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General question

Which shape a manifold is compelled to take when immersed
in another one, provided it must extremize some functional?
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Did Virgilio forsee Ryu-Takayanagi?!?!
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We can associate V;, Rk, R, ...



Geometric setup
Immersion £ : N — (M, g)
Y ={x"(oj)|i=1,...,p}
Indices:
Ambient p, v =1,...,d

Tangent/, j=1,...,p
Normal A, B=1,...,(d — p)

Projecting ambient tensors, example

A Ap v p o
Rjik*RuVPUn tjtjtj



Extrinsic geometry

As one moves along X, how do normal vectors change?

IJV nuA KAtuJ T’_ABn/é ,

H A _ v A
Extrinsic curvatures K’ = t;°t/V,,nj
Extrinsic torsions TAB = t#nvAV B

B

Under gauge transformations, MA n;

Kit = MBKE  TAP — MGMG T2 + P MGoM T

T,-AB transform as connections, introduce D,-AB
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Effective action

Generalizations of the area functional

So[Z] = Ao / dPo Vh 1 = Ao Area[X] .
p

Ex: Willmore functional, Canham-Helfrich, Dong functional, ...

Contributions at second order

MR A QR + ARy 4+ MRag™8 + As TrKaTrKA + A TrK K

Mission: find the extrema of this functional



Shape equations

Complicated, yet they are completely expressed in terms of
geometrical objects.
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Simons, Yau, Yano, Chen, Carter, Guven, Capovilla, ...
Many interesting physical applications
Canham, Helfrich, Zhon-Chan, Boisseau-Letelier, Armas, ...

Some of interesting cases:
» Minimal submanifolds Ay # 0

TrkA=0
» Generalized Willmore A5 # 0
TrKg [TrKATrK B — 2Tr (KBK?) — 2RB A1) — 2D,5. DA TrKg = 0

...in their full glory



Shape equations

For arbitrary dimension and codimension, the extrema of the
second order functional obey

6
EA = XTrKA 4+ XEft =0
n=1
with

& = TIKAR — 2RVKY,
& = TrK R + n) V'R,

Ef = TrKARg® + 2DFAR% + nlin n™V;sR,,,,

&f\ = TrKARCB B4 4Dk RkCBC + ”C”B”CP"BU”A6V5RWW’

8 = TrKp [TrKATrK® — 2Tr (KBKA) — 2RE A1 — 20,8 D' ATrKg,

E8 = Tek Tr (KgK®) = 2 | D, B K + Tr (KB KgK”) + KIRE A,



Shape equations in maximally symmetric spaces

Suppose that the ambient has

R
Ruvpo = m (8up8vo — 8uo8up) R = const
with
d(d—1)
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Minimal submanifolds are extrema if
M=X o RIK=0.
The second condition is true for curves RY = 0 and surfaces

RIKS = %TrKA =0



Shape equations in maximally symmetric spaces

Suppose that the ambient has

R
R,quO' = m (g,upgllo' - g/w'gup) R = const

with
d(d—1)

L2 ’
Minimal submanifolds are extrema if

R=k k=0,£1.

M=X o RIK=0.
The second condition is true for curves RY = 0 and surfaces
. R
RIKf = S Trk" =0

For p > 2, minimal submanifolds are NOT necessarily extrema



Extrema in maximally symmetric surfaces

Considering a curve v in R?, S? or H?
Glimpses of my shameful past
In[161= eomf = VariationalD[L[¢[x]], ¢[r], r] // FullSimplify

1

out[16]=

, 2,04 grp12
1.2 (L2+r4¢[r]2)4 L rr% r

r (—LZ Ao <L2 +rd ®’[r]2)3 <3L2 ¢’ [r] +rt ¢’[r]3+L2r¢”[r}) +

As (7500 ¥ ¢ [r]° =312 r2 ¢ [r]7 -0 [r]° + L2 P ¢ [x]® ¢ [x] -
SLArt ¢/ [r]? (3702 + 28 ¢ [x] (-15¢"[£] + 41D [£])) +
Lé ¢ [r] (1812 -518¢" [r] (27¢"[r] +4x ¢ [r])) +
L ¢/ [r]? (267102 ¢ [r] +30r° ¢ [r]? + 4122 ¢ [r]) +
214 % ¢ [r]f (5407 [r] +r (1093 [r] +r o™ [r])) +
Lr (4612 ¢ [r] -5r°¢"[r]®+2L%r (100 [r] +x ¢ [r]))))

This is the shape equation for a curve in the Poincaré disk



Extrema in maximally symmetric surfaces

Using the shape equations instead

" No 2
2RTrk +Trk® — (22 _ 2% ) 1 —
PV
5
In arc-length parametrization
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" % </\’5 L2>

Two-step splitting
» First find out the extrinsic curvature

» Second invert this curvature to find
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Two-step splitting
» First find out the extrinsic curvature

» Second invert this curvature to find

Perhaps this can be solved (?)



Extrema in maximally symmetric surfaces
Finding the extrinsic curvature
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Geodesics k=0 and CMC k*=B
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Even these cannot be spotted straightaway in the old equation



Extrema in maximally symmetric surfaces
Finding the extrinsic curvature
. 3\0 2K
2k+k3—Bk=0, B=|5-=
(A% L2>
Simplest solutions, k = const

Geodesics k=0 and CMC k*=B

In fact, the full solution can be found !!

kZ(S):a 1— a;’ysn2(%w/a—ﬁs, Z:g)

With sn(z, m) a Jacobi elliptic function and «, v and 3 constants

Langer-Singer '84
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Extrema in H?
Now, we must invert k(s)

This is rather involved, yet attainable analytically

For hyperbolic geometry H?
45> = = (o + d2?
s° = (dx® + dz*)

Wavy solutions in H? read

exp [V =40+ 1) (5 — 7AS 2SN ()i m]) |
2(s) 2+)\
\/(C+2 4(C+24 \)sn? < gs,ofg”\)

Where C and )\ are constants, while

(s) = /E C+24+ A
©(s) = amp 25’72C



xtrema in H?




Application: holographic entanglement entropy

For field theories with an Einstein gravity dual

\
AAdS
Area functional d+1
P

Sen[X] = 5 G d ovh

Minimize
3
TrKA=0

Evaluate on-shell

Ser(A) = ng’?—ShC”[Z] . CFT,

Ryu, Takayanagi '06



Application: holographic entanglement entropy

If the dual gravitational theory has h.c. corrections
L=-2N+R+ R+ caRuR" + 3R, po R*P°

Then the EE functional

1 1
Seff 4G / dPO'\/>|:1 + 2C1R + c <RA — TFKATFKA>
d

+2¢3 (Rag ™8 — Tr(K"Ka)) }
Bhattacharrya, Sharma, Sinha; Camps; Dong '13
» To find the EE one must evaluate the functional on an extremum.

> Which of the possible extrema is not settled (minimal??)

> It would be nice to be able to scan the space of extrema.



Application: holographic entanglement entropy
If the dual gravitational theory has h.c. corrections
L=-2N+R+ R+ caRuR" + 3R, po R*P°

Then the EE functional

1
Seff 42_ / dPO'\/>|:1 + 2C1R + c (RA — TFKATFKA>
d

+2¢3 (Rag ™8 — Tr(K"Ka)) }
Bhattacharrya, Sharma, Sinha; Camps; Dong '13
» To find the EE one must evaluate the functional on an extremum.

> Which of the possible extrema is not settled (minimal??)

> It would be nice to be able to scan the space of extrema.

Clearly, the extrema are solutions to the shape equations



Entanglement entropy AdSs

For a higher-derivative theory (such as NMG)

We know all the extrema



Entanglement entropy AdS3/CFT,

The EE for an interval is universal

Se6(A) = §1og (1) + 00

. Holzhey, Larsen, Wilczek '94
Using the fact that

oo Lot

2G;% OR,,’

We show that Saida, Soda '00

SEE(A) - on shell[z]

Are geodesics minimal? Let's compare

d

S — Y] =/{— Son—shen[>
Son—shell[X] €d£5 hell [Z]



Comparing on-shell values in NMG

A

G3Son—shen[ 2]

o

m

The geodesic’s on-shell value is the black one (not minimal)



Interesting questions

» If not minimality then which criterium?
» What if geodesics are not extrema?

» What about perturbations? or curvature driven flows?

» Is there an information theoretic interpretaton of other
extrema in terms of:

» Length and differential entropy
Czech, Hayden, Lashkari, Swingle '14
» The surface/state correspondece
Miyaji, Takayanagi '15
» How far can we get in higher-dimensional settings?

Fonda, Véliz-Osorio ..in progress

» How far can we get in less symmetric ambients?



Epilogue
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Two interesting set-ups

Canham-Helfrich
p=2 M=R3

L=|o+ %(TrK)2 + ke det K]

Sadowsky-Wiinderlich
p=2 M=R3




Elastica

Two interesting set-ups

Canham-Helfrich
p=2 M=R3

L=|o+ %(TrK)2 + ke det K]

Sadowsky-Wiinderlich
p=2 M=R3

Judicious breaking of gauge
invariance




Interesting problems

v

Elastica in (evolving) surfaces

v

Embeddings of embeddings, interface theory on surfaces

v

Minimal surfaces bounded by elastic lines
Giomi, Mahadevan '11
Conformal maps: Minimal in AdSy <— Willmore in R3

v

Alexakis, Mazzeo '10; Fonda, Seminara, Tonni '15

Generalized curvature flows

v

Fonda, VEéliz-Osorio...in progress



Muito obrigado!!



