

On the Shape of things From holography to elastica

Álvaro Véliz-Osorio (Jagiellonian University) Iberian Strings 2017

Based on 1611.03462 with:

Piermarco Fonda (Leiden)

Vishnu Jejjala (Wits)

General question

Which shape a manifold is compelled to take when immersed in another one, provided it must extremize some functional?

General question

Which shape a manifold is compelled to take when immersed in another one, provided it must extremize some functional?

This question has been around for a while ~ 2000 years

Devenere locos, ubi nunc ingentia cernis moenia surgentemque novae Karthaginis arcem, mercatique solum, facti de nomine Byrsam, taurino quantum possent circumdare tergo. Virgilio, Aeneid, Bk. I

General question

Which shape a manifold is compelled to take when immersed in another one, provided it must extremize some functional?

This question has been around for a while ~ 2000 years

Devenere locos, ubi nunc ingentia cernis moenia surgentemque novae Karthaginis arcem, mercatique solum, facti de nomine Byrsam, taurino quantum possent circumdare tergo. Virgilio, Aeneid, Bk. I

Did Virgilio forsee Ryu-Takayanagi?!?!

Geometric setup

Immersion $f: N \to (M, g)$

$$\Sigma = \{x^{\mu}(\sigma_i)|\ i = 1, \ldots, p\}$$

Indices:

Ambient
$$\mu$$
, $\nu = 1, \ldots, d$

Tangent
$$i, j = 1, \dots, p$$

Normal A,
$$B = 1, \ldots, (d - p)$$

Geometric setup

Immersion $f: N \to (M, g)$

$$\Sigma = \{x^{\mu}(\sigma_i)|\ i = 1, \dots, p\}$$

Indices:

Ambient
$$\mu$$
, $\nu = 1, \ldots, d$

Tangent
$$i, j = 1, \ldots, p$$

Normal
$$A$$
, $B = 1, \ldots, (d - p)$

Induced metric

$$h_{ij}=g_{\mu\nu}t_i^\mu t_j^\nu$$

We can associate $\tilde{\nabla}_i$, \mathcal{R}_{ijkl} , \mathcal{R} , ...

Geometric setup

Immersion $f: N \to (M, g)$

$$\Sigma = \{x^{\mu}(\sigma_i)|\ i = 1, \ldots, p\}$$

Indices:

Ambient
$$\mu$$
, $\nu = 1, \ldots, d$

Tangent
$$i, j = 1, \ldots, p$$

Normal
$$A, B = 1, \ldots, (d - p)$$

Projecting ambient tensors, example

$$R^{A}_{jik} = R_{\mu\nu\rho\sigma} n^{A\mu} t^{\nu}_{j} t^{\rho}_{j} t^{\sigma}_{j}$$

Extrinsic geometry

As one moves along Σ , how do normal vectors change?

$$t_i^{\nu} \nabla_{\nu} n^{\mu A} = K_{ij}^A t^{\mu j} - T_i^{AB} n_B^{\mu} ,$$

Extrinsic curvatures
$$K_{ij}^A=t_i^\mu t_j^
u
abla_\mu n_
u^A$$

Extrinsic torsions
$$T_i^{AB} = t_i^{\mu} n^{\nu A} \nabla_{\mu} n_{\nu}^{B}$$

Under gauge transformations, $\mathcal{M}^A_B n_\mu^B$

$$K_{ij}^A o \mathcal{M}_B^A K_{ij}^B \qquad T_i^{AB} o \mathcal{M}_A^C \mathcal{M}_B^D \ T_i^{AB} + \eta^{AB} \mathcal{M}_A^C \partial_i \mathcal{M}_B^D$$

 T_i^{AB} transform as connections, introduce $\tilde{D}_i^{\ A}_{\ B}$

Generalizations of the area functional

$$S_0[\Sigma] = \lambda_0 \int_{\Sigma} d^p \sigma \, \sqrt{h} \, 1 = \lambda_0 \operatorname{Area}[\Sigma] \, .$$

Ex: Willmore functional, Canham-Helfrich, Dong functional, ...

Generalizations of the area functional

$$S_0[\Sigma] = \lambda_0 \int_{\Sigma} d^p \sigma \sqrt{h} \ 1 = \lambda_0 \operatorname{Area}[\Sigma] \ .$$

Ex: Willmore functional, Canham-Helfrich, Dong functional, ...

Contributions at second order

$$\lambda_1 \mathcal{R} + \lambda_2 \mathcal{R} + \lambda_3 \mathcal{R}_A{}^A + \lambda_4 \mathcal{R}_{AB}{}^{AB} + \lambda_5 \mathsf{Tr} \mathcal{K}_A \mathsf{Tr} \mathcal{K}^A + \lambda_6 \mathsf{Tr} \mathcal{K}^A \mathcal{K}_A$$

Generalizations of the area functional

$$S_0[\Sigma] = \lambda_0 \int_{\Sigma} d^p \sigma \, \sqrt{h} \, 1 = \lambda_0 \operatorname{Area}[\Sigma] \, .$$

Ex: Willmore functional, Canham-Helfrich, Dong functional, ...

Contributions at second order

$$\lambda_1 \mathcal{R} + \lambda_2 \mathcal{R} + \lambda_3 \mathcal{R}_A{}^A + \lambda_4 \mathcal{R}_{AB}{}^{AB} + \lambda_5 \mathsf{Tr} \mathcal{K}_A \mathsf{Tr} \mathcal{K}^A + \lambda_6 \mathsf{Tr} \mathcal{K}^A \mathcal{K}_A$$

They aren't all independent, since

$$\mathcal{R} = R - 2R_A^A + R_{AB}^{AB} + \text{Tr}K_A\text{Tr}K^A - \text{Tr}(K_AK^A)$$

Generalizations of the area functional

$$S_0[\Sigma] = \lambda_0 \int_{\Sigma} d^p \sigma \sqrt{h} \ 1 = \lambda_0 \operatorname{Area}[\Sigma] \ .$$

Ex: Willmore functional, Canham-Helfrich, Dong functional, ...

Contributions at second order

$$\lambda_1 \mathcal{R} + \lambda_2 \mathcal{R} + \lambda_3 \mathcal{R}_A{}^A + \lambda_4 \mathcal{R}_{AB}{}^{AB} + \lambda_5 \mathsf{Tr} \mathcal{K}_A \mathsf{Tr} \mathcal{K}^A + \lambda_6 \mathsf{Tr} \mathcal{K}^A \mathcal{K}_A$$

Mission: find the extrema of this functional

Shape equations

Complicated, yet they are completely expressed in terms of geometrical objects.

Simons, Yau, Yano, Chen, Carter, Guven, Capovilla, ...

Many interesting physical applications

Canham, Helfrich, Zhon-Chan, Boisseau-Letelier, Armas, ...

Some of interesting cases:

▶ Minimal submanifolds $\lambda_0 \neq 0$

$$\operatorname{Tr} K^A = 0$$

• Generalized Willmore $\lambda_5 \neq 0$

$$\mathsf{Tr} \mathcal{K}_{B} \left[\mathsf{Tr} \mathcal{K}^{A} \mathsf{Tr} \mathcal{K}^{B} - 2 \mathsf{Tr} \left(\mathcal{K}^{B} \mathcal{K}^{A} \right) - 2 \mathcal{R}^{B}_{\ i}^{\ Ai} \right] - 2 \tilde{D}_{i}^{\ B}_{\ C} \tilde{D}^{iCA} \mathsf{Tr} \mathcal{K}_{B} = 0$$

Shape equations

Complicated, yet they are completely expressed in terms of geometrical objects.

Simons, Yau, Yano, Chen, Carter, Guven, Capovilla, ...

Many interesting physical applications

Canham, Helfrich, Zhon-Chan, Boisseau-Letelier, Armas, ...

Some of interesting cases:

▶ Minimal submanifolds $\lambda_0 \neq 0$

$$\operatorname{Tr} K^A = 0$$

• Generalized Willmore $\lambda_5 \neq 0$

$$\mathsf{Tr} \mathcal{K}_{B} \left[\mathsf{Tr} \mathcal{K}^{A} \mathsf{Tr} \mathcal{K}^{B} - 2 \mathsf{Tr} \left(\mathcal{K}^{B} \mathcal{K}^{A} \right) - 2 \mathcal{R}_{\ i}^{B} \right.^{Ai} \right] - 2 \tilde{D}_{i}^{\ B} {}_{C} \tilde{D}^{iCA} \mathsf{Tr} \mathcal{K}_{B} = 0$$

...in their full glory

Shape equations

For arbitrary dimension and codimension, the extrema of the second order functional obey

$$\mathcal{E}^A = \lambda_0 \mathsf{Tr} \mathcal{K}^A + \sum_{n=1}^6 \, \lambda_n \mathcal{E}^A_n = 0$$

with

$$\begin{split} \mathcal{E}_{1}^{A} &= \mathrm{Tr} \mathcal{K}^{A} \mathcal{R} - 2 \mathcal{R}^{ij} \mathcal{K}_{ij}^{A} \,, \\ \mathcal{E}_{2}^{A} &= \mathrm{Tr} \mathcal{K}^{A} \mathcal{R} + \eta_{\mu}^{A} \nabla^{\mu} \mathcal{R} \,, \\ \mathcal{E}_{3}^{A} &= \mathrm{Tr} \mathcal{K}^{A} \mathcal{R}_{B}^{\ B} + 2 \tilde{D}_{k}^{\ BA} \mathcal{R}_{B}^{k} + \eta_{C}^{\mu} \eta^{C\nu} \eta^{A\delta} \nabla_{\delta} \mathcal{R}_{\mu\nu} \,, \\ \mathcal{E}_{4}^{A} &= \mathrm{Tr} \mathcal{K}^{A} \mathcal{R}_{CB}^{\ CB} + 4 \tilde{D}_{k}^{\ BA} \mathcal{R}^{kC}_{\ BC} + \eta_{C}^{\mu} \eta_{B}^{\nu} \eta^{C\rho} \eta^{B\sigma} \eta^{A\delta} \nabla_{\delta} \mathcal{R}_{\mu\nu\rho\sigma} \,, \\ \mathcal{E}_{5}^{A} &= \mathrm{Tr} \mathcal{K}_{B} \left[\mathrm{Tr} \mathcal{K}^{A} \mathrm{Tr} \mathcal{K}^{B} - 2 \mathrm{Tr} \left(\mathcal{K}^{B} \mathcal{K}^{A} \right) - 2 \mathcal{R}_{i}^{B} {}_{i}^{Ai} \right] - 2 \tilde{D}_{i}^{\ B} \mathcal{D}^{iCA} \mathrm{Tr} \mathcal{K}_{B} \,, \\ \mathcal{E}_{6}^{A} &= \mathrm{Tr} \mathcal{K}^{A} \mathrm{Tr} \left(\mathcal{K}_{B} \mathcal{K}^{B} \right) - 2 \left[\tilde{D}_{i} {}_{B}^{C} \tilde{D}_{j}^{\ BA} \mathcal{K}_{C}^{ij} + \mathrm{Tr} \left(\mathcal{K}^{B} \mathcal{K}_{B} \mathcal{K}^{A} \right) + \mathcal{K}_{B}^{ij} \mathcal{R}_{j}^{A} \,, \right] \,, \end{split}$$

Shape equations in maximally symmetric spaces

Suppose that the ambient has

$$R_{\mu
u
ho\sigma} = rac{R}{d(d-1)} \left(g_{\mu
ho} g_{
u\sigma} - g_{\mu\sigma} g_{
u
ho}
ight) \qquad R = {
m const}$$

with

$$R = \kappa \frac{d(d-1)}{L^2}$$
, $\kappa = 0, \pm 1$.

Minimal submanifolds are extrema if

$$\lambda_1 = \lambda_6 \qquad \text{or} \qquad \mathcal{R}^{ij} K^A_{ij} = 0 \ .$$

The second condition is true for curves $\mathcal{R}^{ij}=0$ and surfaces

$$\mathcal{R}^{ij}K_{ij}^{A}=rac{\mathcal{R}}{2}\mathsf{Tr}K^{A}=0$$

Shape equations in maximally symmetric spaces

Suppose that the ambient has

$$R_{\mu
u
ho\sigma} = rac{R}{d(d-1)} \left(g_{\mu
ho} g_{
u\sigma} - g_{\mu\sigma} g_{
u
ho}
ight) \qquad R = {
m const}$$

with

$$R = \kappa \frac{d(d-1)}{L^2}$$
, $\kappa = 0, \pm 1$.

Minimal submanifolds are extrema if

$$\lambda_1 = \lambda_6$$
 or $\mathcal{R}^{ij} K_{ij}^A = 0$.

The second condition is true for curves $\mathcal{R}^{ij}=0$ and surfaces

$$\mathcal{R}^{ij}K_{ij}^{A}=rac{\mathcal{R}}{2}\mathsf{Tr}K^{A}=0$$

For p > 2, minimal submanifolds are NOT necessarily extrema

Considering a curve γ in \mathbb{R}^2 , \mathbb{S}^2 or \mathbb{H}^2

Glimpses of my shameful past

```
ln[16]:= eomf = VariationalD[\mathcal{L}[\phi[r]], \phi[r], r] // FullSimplify
                                                                               simplifica completai
        \frac{1}{L^{2} (L^{2} + r^{4} \phi'[r]^{2})^{4} \sqrt{\frac{L^{2} + r^{4} \phi'[r]^{2}}{r^{2}}}}
        r(-L^2 \lambda_0 (L^2 + r^4 \phi'[r]^2)^3 (3 L^2 \phi'[r] + r^4 \phi'[r]^3 + L^2 r \phi''[r]) +
              \lambda_5 (75 L^4 r^8 \phi' [r]^5 - 3 L^2 r^{12} \phi' [r]^7 - r^{16} \phi' [r]^9 + L^2 r^{13} \phi' [r]^6 \phi'' [r] -
                    5L^4 r^4 \phi'[r]^3 (37L^2 + r^6 \phi''[r] (-15 \phi''[r] + 4 r \phi^{(3)}[r])) +
                    L^6 \phi'[r] (18 L^2 - 5 r^6 \phi''[r] (27 \phi''[r] + 4 r \phi^{(3)}[r])) +
                    L^4 r^5 \phi'[r]^2 (-267 L^2 \phi''[r] + 30 r^6 \phi''[r]^3 + 4 L^2 r^2 \phi^{(4)}[r]) +
                    2L^{4}r^{9}\phi'[r]^{4}(54\phi''[r]+r(-10\phi^{(3)}[r]+r\phi^{(4)}[r]))+
                    L^6 r \left(46 L^2 \phi'' [r] - 5 r^6 \phi'' [r]^3 + 2 L^2 r \left(10 \phi^{(3)} [r] + r \phi^{(4)} [r]\right)\right)\right)
```

This is the shape equation for a curve in the Poincaré disk

Using the shape equations instead

$$2\tilde{\Delta}\mathsf{Tr}k + \mathsf{Tr}k^3 - \left(\frac{\hat{\lambda}_0}{\lambda_5'} - \frac{2\kappa}{L^2}\right)\mathsf{Tr}k = 0$$

In arc-length parametrization

$$2\ddot{k} + k^3 - B k = 0$$
, $B = \left(\frac{\hat{\lambda}_0}{\lambda'_5} - \frac{2\kappa}{L^2}\right)$

Two-step splitting

- First find out the extrinsic curvature
- lacktriangle Second invert this curvature to find γ

Using the shape equations instead

$$2\tilde{\Delta}\mathsf{Tr}k + \mathsf{Tr}k^3 - \left(\frac{\hat{\lambda}_0}{\lambda_5'} - \frac{2\kappa}{L^2}\right)\mathsf{Tr}k = 0$$

In arc-length parametrization

$$2\ddot{k} + k^3 - B k = 0$$
, $B = \left(\frac{\hat{\lambda}_0}{\lambda'_5} - \frac{2\kappa}{L^2}\right)$

Two-step splitting

- First find out the extrinsic curvature
- ightharpoonup Second invert this curvature to find γ

Perhaps this can be solved (?)

Finding the extrinsic curvature

$$2\ddot{k} + k^3 - B k = 0$$
, $B = \left(\frac{\hat{\lambda}_0}{\lambda_5'} - \frac{2\kappa}{L^2}\right)$

Simplest solutions, k = const

Geodesics
$$k = 0$$
 and CMC $k^2 = B$

Finding the extrinsic curvature

$$2\ddot{k} + k^3 - B k = 0$$
, $B = \left(\frac{\hat{\lambda}_0}{\lambda'_5} - \frac{2\kappa}{L^2}\right)$

Simplest solutions, k = const

Geodesics
$$k = 0$$
 and CMC $k^2 = B$

Even these cannot be spotted straightaway in the old equation

Finding the extrinsic curvature

$$2\ddot{k} + k^3 - B k = 0$$
, $B = \left(\frac{\hat{\lambda}_0}{\lambda'_5} - \frac{2\kappa}{L^2}\right)$

Simplest solutions, k = const

Geodesics
$$k = 0$$
 and CMC $k^2 = B$

In fact, the full solution can be found !!

$$k^{2}(s) = \alpha \left[1 - \frac{\alpha - \gamma}{\alpha} \operatorname{sn}^{2} \left(\frac{1}{2} \sqrt{\alpha - \beta} s, \frac{\alpha - \gamma}{\alpha - \beta} \right) \right]$$

With $\operatorname{sn}(z, m)$ a Jacobi elliptic function and α , γ and β constants

Langer-Singer '84

Possible behaviour for $u(s) = k^2(s)$

▶ Orange: Constant mean curvature

Red: WavelikeBlue: Orbitlike

► Green: Asymptotically geodesic

Extrema in \mathbb{H}^2

Now, we must invert k(s)

This is rather involved, yet attainable analytically

For hyperbolic geometry \mathbb{H}^2

$$ds^2 = \frac{1}{z^2} \left(dx^2 + dz^2 \right)$$

Wavy solutions in \mathbb{H}^2 read

$$z(s) = \frac{C}{2+\lambda} \frac{\exp\left[\sqrt{C^2 - 4(\lambda+1)}\left(\frac{s}{4} - \frac{2(C-2)}{4\sqrt{2C}(C+2)}\Pi\left[n,\varphi(s);m\right]\right)\right]}{\sqrt{(C+2)^2 - 4(C+2+\lambda)\sin^2\left(\sqrt{\frac{C}{2}}s,\frac{C+2+\lambda}{2C}\right)}}$$

Where C and λ are constants, while

$$\varphi(s) = \operatorname{amp}\left(\sqrt{\frac{C}{2}}s, \frac{C+2+\lambda}{2C}\right)$$

Extrema in \mathbb{H}^2

Application: holographic entanglement entropy

For field theories with an Einstein gravity dual

Area functional

$$S_{ ext{eff}}[\Sigma] = rac{1}{4G_d} \int_{\Sigma} d^p \sigma \, \sqrt{h}$$

Minimize

$$\operatorname{Tr} K^A = 0$$

Evaluate on-shell

$$S_{\mathrm{EE}}(A) = S_{\mathrm{eff}}^{\mathrm{on-shell}}[\Sigma]$$
 .

Ryu, Takayanagi '06

Application: holographic entanglement entropy

If the dual gravitational theory has h.c. corrections

$$\mathcal{L} = -2\Lambda + R + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + c_3 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma}$$

Then the EE functional

$$S_{\text{eff}} = \frac{1}{4G_d} \int_{\Sigma} d^p \sigma \sqrt{h} \left[1 + 2c_1 R + c_2 \left(R_A{}^A - \frac{1}{2} \text{Tr} K_A \text{Tr} K^A \right) + 2c_3 \left(R_{AB}{}^{AB} - \text{Tr} (K^A K_A) \right) \right]$$

Bhattacharrya, Sharma, Sinha; Camps; Dong '13

- ▶ To find the EE one must evaluate the functional on an extremum.
- Which of the possible extrema is not settled (minimal??)
- ▶ It would be nice to be able to scan the space of extrema.

Application: holographic entanglement entropy

If the dual gravitational theory has h.c. corrections

$$\mathcal{L} = -2\Lambda + R + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + c_3 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma}$$

Then the EE functional

$$S_{\text{eff}} = \frac{1}{4G_d} \int_{\Sigma} d^p \sigma \sqrt{h} \left[1 + 2c_1 R + c_2 \left(R_A{}^A - \frac{1}{2} \text{Tr} K_A \text{Tr} K^A \right) + 2c_3 \left(R_{AB}{}^{AB} - \text{Tr} (K^A K_A) \right) \right]$$

Bhattacharrya, Sharma, Sinha; Camps; Dong '13

- ▶ To find the EE one must evaluate the functional on an extremum.
- Which of the possible extrema is not settled (minimal??)
- ▶ It would be nice to be able to scan the space of extrema.

Clearly, the extrema are solutions to the shape equations

Entanglement entropy AdS₃

For a higher-derivative theory (such as NMG)

We know all the extrema

Entanglement entropy AdS₃/CFT₂

The EE for an interval is universal

$$S_{\mathrm{EE}}(A) = rac{c}{3}\log\left(rac{\ell}{\epsilon}
ight) + \mathcal{O}(\epsilon)$$

Using the fact that

Holzhey, Larsen, Wilczek '94

$$c = \frac{L}{2G_3} g^{\mu\nu} \frac{\partial \mathcal{L}}{\partial R_{\mu\nu}} \,,$$

We show that

Saida, Soda '00

$$S_{\mathrm{EE}}(A) = S_{\mathrm{on-shell}}^{\mathrm{Geo}}[\Sigma],$$

Are geodesics minimal? Let's compare

$$\hat{S}_{ ext{on-shell}}[\Sigma] = \ell rac{d}{d\ell} \, S_{ ext{on-shell}}[\Sigma]$$

Comparing on-shell values in NMG

The geodesic's on-shell value is the black one (not minimal)

Interesting questions

- If not minimality then which criterium?
- What if geodesics are not extrema?
- What about perturbations? or curvature driven flows?
- Is there an information theoretic interpretation of other extrema in terms of:
 - Length and differential entropy

Czech, Hayden, Lashkari, Swingle '14

► The surface/state correspondece

Miyaji, Takayanagi '15

How far can we get in higher-dimensional settings?

Fonda, Véliz-Osorio ..in progress

How far can we get in less symmetric ambients?

Epilogue

Elastica

Two interesting set-ups

Canham-Helfrich

$$p=2$$
, $M=\mathbb{R}^3$

$$\mathcal{L} = \left[\sigma + rac{k_c}{4} (\mathsf{Tr} \mathsf{K})^2 + ar{k}_c \det \mathsf{K} \right]$$

Sadowsky-Wünderlich

$$p=2, M=\mathbb{R}^3$$

$$\mathcal{L} = rac{(k_{
m FS}^2 + au_{
m FS}^2)^2}{k_{
m FS}^2} \, .$$

Elastica

Two interesting set-ups

Canham-Helfrich

$$p=2$$
, $M=\mathbb{R}^3$

$$\mathcal{L} = \left[\sigma + \frac{k_c}{4} (\mathsf{Tr} K)^2 + \bar{k}_c \det K \right]$$

$$p=2, M=\mathbb{R}^3$$

$$\mathcal{L} = rac{(k_{
m FS}^2 + au_{
m FS}^2)^2}{k_{
m FS}^2} \, .$$

Judicious breaking of gauge invariance

Interesting problems

Elastica in (evolving) surfaces

- Embeddings of embeddings, interface theory on surfaces
- Minimal surfaces bounded by elastic lines

Giomi, Mahadevan '11

▶ Conformal maps: Minimal in $AdS_d \longleftrightarrow Willmore in \mathbb{R}^3$

Alexakis, Mazzeo '10; Fonda, Seminara, Tonni '15

Generalized curvature flows

Fonda, Véliz-Osorio...in progress

Muito obrigado!!