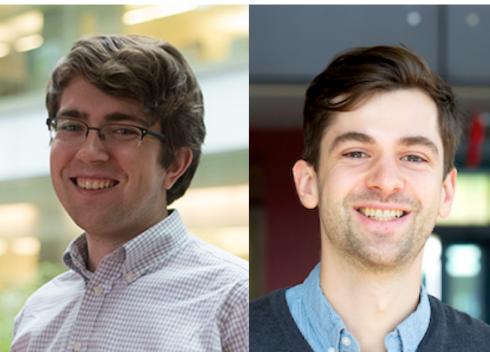
Machine Learning and Inverse Problems: Depth and Model Adaptation

Rebecca Willett, University of Chicago

Davis Gilton, Greg Ongie, UW-Madison Marquette



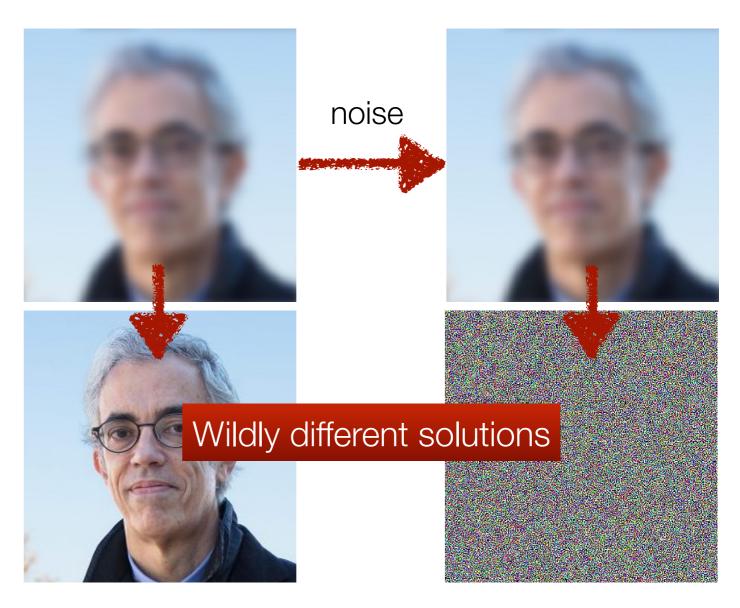
Inverse problems in imaging

Observe: $y = Ax + \varepsilon$

Goal: Recover *x* from *y*

- Example: deblurring
- Least squares solution: $\hat{x} = (A^{T}A)^{-1}A^{T}y$ $= x + (A^{T}A)^{-1}A^{T}\varepsilon$

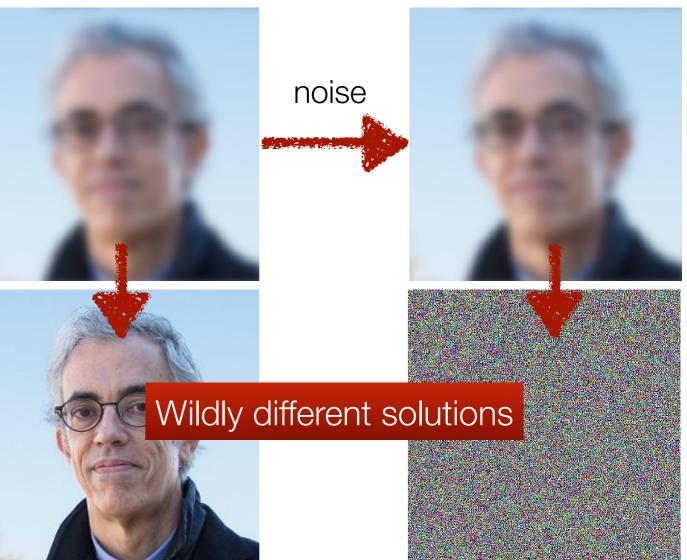
- Example: deblurring
- Least squares solution: $\hat{x} = (A^{T}A)^{-1}A^{T}y$ $= x + (A^{T}A)^{-1}A^{T}\varepsilon$



- Example: deblurring
- Least squares solution: $\hat{x} = (A^{T}A)^{-1}A^{T}y$ $= x + (A^{T}A)^{-1}A^{T}\varepsilon$
- Tikhonov regularization (aka "ridge regression")

$$\hat{x} = \arg\min_{x} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{2}^{2}$$
$$= (A^{\mathsf{T}}A + \lambda I)^{-1}A^{\mathsf{T}}y$$

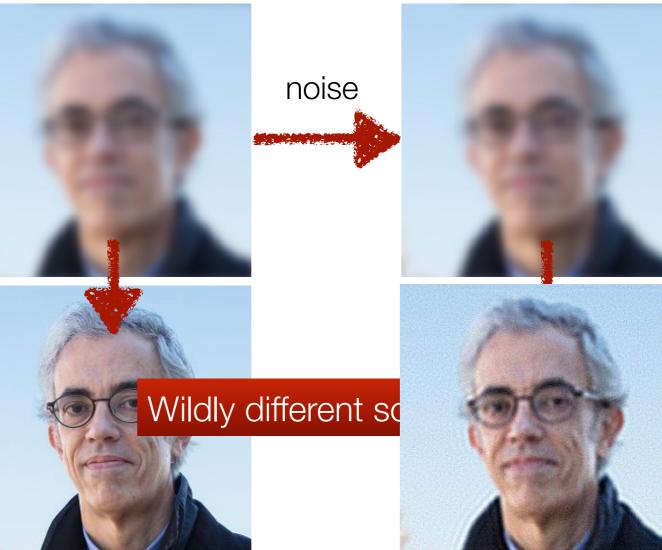
better conditioned; suppresses noise



- Example: deblurring
- Least squares solution: $\hat{x} = (A^{T}A)^{-1}A^{T}y$ $= x + (A^{T}A)^{-1}A^{T}\varepsilon$
- Tikhonov regularization (aka "ridge regression")

$$\hat{x} = \arg\min_{x} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{2}^{2}$$
$$= (A^{\mathsf{T}}A + \lambda I)^{-1}A^{\mathsf{T}}y$$

better conditioned; suppresses noise

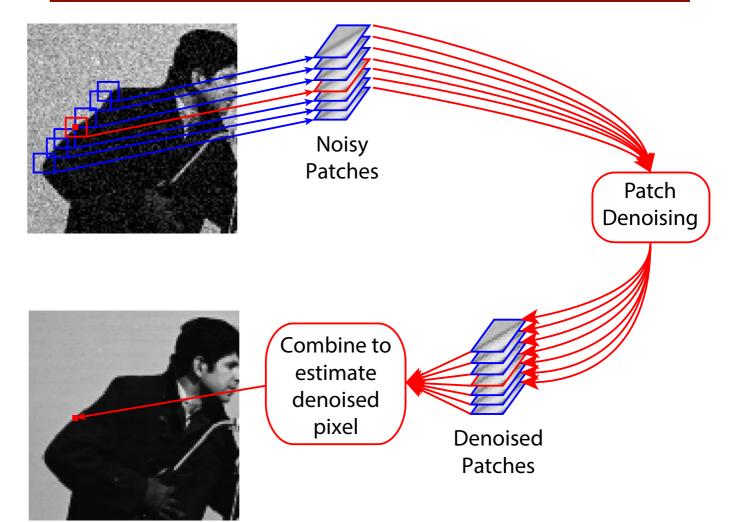


Tikhonov regularization

Geometric models of images

Patch subspaces and manifolds

(Wavelet) sparsity



Geometric models reflect prior information about distribution of images

prior $-\log p(x) \iff R(x)$ regularizer

Learning to regularize

$$y \longrightarrow \underset{x}{\operatorname{arg\,min}} \|Ax - y\|^2 + R(x) \longrightarrow \hat{x}$$

Instead of using choosing R(x) a priori based on smoothness or geometric models, **can we learn** R(x) **from training data?**

Arridge, Maass, Öktem, Schönlieb, 2019 Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020

Key tradeoffs

• Generality vs. sample complexity:

Leveraging known A during training gives lower sample complexity, but model must be retrained for each new A

Training stability vs. convergence guarantees:

Unrolled methods with a small number of blocks (K) are easier to train but lack convergence guarantees

• Reconstruction accuracy vs. sensitivity to model mismatch: Learning to solve for A_0 may yield a regularizer ill-suited to $A_1 \neq A_0$

Key tradeoffs

Generality vs. sample complexity:

Leveraging known A during training gives lower sample complexity, but model must be retrained for each new A

• Training stability vs. convergence guarantees:

Unrolled methods with a small number of blocks (K) are easier to train but lack convergence guarantees

• Reconstruction accuracy vs. sensitivity to model mismatch: Learning to solve for A_0 may yield a regularizer ill-suited to $A_1 \neq A_0$

Example: Proximal Gradient Descent

$$y \longrightarrow \underset{x}{\operatorname{arg\,min}} \|Ax - y\|^2 + R(x) \longrightarrow \hat{x}$$

set $x^{(0)}$ and step-size $\eta > 0$ for k = 1, 2, ...

$$z^{(k)} = x^{(k)} - \eta A^{\mathsf{T}} (A x^{(k)} - y)$$

$$x^{(k+1)} = \arg\min_{x} \|x - z^{(k)}\|^2 + \eta R(x)$$

data consistency step

denoising step

Example: Proximal Gradient Descent

$$y \longrightarrow \underset{x}{\operatorname{arg\,min}} \|Ax - y\|^2 + R(x) \longrightarrow \hat{x}$$

set $x^{(0)}$ and step-size $\eta > 0$ for k = 1, 2, ...

$$z^{(k)} = x^{(k)} - \eta A^{\mathsf{T}} (A x^{(k)} - y)$$

 $x^{(k+1)} = \mathbf{prox}_{\eta R}(z^{(k)})$

data consistency step

denoising step

Example: Proximal Gradient Descent

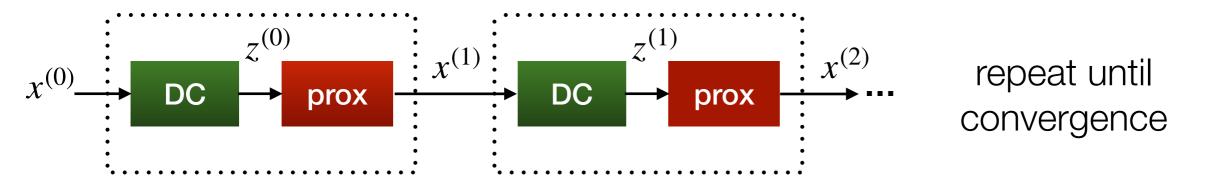
$$y \longrightarrow \underset{x}{\operatorname{arg\,min}} \|Ax - y\|^2 + R(x) \longrightarrow \hat{x}$$

set $x^{(0)}$ and step-size $\eta > 0$ for k = 1, 2, ...

$$z^{(k)} = x^{(k)} - \eta A^{\mathsf{T}} (A x^{(k)} - y)$$

 $x^{(k+1)} = \mathbf{prox}_{\eta R}(z^{(k)})$

data consistency step denoising step



Plug-and-Play Approach

$$y \longrightarrow \underset{x}{\operatorname{arg\,min}} \|Ax - y\|^2 + R(x) \longrightarrow \hat{x}$$

set $x^{(0)}$ and step-size $\eta > 0$ for k = 1, 2, ...

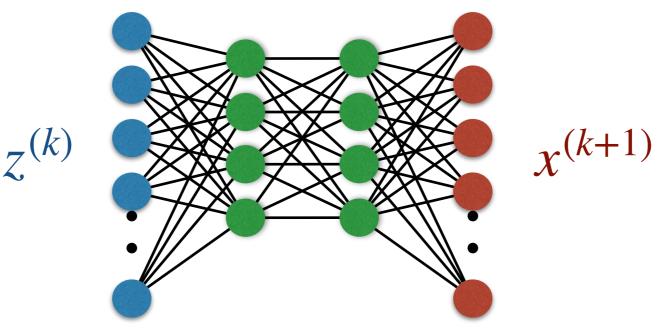
$$z^{(k)} = x^{(k)} - \eta A^{\top} (A x^{(k)} - y)$$

 $x^{(k+1)} = \mathbf{prox}_{\eta R}(z^{(k)})$

data consistency step

denoising step

"Plug-in" a pre-trained CNN denoiser:



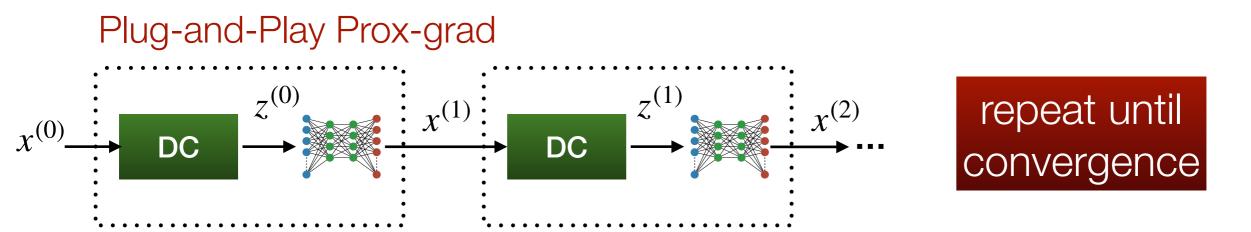
Plug-and-Play Approach

$$y \longrightarrow \underset{x}{\operatorname{arg\,min}} \|Ax - y\|^2 + R(x) \longrightarrow \hat{x}$$

set $x^{(0)}$ and step-size $\eta > 0$ for k = 1, 2, ... $z^{(k)} = x^{(k)} - \eta A^{\top} (A x^{(k)} - y)$ $x^{(k+1)} = CNN(z^{(k)})$

data consistency step

denoising step



- Plug-and-Play (Venkatakrishnan, Bouman, Wohlberg, 2013)
- Regularization-by-denoising (Romano, Elad, & Milanfar 2017)
- Convergence guarantees: (Ryu et al., 2019), (Reehorst & Schniter 2018)

How much training data?

Original *x*

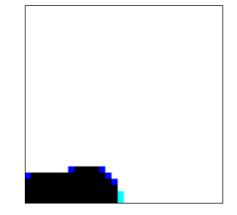
Observed y

Reconstruction with convolutional neural network (CNN) trained with 80k samples

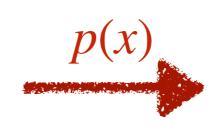
How much training data?

Original *x*

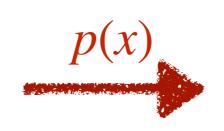
Observed y



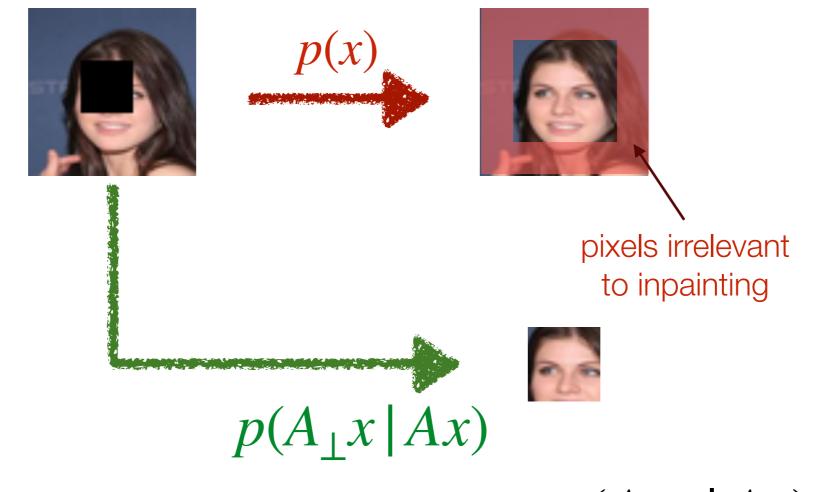
Reconstruction with convolutional neural network (CNN) trained with 2k samples



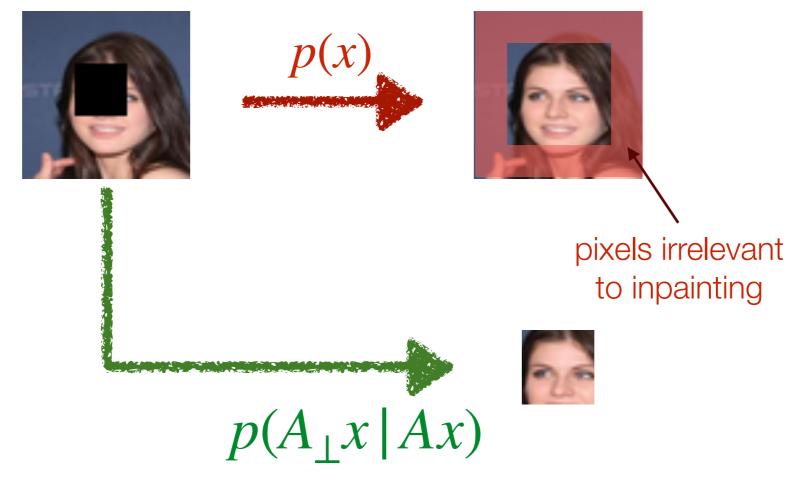




pixels irrelevant to inpainting



We need conditional density $p(A_{\perp}x | Ax)$



We need conditional density $p(A_{\perp}x | Ax)$

Estimating conditional density $p(A_{\perp}x | Ax)$ can require far fewer samples than estimating full density p(x)

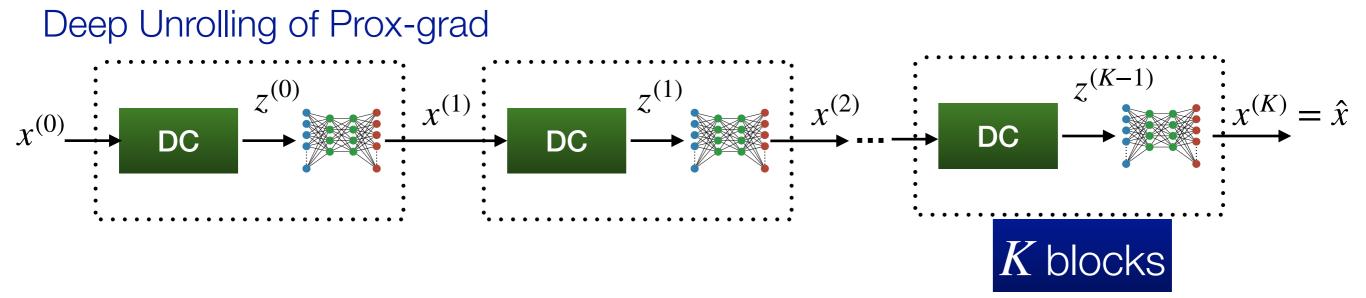
Deep Unrolling

$$y \longrightarrow \underset{x}{\operatorname{arg\,min}} \|Ax - y\|^2 + R(x) \longrightarrow \hat{x}$$

set $x^{(0)}$ and step-size $\eta > 0$ for k = 1, 2, ... $z^{(k)} = x^{(k)} - \eta A^{\top} (A x^{(k)} - y)$ $x^{(k+1)} = CNN(z^{(k)})$

data consistency step

denoising step



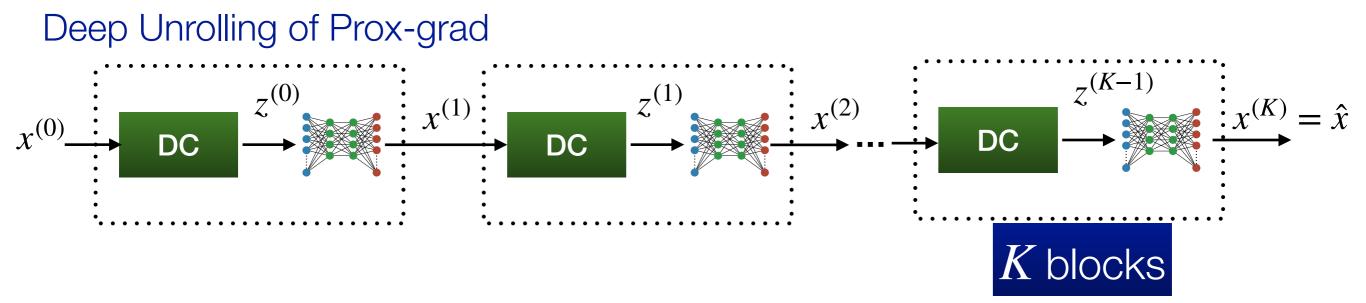
Deep Unrolling

$$y \longrightarrow \underset{x}{\operatorname{arg\,min}} \|Ax - y\|^2 + R(x) \longrightarrow \hat{x}$$

set $x^{(0)}$ and step-size $\eta > 0$ for k = 1, 2, ... $z^{(k)} = x^{(k)} - \eta A^{\top} (A x^{(k)} - y)$ $x^{(k+1)} = CNN(z^{(k)})$

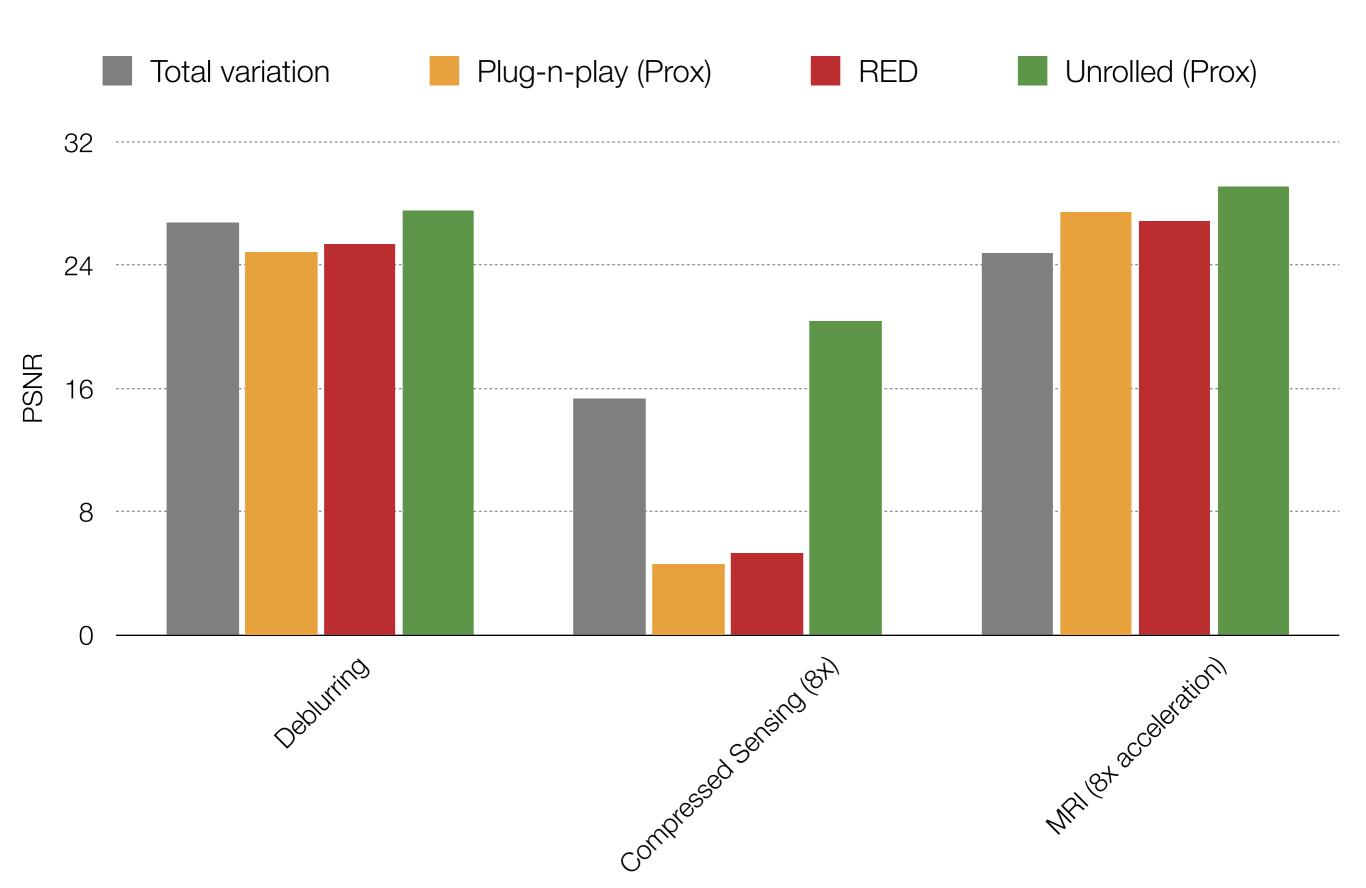
data consistency step

denoising step



"Unroll" K iterations, train end-to-end in a supervised manner using ground truth image/measurement pairs

Numerical results



Deep Unrolling

From: (Monga, Li, Eldar 2020)

TABLE I

SUMMARY OF RECENT METHODS EMPLOYING ALGORITHM UNROLLING IN PRACTICAL SIGNAL PROCESSING AND IMAGING APPLICATIONS.

Reference	Year	Application domain	Topics	Underlying Iterative Algorithms
Hershey et al. [30]	2014	Speech Processing	Signal channel source separation	Non-negative matrix factorization
Wang <i>et al</i> . [26]	2015	Computational imaging	Image super-resolution	Coupled sparse coding with iterative shrink- age and thresholding
Zheng et al. [31]	2015	Vision and Recognition	Semantic image segmentation	Conditional random field with mean-field it- eration
Schuler et al. [32]	2016	Computational imaging	Blind image deblurring	Alternating minimization
Chen et al. [16]	2017	Computational imaging	Image denoising, JPEG deblocking	Nonlinear diffusion
Jin et al. [27]	2017	Medical Imaging	Sparse-view X-ray computed tomography	Iterative shrinkage and thresholding
Liu et al. [33]	2018	Vision and Recognition	Semantic image segmentation	Conditional random field with mean-field it- eration
Solomon et al. [34]	2018	Medical imaging	Clutter suppression	Generalized ISTA for robust principal compo- nent analysis
Ding et al. [35]	2018	Computational imaging	Rain removal	Alternating direction method of multipliers
Wang et al. [36]	2018	Speech processing	Source separation	Multiple input spectrogram inversion
Adler et al. [37]	2018	Medical Imaging	Computational tomography	Proximal dual hybrid gradient
Wu et al. [38]	2018	Medical Imaging	Lung nodule detection	Proximal dual hybrid gradient
Yang <i>et al</i> . [14]	2019	Medical imaging	Medical resonance imaging, compressive imaging	Alternating direction method of multipliers
Hosseini et al. [39]	2019	Medical imaging	Medical resonance imaging	Proximal gradient descent
Li et al. [40]	2019	Computational imaging	Blind image deblurring	Half quadratic splitting
Zhang et al. [41]	2019	Smart power grids	Power system state estimation and forecasting	Double-loop prox-linear iterations
Zhang et al. [42]	2019	Computational imaging	Blind image denoising, JPEG deblocking	Moving endpoint control problem
Lohit <i>et al.</i> [43]	2019	Remote sensing	Multi-spectral image fusion	Projected gradient descent
Yoffe <i>et al.</i> [44]	2020	Medical Imaging	Super resolution microscopy	Sparsity-based super-resolution microscopy from correlation information [45]

Key tradeoffs

• Generality vs. sample complexity:

Leveraging known A during training gives lower sample complexity, but model must be retrained for each new A

Training stability vs. convergence guarantees:

Unrolled methods with a small number of blocks (K) are easier to train but lack convergence guarantees

• Reconstruction accuracy vs. sensitivity to model mismatch: Learning to solve for A_0 may yield a regularizer ill-suited to $A_1 \neq A_0$

Key tradeoffs

• Generality vs. sample complexity:

Leveraging known A during training gives lower sample complexity, but model must be retrained for each new A

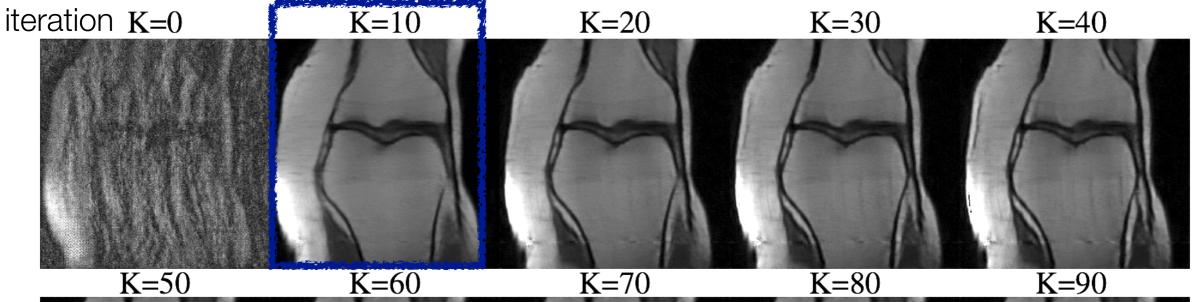
• Training stability vs. convergence guarantees:

Unrolled methods with a small number of blocks (K) are easier to train but lack convergence guarantees

• Reconstruction accuracy vs. sensitivity to model mismatch: Learning to solve for A_0 may yield a regularizer ill-suited to

$$A_1 \neq A_0$$

Deep Unrolling - Are we really learning a prox/denoiser?

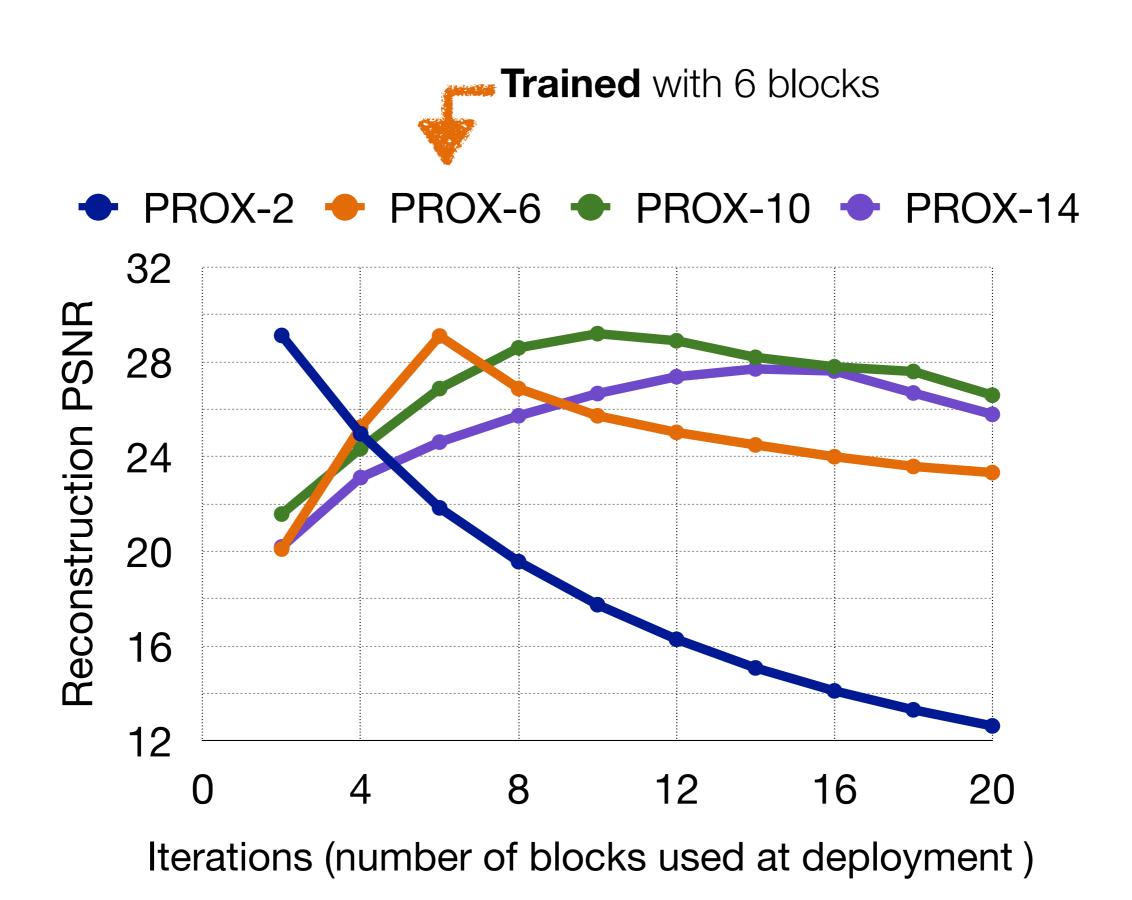


Introduces Artifacts

Does not converge \rightarrow

Gilton, Ongie, & Willett 2021

Deep Unrolling and Iterations



Plug-and-play

- No new training required
- Convergence guarantees
- Outperformed by end-to-end learning

Deep Unrolling

- Demanding to train
- No convergence guarantees
- State-of-the-art results

Deep Equilibrium (Proposed)

- Lightweight to train
- Convergence guarantees
- State-of-the-art results

Deep Equilibrium Models

Most iterative reconstruction algorithms can be interpreted as solving for a **fixed-point** of a non-linear operator $f(\cdot)$

find x^* such that $x^* = f(x^*)$

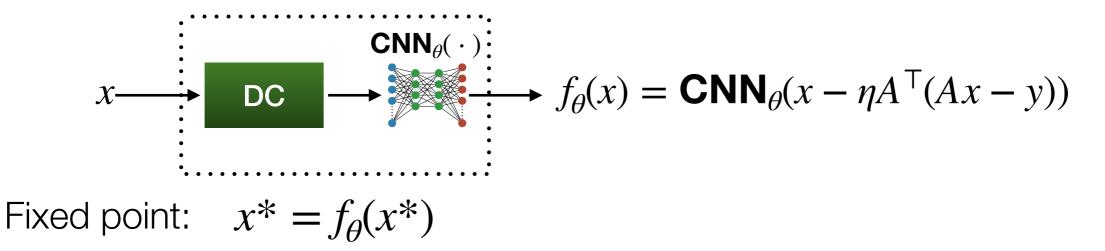
ex: proximal gradient descent

$$x \longrightarrow \mathsf{DC} \longrightarrow \mathsf{prox} \longrightarrow f(x) = \mathsf{prox}_{\eta R}(x - \eta A^{\mathsf{T}}(Ax - y))$$

ex: plug-and-play/deep unrolling
$$x \longrightarrow \mathsf{DC} \longrightarrow f(x) = \mathsf{CNN}(x - \eta A^{\mathsf{T}}(Ax - y))$$

Recent work on "deep equilibrium models" (Bai, Kolter, & Koltun 2019) has shown how to perform back-propagation on estimators implicitly defined through fixed-point equations.

Key Idea: Implicit Differentiation



Note: x^* implicitly a function of network parameters θ

$$\frac{\partial \ell^{\top}}{\partial \theta} = \frac{\partial \ell^{\top}}{\partial x^{*}} \frac{\partial x^{*}}{\partial \theta}$$

$$\frac{\partial x^{*}}{\partial \theta} = \frac{\partial f_{\theta}(x^{*})}{\partial \theta} + \frac{\partial f_{\theta}(x^{*})}{\partial x^{*}} \frac{\partial x^{*}}{\partial \theta}$$

$$x^{*} \in \mathbb{R}^{m}$$

$$\theta \in \mathbb{R}^{p}$$

$$\frac{\partial x^{*}}{\partial \theta} = \left(I - \frac{\partial f_{\theta}(x^{*})}{\partial x^{*}}\right)^{-1} \frac{\partial f_{\theta}(x^{*})}{\partial \theta}$$

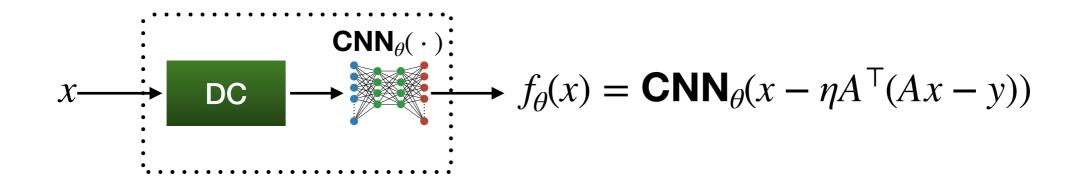
$$m \times p$$

$$m \times p$$

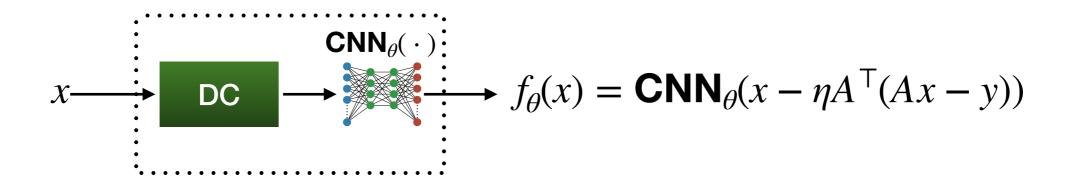
$$m \times m$$

$$m \times p$$

Convergence to a fixed-point

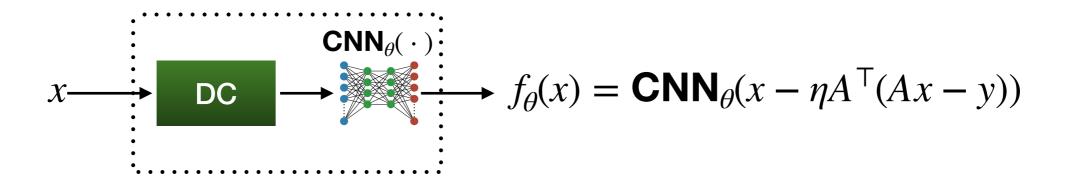


Convergence to a fixed-point



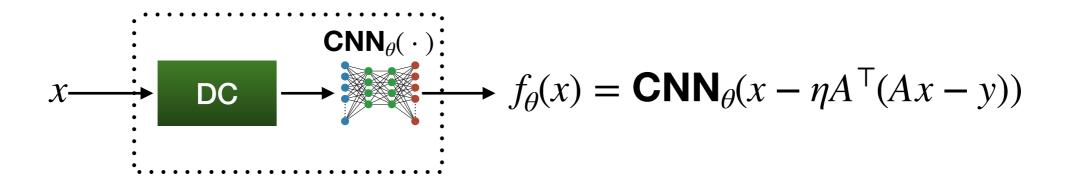
• Q: Do the iterates converge to a fixed-point? A: If the map $f_{\theta}(\cdot)$ is **contractive**, yes, and convergence is linear.

Convergence to a fixed-point



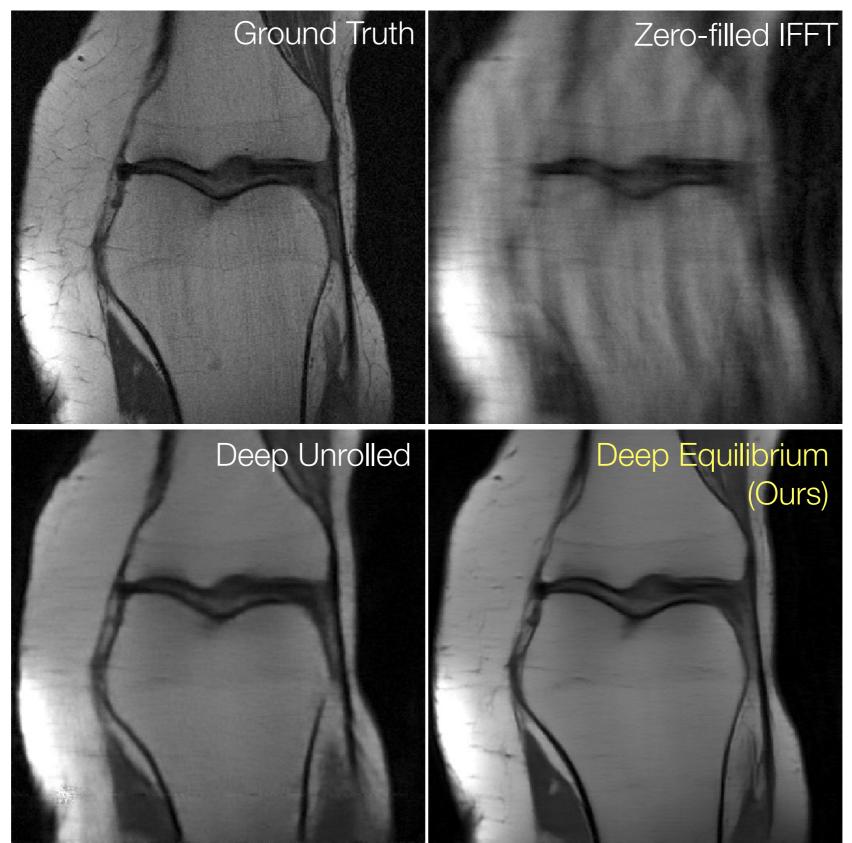
- Q: Do the iterates converge to a fixed-point? A: If the map $f_{\theta}(\cdot)$ is **contractive**, yes, and convergence is linear.
- Q: Can we guarantee contractivity?
 A: Yes! sufficient to bound Lipschitz constant of denoising CNN

Convergence to a fixed-point



- Q: Do the iterates converge to a fixed-point? A: If the map $f_{\theta}(\cdot)$ is **contractive**, yes, and convergence is linear.
- Q: Can we guarantee contractivity?
 A: Yes! sufficient to bound Lipschitz constant of denoising CNN
- We use the "spectral normalization" technique of (Miyato et al., 2018)

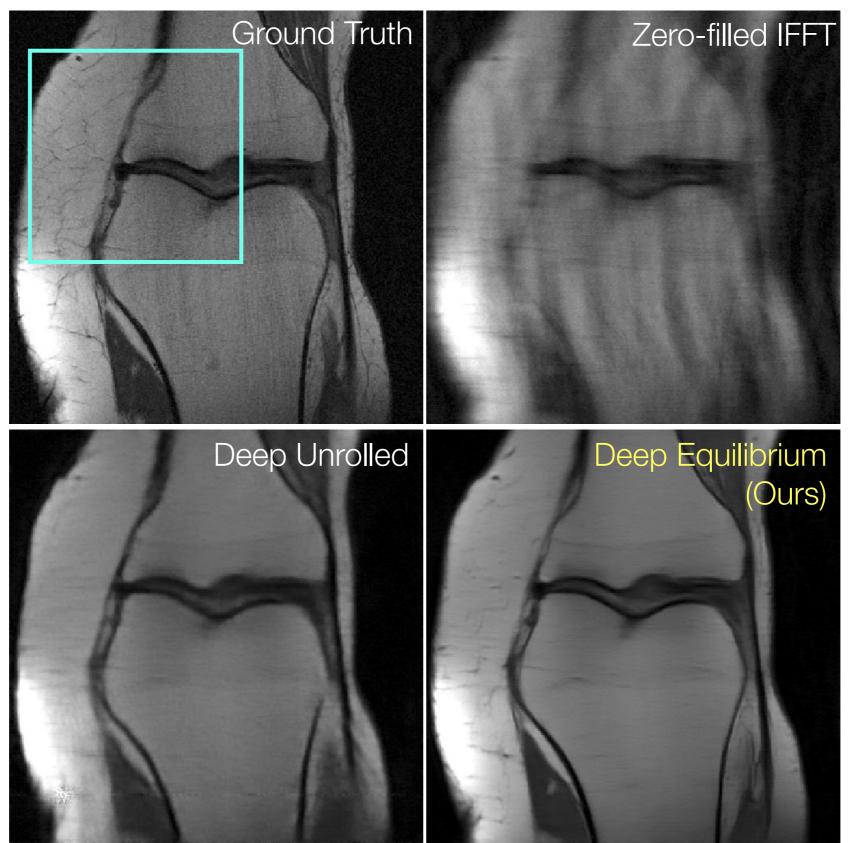
MRI 8-fold Acceleration: Example Reconstruction



Data from FastMRI

Gilton, Ongie, & Willett 2021

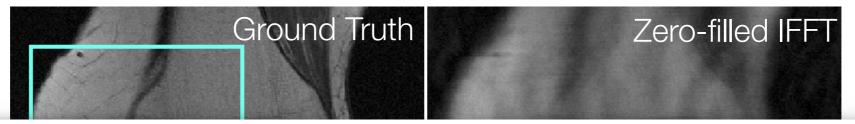
MRI 8-fold Acceleration: Example Reconstruction



Data from FastMRI

Gilton, Ongie, & Willett 2021

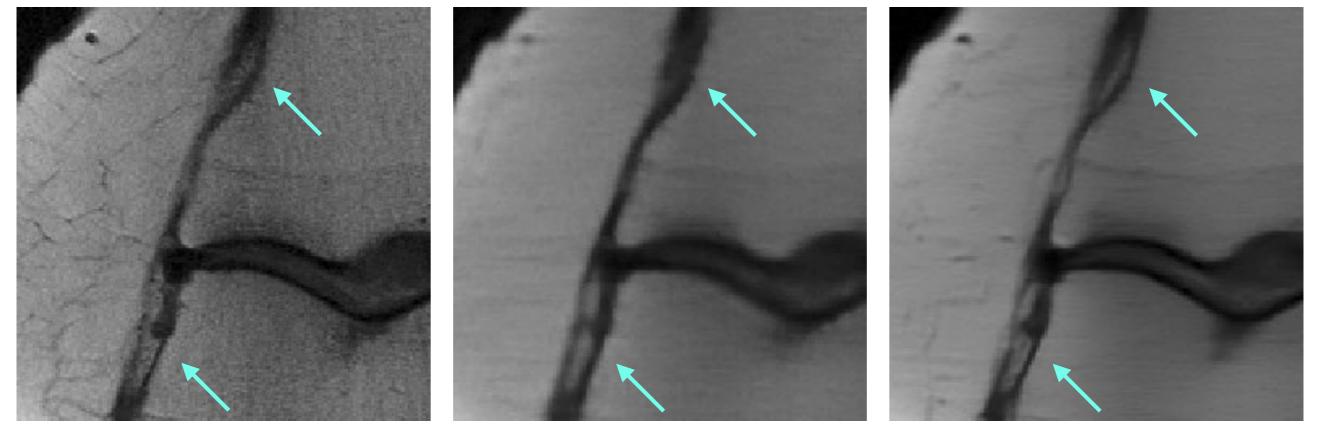
MRI 8-fold Acceleration: Example Reconstruction

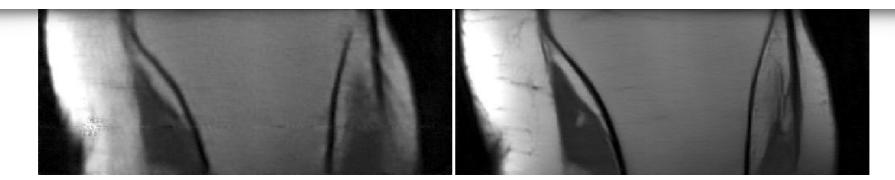


Ground Truth

Deep Unrolled

Deep Equilibrium (Ours)

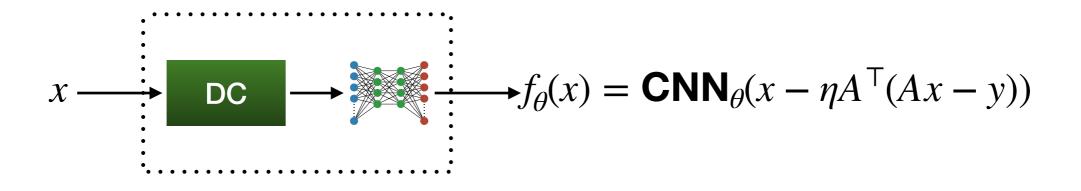


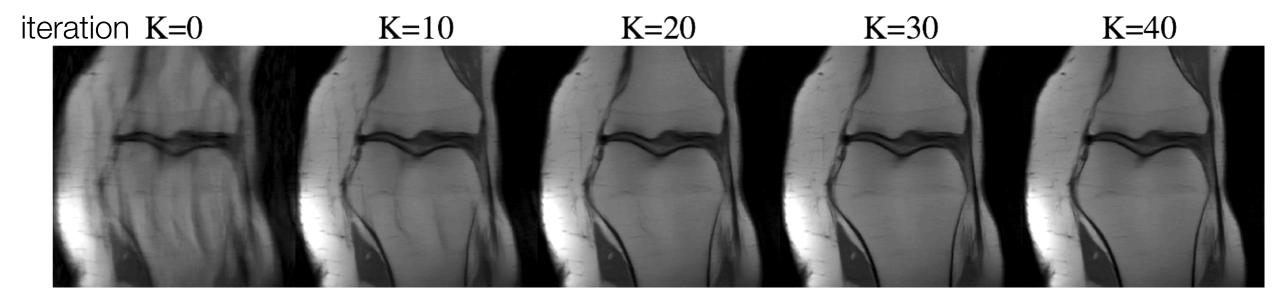


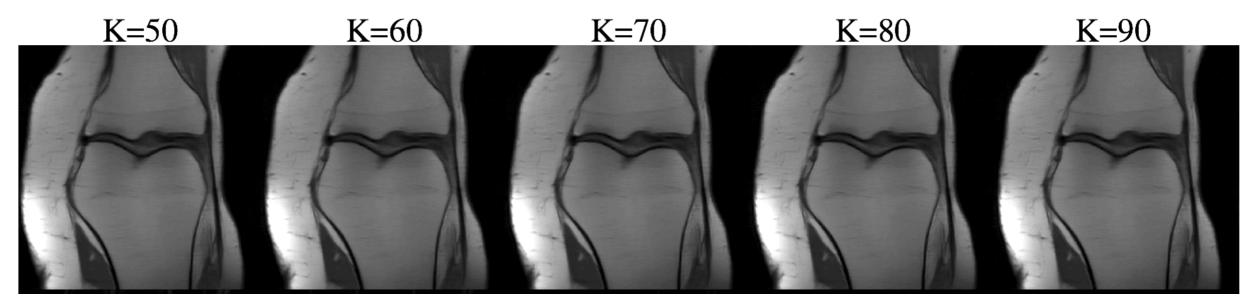
Data from FastMRI

Gilton, Ongie, & Willett 2021

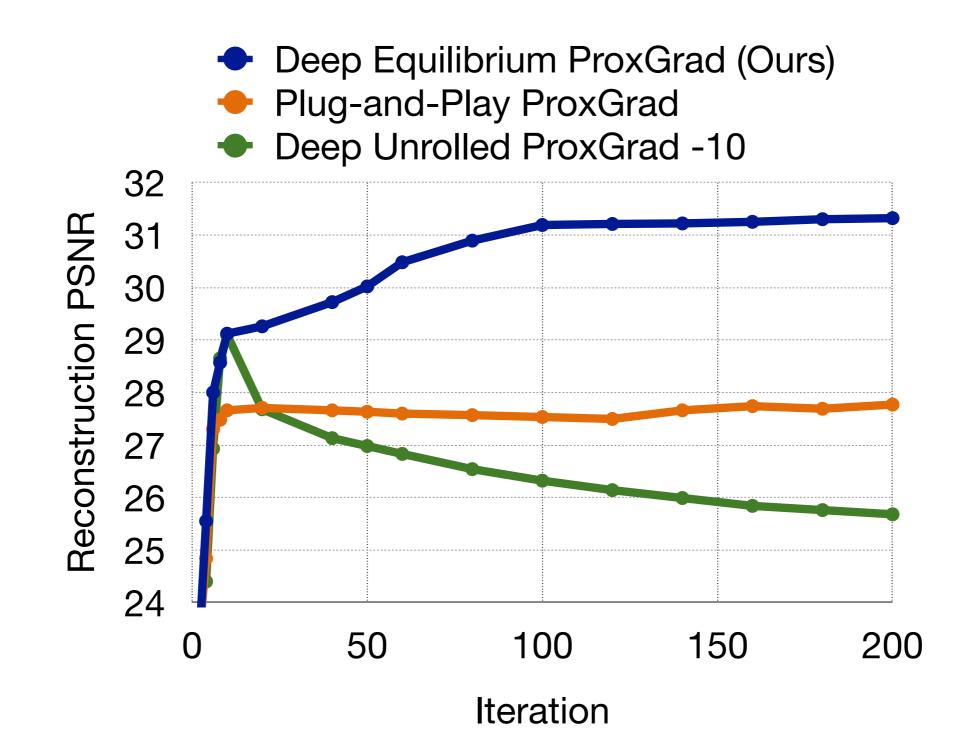
Deep Equilibrium — Illustration of Convergence



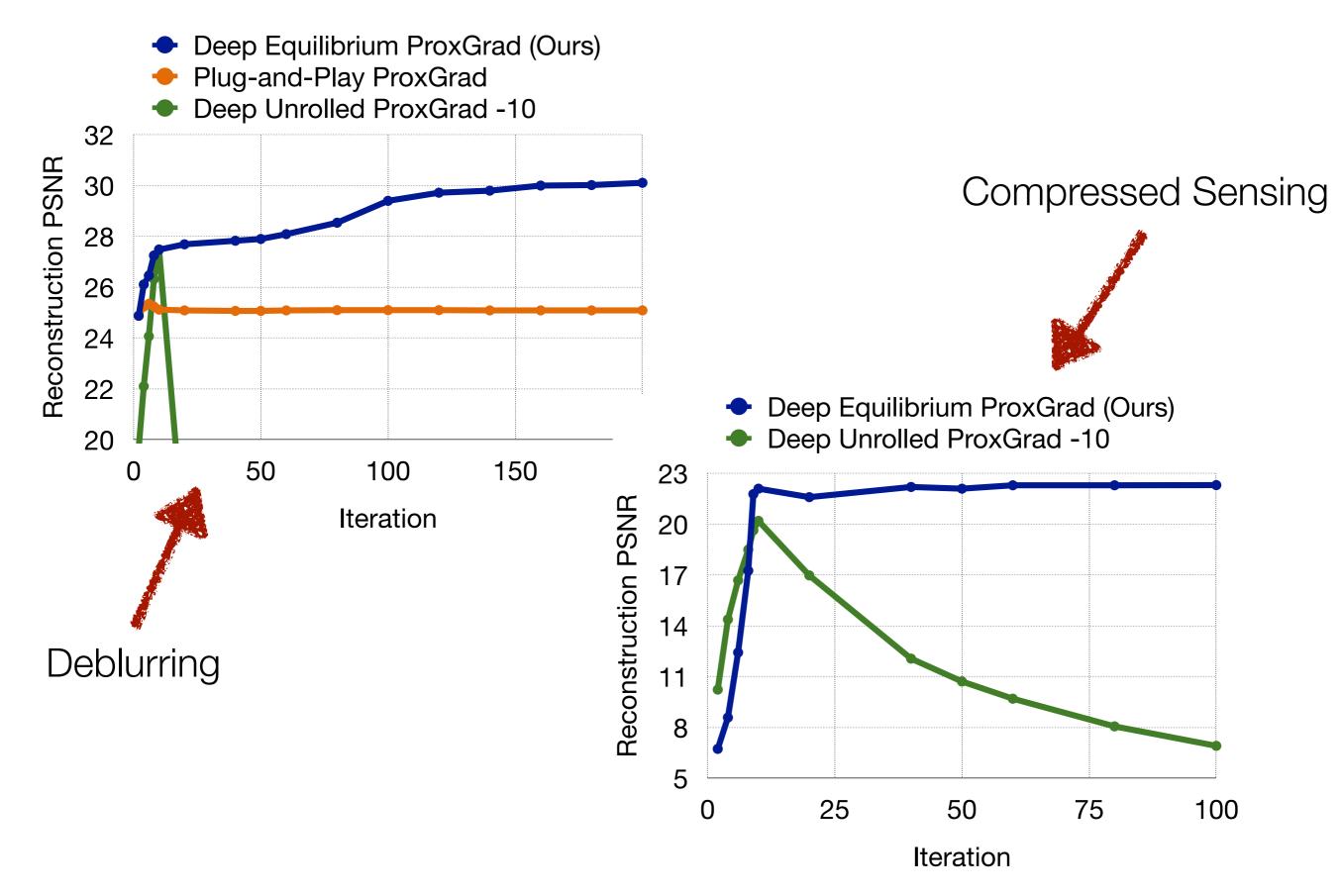




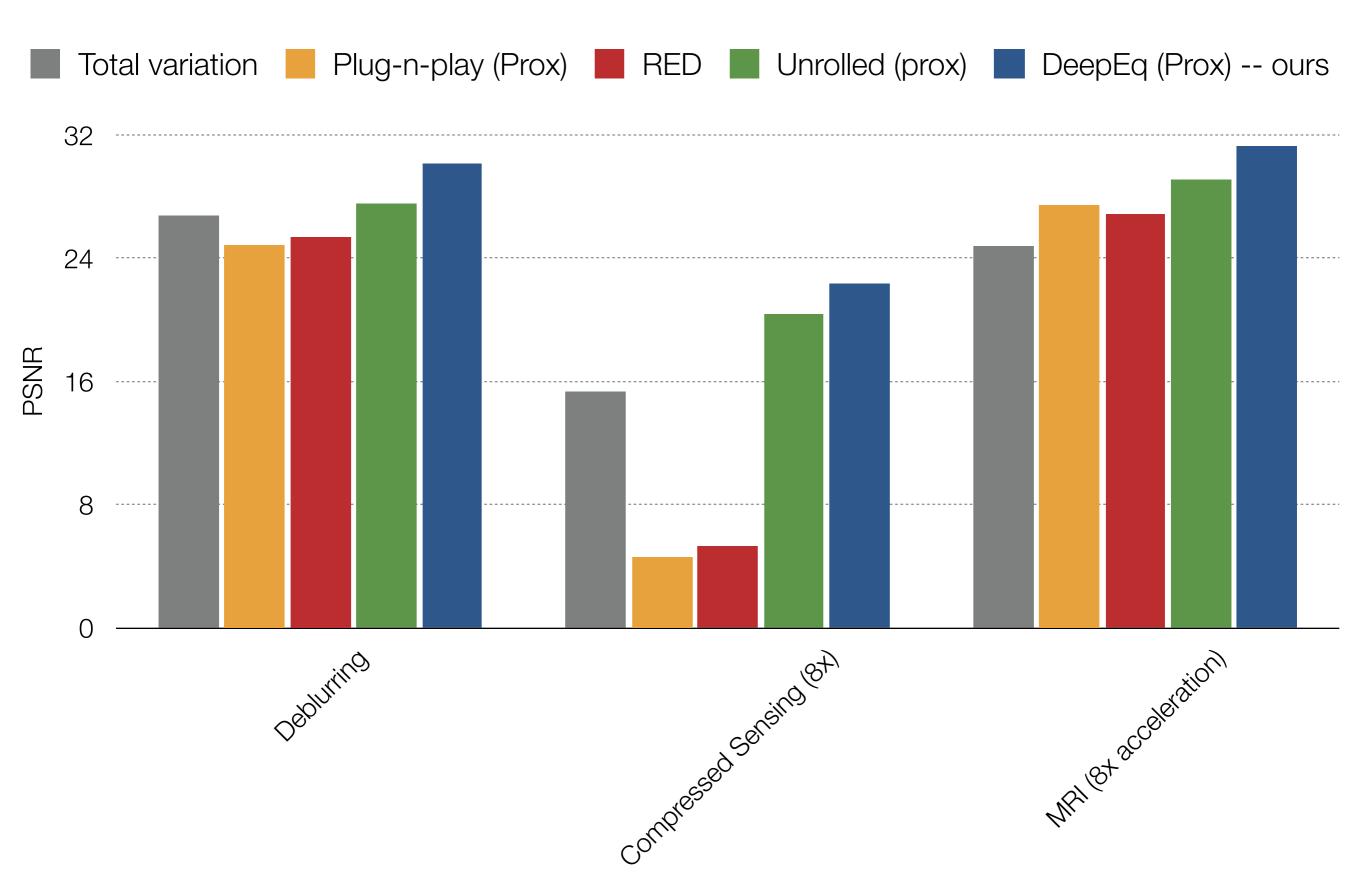
Deep Equilibrium — Illustration of Convergence (MRI)

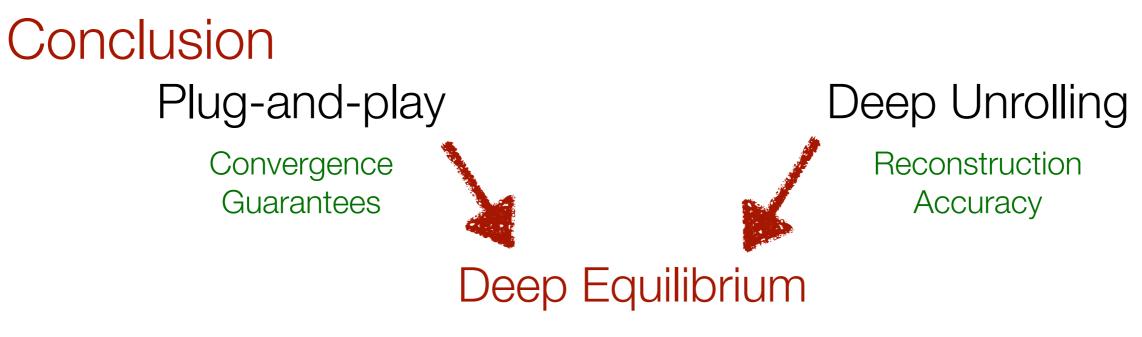


Deep Equilibrium — Illustration of Convergence



Numerical results





Pre-print on arXiv:

arXiv:2102.07944 [pdf, other] eess.IV cs.CV

Deep Equilibrium Architectures for Inverse Problems in Imaging

Authors: Davis Gilton, Gregory Ongie, Rebecca Willett

Paper also contains:

- Alternative Deep Equilibrium architectures based on
 - Gradient Descent

- Alternating Directions Method of Multipliers (ADMM) with associated convergence guarantees.

- Anderson acceleration of fixed-point scheme
- Additional empirical results on MRI, deblurring, and compressed sensing

Key tradeoffs

• Generality vs. sample complexity:

Leveraging known A during training gives lower sample complexity, but model must be retrained for each new A

Training stability vs. convergence guarantees:

Unrolled methods with a small number of blocks (K) are easier to train but lack convergence guarantees

• Reconstruction accuracy vs. sensitivity to model mismatch: Learning to solve for A_0 may yield a regularizer ill-suited to $A_1 \neq A_0$

Key tradeoffs

• Generality vs. sample complexity:

Leveraging known A during training gives lower sample complexity, but model must be retrained for each new A

Training stability vs. convergence guarantees:

Unrolled methods with a small number of blocks (K) are easier to train but lack convergence guarantees

- Reconstruction accuracy vs. sensitivity to model mismatch: Learning to solve for A_0 may yield a regularizer ill-suited to $A_1 \neq A_0$

Methods trained for a specific forward model *A* outperform model-agnostic training when data is limited...

... but methods trained for a specific forward model A_0 break down when we transfer to a new forward model A_1

- MRI examples of model shift
 - Cartesian vs. non-Cartesian k-space sampling trajectories,
 - different undersampling factors,
 - different number of coils and coil sensitivity maps,
 - magnetic field inhomogeneity maps...

Image reconstruction by supervised learning — current paradigm

1. Collect and/or synthesize training data pairs (x_i, y_i) using a known forward model:

 $y_i = A_0 x_i + \varepsilon_i$

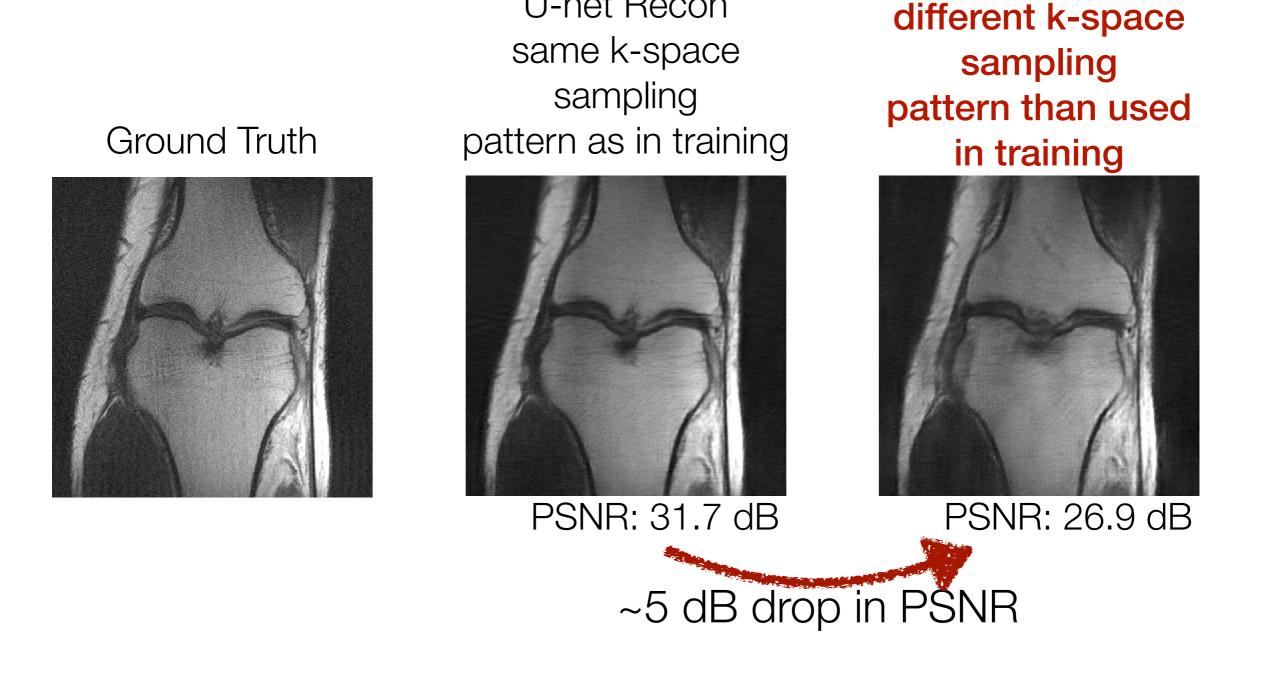
- 2. Train a reconstruction network f_{θ} by minimizing over a loss (e.g., MSE, SSIM)
- 3. Reconstruct new measurements y by $\hat{x} = f_{\theta}(y)$

k-space measurements reconstruction network reconstructed image $\hat{x} = f_{\theta}(y)$ e.g., accelerated MRI ARI

Issue: Trained network is sensitive to changes in the forward model

U-net Recon

U-net Recon



Effect originally observed in Antun, Renna, Poon, Adcock, Hansen, 2019

Potential solutions

- Option 1: Retrain the network from scratch using the new forward model.
 - Issue: Computationally costly
 - Issue: Might not have ground truth data to retrain (have y_i 's but no x'_i s)
- **Option 2:** Train on an **ensemble** of forward models.
 - Issue: High-dimensional set to sample from (e.g., all possible k-space masks)
 - Issue: Numerical evidence suggests this gives worse performance overall
- Option 3: Use a model agnostic approach (e.g., Plug-and-Play or GAN)
 - Issue: May not have enough ground truth images to learn a sufficiently expressive model
- Option 4 (Proposed): Adapt the network to solve the new inverse problem

Model Adaptation for Image Reconstruction

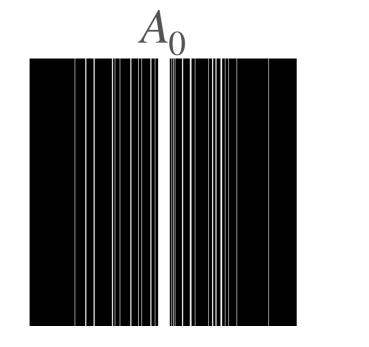
Given a reconstruction network f_{θ} trained to solve an inverse problem $y = A_0 x + \varepsilon$

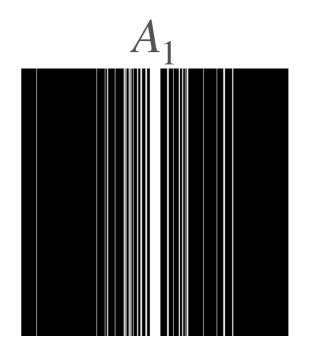
adapt/retrain/augment it to solve a new inverse problem

 $y = A_1 x + \varepsilon$

(In this talk, assume new forward model A_1 is known.)

E.g.



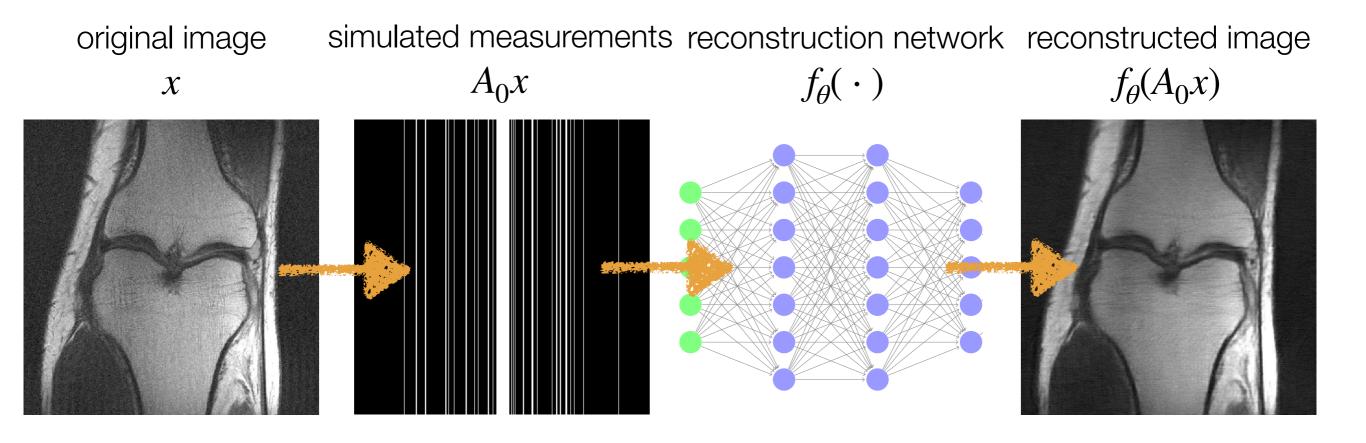


train on this k-space sampling mask

deploy on this k-space sampling mask

Model adaptation

Key Idea: The composition $f_\theta \circ A_0$ acts as an auto-encoder, $f_\theta(A_0 x) \approx x$



Use auto-encoder property as a **prior/regularizer** in an iterative model-based reconstruction scheme

Model adaptation without calibration data

- We adopt a **regularization-by-denoising (RED)** approach using proximal gradient descent as base algorithm and $f_{\theta} \circ A_0$ as our "denoiser".
- Motivated by cost function:

$$\min_{x} \|A_1 x - y\|_2^2 + \lambda x^{\mathsf{T}} (x - f_{\theta}(A_0 x))$$

regularization parameter λ allows us trade-off between data-consistency and regularization

• Proposed Iterative algorithm:

$$z^{(k)} = (A_1^{\mathsf{T}}A_1 + \lambda I)^{-1}(A_1^{\mathsf{T}}y + \lambda x^{(k)}) \qquad \text{data consistency step}$$
$$x^{(k+1)} = f_{\theta}(A_0 z^{(k)}) \qquad \text{reuse the pre-trained network to regularize}$$

RED (Romano, Elad, & Milanfar 2017)

Illustration on FastMRI knee data: $6x \rightarrow 6x$ acceleration

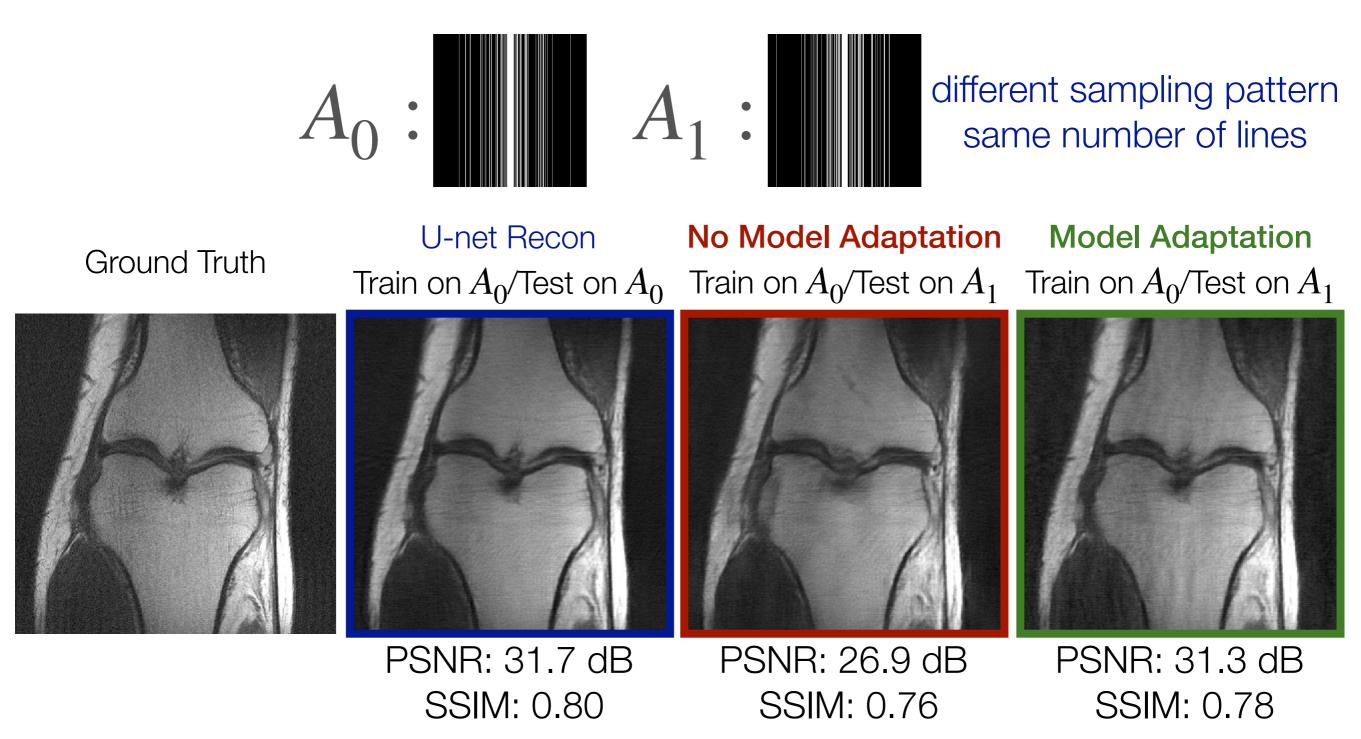


Illustration on FastMRI knee data: $6x \rightarrow 4x$ acceleration

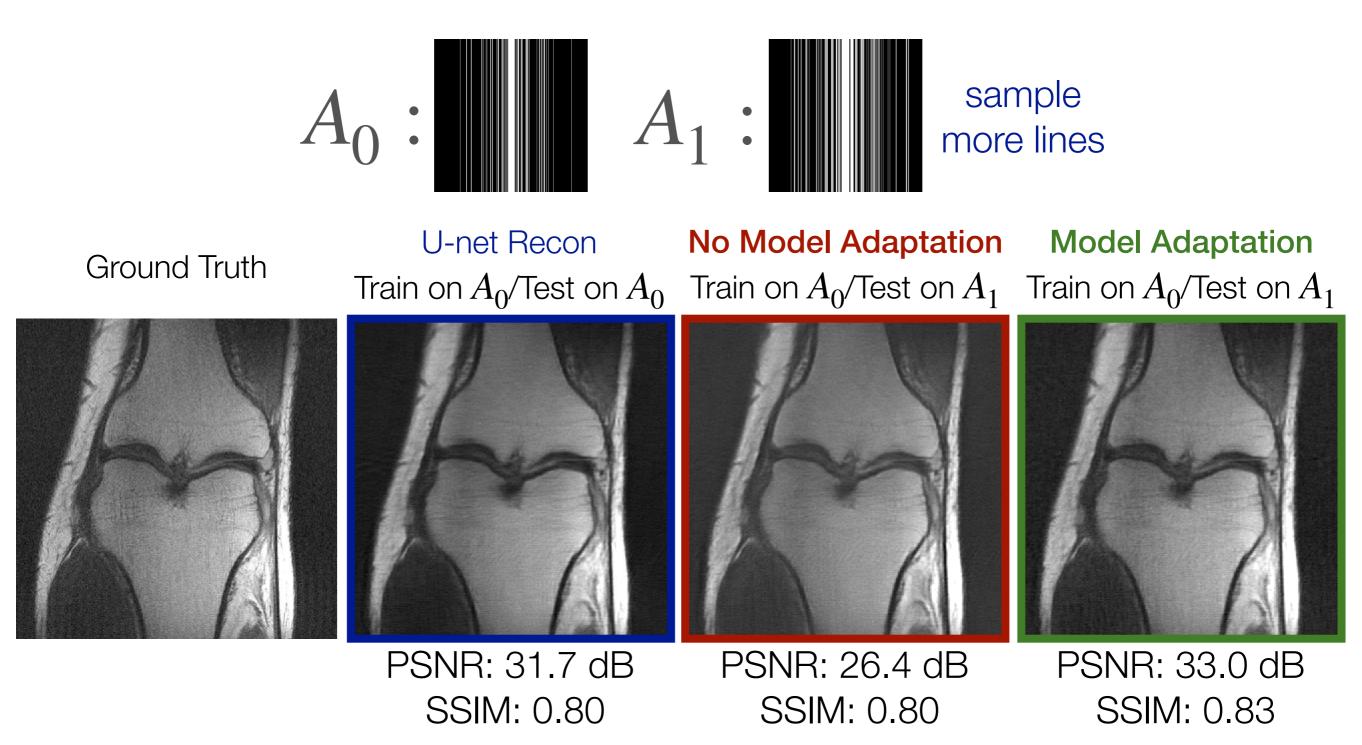
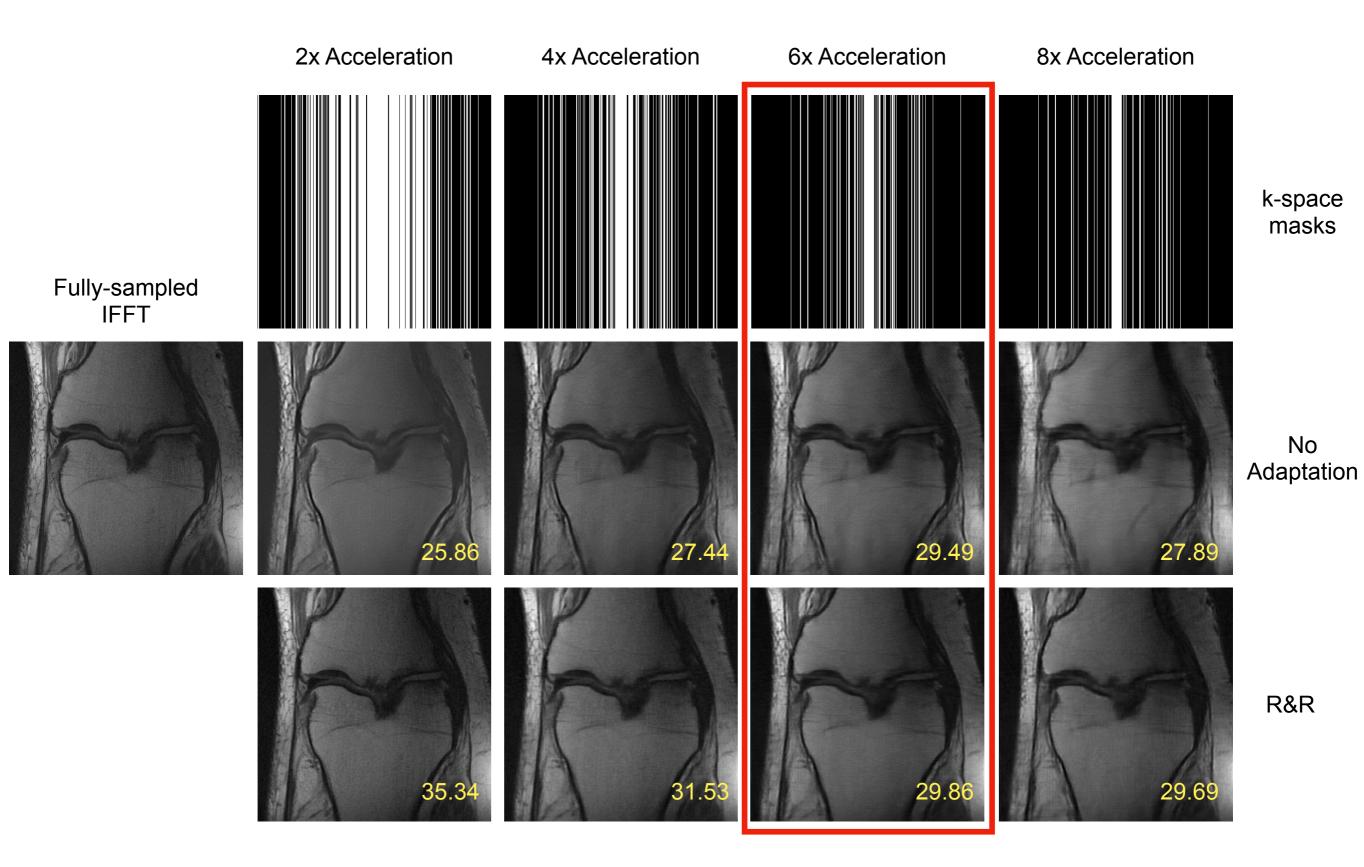


Illustration on FastMRI knee data: $6x \rightarrow 4x$ acceleration

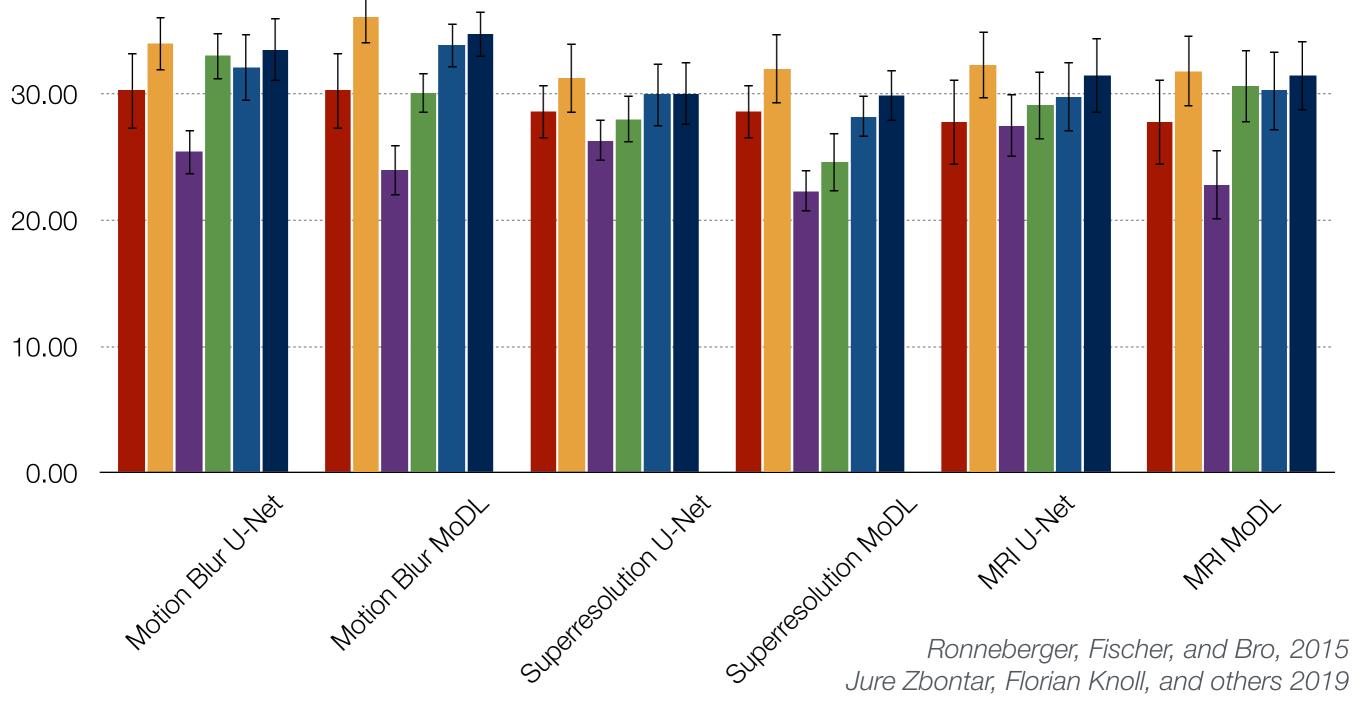


MRI Example



Performance with known A_1

Pre-trained RED (learning ignores forward model)
 Train A_0, Deploy A_1 (no model adaptation)
 R&R (our new approach)
 Train A_1, Deploy A_1 (oracle)
 P&P (transfer learning with calibration data)
 R&R+ (our new approach with calibration data)



Summary

- We introduce the problem of model adaptation for learned image reconstruction
- Propose two solutions:
 - With calibration data: transfer learning approach (P&P)
 - Without calibration data: turn pre-trained network into regularizer (R&R)
- arXiv:2012.00139 [pdf, other] eess.IV cs.CV

Model Adaptation for Inverse Problems in Imaging

Authors: Davis Gilton, Gregory Ongie, Rebecca Willett

- Extensions to the case where the new forward model A_1 is unknown
- An alternative approach for model adaptation with calibration data (R&R+)
- Comparisons with other baselines (e.g., TV, RED with other denoisers, GAN's)
- Results on other inverse problems, including deblurring and superresolution.

Thank you!