambers

Let $Stab(\mathscr{T})$ be the set of stability conditions \mathscr{T} .

Bridgeland's deformation theorem: The map

 $\mathcal{Z} : \mathsf{Stab}(\mathscr{T}) \to \mathsf{Hom}(\Lambda, \mathbb{C}),$

sending a stability condition to its central charge, is a local homeomorphism. In particular, $Stab(\mathscr{T})$ is a complex manifold of complex dimension $rk(\Lambda)$.

Wall and chamber structure: There are only finitely many walls $\{W_{u_i,v}\}_{i=1}^n$ for $v \in \Lambda$ intersecting a compact set $K \subset \text{Stab}(\mathscr{T})$, each of real codimension 1, and any connected component

$$C \subset K \setminus \bigcup_{i=1}^n W_{u_i,v}$$

has the following property: *E* is σ -semistable for some $\sigma \in C$ if and only if *E* is σ' -semistable for every $\sigma' \in C$.

Marcos Jardim

Existence and moduli spaces

Some of the main problems being studied in the literature are:

Existence: given a projective variety X, are there stability conditions on $D^{b}(X)$?

Positive answer for surfaces, Fano 3-folds with Picard rank 1, abelian 3-folds, the quintic 3-fold, \mathbb{P}^n ; following ideas by Bayer, Macrì, Toda, Bertram, among others.

Moduli spaces: Is $M_{\sigma}(v)$ a projective scheme?

Yes, for certain surfaces like K3, \mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$. More generally, Piyaratne–Toda showed that, for the so-called geometric stability conditions, $M_{\sigma}(v)$ is a proper algebraic stack of finite type.

What stable objects look like?

Besides surfaces, some examples on \mathbb{P}^3 .

```
Marcos Jardim
```

Stability conditions on surfaces

Let X be a smooth projective surface with $Pic(X) = \mathbb{Z} \cdot H$, with H being the ample generator.

Fix $\beta \in \mathbb{R}$ and consider the full subcategories (a torsion pair)

$$\mathcal{T}_{eta} := \{ E \in \mathcal{C}oh(X) \mid \forall \ E \twoheadrightarrow G \ \mathrm{satisfies} \ \mu(G) > eta \}, \ \ \mathrm{and}$$

$$\mathcal{F}_{\beta} := \{ E \in \mathcal{C}oh(X) \mid \forall \ F \hookrightarrow E \text{ satisfies } \mu(F) \leq \beta \}.$$

Next, take the subcategory of $D^{\mathrm{b}}(X)$ generated by \mathcal{T}_{eta} and $\mathcal{F}_{eta}[1]$

$$\mathcal{B}^eta(X) := \langle \mathcal{F}_eta[1], \mathcal{T}_eta
angle$$

This is the heart of a t-structure on $D^{b}(X)$, and the procedure above is known as tilting.

The central charge is given as follows, for $B \in \mathcal{B}^{\beta}$ and $\alpha \in \mathbb{R}^+$:

$$Z^{\mathrm{tilt}}_{lpha,eta}(B):=-\left(\mathsf{ch}^eta_2(B)-rac{1}{2}lpha^2\,\mathsf{ch}_0(B)
ight)+\sqrt{-1}\,\mathsf{ch}^eta_1(B)$$

Marcos Jardim

Stability conditions for 3-folds, I

The idea of Bayer–Macri–Toda is to tilt \mathcal{B}^{β} on the torsion pair

$$\mathcal{T}_{lpha,eta}:=\{E\in\mathcal{B}^eta(X)\mid orall\;E woheadrightarrow G ext{ satisfies }
u_{lpha,eta}(G)>0\}, ext{ and }$$

$$\mathcal{F}_{\alpha,\beta} := \{ E \in \mathcal{B}^{\beta}(X) \mid \forall \ F \hookrightarrow E \text{ satisfies } \nu_{\alpha,\beta}(F) \leq 0 \}.$$

where $\nu_{\alpha,\beta}$ is the slope function for the central charge $Z_{\alpha,\beta}^{\text{tilt}}$:

$$u_{lpha,eta}(B):=egin{cases} \displaystylerac{\mathsf{ch}_2^eta(B)-lpha^2\,\mathsf{ch}_0(B)/2}{\mathsf{ch}_1^eta(B)}, & ext{if } \mathsf{ch}_1^eta(B)
ot=0;\ +\infty, & ext{if } \mathsf{ch}_1^eta(B)=0. \end{cases}$$

The category $\mathcal{A}^{\alpha,\beta} := \langle \mathcal{F}_{\alpha,\beta}[1], \mathcal{T}_{\alpha,\beta} \rangle$ is the heart of another t-structure on $D^{\mathrm{b}}(X)$.

BMT define the central charge, for objects $A \in \mathcal{A}^{lpha,eta}$, as follows

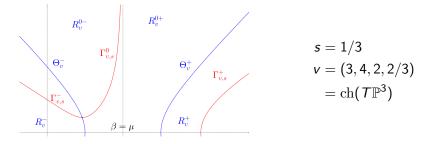
$$egin{aligned} Z_{lpha,eta,\mathsf{s}}(A) &:= -\operatorname{ch}_3^eta(A) + (s+1/6)lpha^2\operatorname{ch}_1^eta(A) + \ &+ \sqrt{-1}\left(\operatorname{ch}_2^eta(A) - lpha^2\operatorname{ch}_0(A)/2
ight) \end{aligned}$$

They prove that the pair $(\mathcal{A}^{\alpha,\beta}, Z_{\alpha,\beta,s})$ with s > 0 is a Bridgeland stability condition on X provided a certain generalized Bogomolov inequality is satisfied; this is related to the support property.

This inequality was proved to hold for Fano 3-folds with Picard rank 1, abelian 3-folds and the quintic 3-fold; counter-examples have also been found.

These are the so-called geometric stability conditions.

The plane parametrizing geometric stability conditions

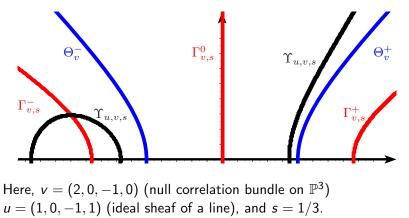


The blue hyperbola is the curve $\mathbf{Re}(Z_{\alpha,\beta}^{\text{tilt}}(v)) = 0$; we call it Θ_v .

The red curve is given by $\mathbf{Re}(Z_{\alpha,\beta,s}(v)) = 0$; we call it $\Gamma_{v,s}$.

 Θ_{ν} and $\beta = \mu$ divide the plane into 4 regions, labeled (from left to right) R_{ν}^{-} , R_{ν}^{0-} , R_{ν}^{0+} and R_{ν}^{+} .

The wall $\Upsilon_{u,v,s}$ has two connected components: one bounded and the other unbounded.



Let $\gamma: (0,\infty) \to \mathbb{R} \times \mathbb{R}^+$ be an unbounded path.

Let $\lambda_{\alpha,\beta,s}$ be the slope associated with the central charge $Z_{\alpha,\beta,s}$.

An object $A \in D^{\mathrm{b}}(X)$ is asymptotically λ -(semi)stable along γ if the following two conditions hold for a given s > 0:

(i) there is $t_0 > 0$ such that $A \in \mathcal{A}^{\gamma(t)}$ for every $t > t_0$;

(ii) for every sub-object $F \hookrightarrow A$ within $\mathcal{A}^{\gamma(t)}$ with $t > t_0$, there is $t_1 > t_0$ such that $\lambda_{\gamma(t),s}(F) < (\leq) \lambda_{\gamma(t),s}(A)$ for $t > t_1$.

Item (ii) implies that A has a last wall along γ , which in principle depends on the object A.

A path $\gamma(t) = (\alpha(t), \beta(t))$ is called an unbounded Θ^- -curve if

$$\lim_{t o \infty} eta(t) = -\infty \ \ ext{and} \ \ \lim_{t o \infty} rac{\dot{lpha}(t)}{\dot{eta}(t)} > -1.$$

That is, $\gamma(t)$ is asymptotically bounded by Θ_v^-

Similarly, we say that $\gamma(t) = (\alpha(t), \beta(t))$ is an unbounded Θ^+ -curve if $\gamma^*(t) := (\alpha(t), -\beta(t))$ is an unbounded Θ^- -curve

Asymptotic λ -stability on R_{ν}^{\pm}

Let v be a numerical Chern character with $v_0 \neq 0$.

For each $s \ge 1/3$, we have:

- An object A ∈ D^b(X) with ch(A) = v is asymptotically λ-(semi)stable along an unbounded Θ⁻-curve if and only if A is a Gieseker (semi)stable sheaf.
- An object A ∈ D^b(X) is asymptotically λ_{α,β,s}-(semi)stable objects along an unbounded Θ⁺-curve if and only if A[∨] is a Gieseker (semi)stable sheaf.

If we follow the curves $\Gamma_{v,s}^{\pm}$, then we can take s > 0.

Victor Pretti recently proved a similar result for the case $v_0 = 0$.

Vague idea of the proof

Steps to prove asymptotic stability \implies Gieseker stability, s > 0.

Let $\gamma = (a, t)$ be a horizontal line for a fixed $a \in \mathbb{R}^+$.

✓ If $A \in A^{a,t}$ for $t \gg 0$, then A is a sheaf;

 \checkmark Asymptotic semistability implies that A is torsion free;

✓ If A is not Gieseker semistable, let $F \hookrightarrow A$ be its maximal destabilizing subsheaf; one can check that $F \in \mathcal{A}^{a,t}$ for $t \gg 0$, so we get a morphism $F \to A$ in $\mathcal{A}^{a,t}$ for $t \gg 0$ as well.

 \checkmark Look at limits to show that A is not asymptotically stable.

$$\lim_{t\to-\infty} \left(\lambda_{a,t,s}(F) - \lambda_{a,t,s}(A)\right) = \frac{\mu(F) - \mu(E)}{3} \ge 0$$

Case study: null correlation sheaves on \mathbb{P}^3 , I

Gieseker semistable sheaves N on \mathbb{P}^3 with ch(N) = (2, 0, -1, 0) are null correlation sheaves, defined as cokernels of sections $\sigma \in H^0(\Omega_{\mathbb{P}^3}(2))$:

$$0 o \mathcal{O}_{\mathbb{P}^3}(-1) \stackrel{\sigma}{ o} \Omega_{\mathbb{P}^3}(2) o \mathsf{N} o 0.$$

The following two exact sequences will induce walls

$$0 o \mathcal{O}_{\mathbb{P}^3}(-1) o N o I_S(1) o 0$$
 , $S =$ pair of skew lines

$$0 \to K \to N \to \mathcal{O}_L(-1) \to 0$$
 ,

where L is a jumping line for N, and K is a strictly semistable torsion free sheaf with ch(N) = (2, 0, -2, 2).

Marcos Jardim

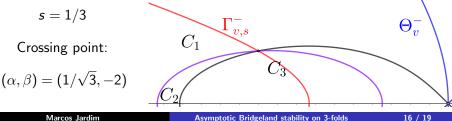
Case study: null correlation sheaves on \mathbb{P}^3 , II

Let v = (2, 0, -1, 0) be the numerical Chern character corresponding to null correlation sheaves on \mathbb{P}^3 , and fix s = 1/3. The region R_{ii}^{-} is divided into three stability chambers C_i within

which the $\lambda_{\alpha,\beta,s}$ -stable objects are described as follows:

- (C_1) null correlation sheaves;
- (C_2) nontrivial extensions of a semistable torsion free sheaf K with ch(K) = (2, 0, -2, 2) by $O_{I}(-1)$, where L is a line;

 (C_3) no stable objects.



- show that the last Bridgeland wall (along Γ⁻_{v,s} or horizontal lines) for a Gieseker semistable sheaf E only depends on ch(E) and not on E itself.
- study the asymptotics along curves of the form $\Theta_v^- \pm \epsilon$;
- understand the vertical asymptotics and other non Θ -curves;

• E. Macri, B. Schmidt, Lectures on Bridgeland stability. Preprint arXiv 1607.01262.

 M. Jardim, A. Maciocia, Walls and asymptotics for Bridgeland stability conditions on 3-folds.

Preprint arXiv:1907.12578.

• V. Pretti,

Zero Rank Asymptotic Bridgeland Stability. Preprint arXiv:2104.08946.

Thanks!

