

Goal of the talk:

A construction of the BPS monodromy for theories of class S, directly from the Coulomb branch geometry

- Does not involve knowledge of the BPS spectrum
- Manifest wall-crossing invariance
- Topological nature and symmetries of the superconformal index

Motivations

- ► The BPS monodromy U is of central importance in wall crossing. It is also a spectrum generating function, BPS state counting follows from knowledge of U [Kontsevich-Soibelman, Gaiotto-Moore-Neitzke, Dimofte-Gukov].
- Relation to various specializations of the superconformal index [Cecotti-Neitzke-Vafa, Iqbal-Vafa, Cordova-Shao, Cecotti-Song-Vafa-Yan].
- \blacktriangleright Graphs encoding $\mathbb U$ are an important link in the Network/Quiver correspondence

イロト 不得 トイヨト イヨト

On Coulomb branches \mathcal{B} of 4d $\mathcal{N} = 2$ gauge theories gauge symmetry is spontaneously broken to $U(1)^r$.

At generic $u \in \mathcal{B}$ the lightest charged particles are BPS solitons $|\psi\rangle = |\gamma, m\rangle \in \mathscr{H}_{u}^{\text{BPS}}$ characterized by charge $\gamma \in \mathbb{Z}^{2r+f}$ and spin $j_{3} = m$

 $M \ket{\psi} = \ket{Z_{\gamma}} \ket{\psi}, \quad \mathcal{Q}_{\vartheta} \ket{\psi} = 0 \qquad (\vartheta = \operatorname{Arg} Z_{\gamma}).$

 $Z_{\gamma}(u)$ is topological, linear in γ , locally holomorphic in u.

Low energy dynamics on \mathcal{B} admits a geometric description, involving a family of complex curves Σ_u fibered over \mathcal{B} [Seiberg-Witten]

$$\gamma \in H_1(\Sigma_u, \mathbb{Z})$$
 $Z_\gamma = \frac{1}{\pi} \oint_{\gamma} \lambda$

On $\mathbb{R}^3 \times S_R^1$ a 3d σ -model into $\mathcal{M} \to \mathcal{B}$, effective action receives quantum corrections $\sim e^{-2\pi R|Z_\gamma|}$ from BPS particles wrapping S_R^1 . The metric on \mathcal{M} therefore encodes the BPS spectrum, which can be extracted with geometric tools like spectral networks [Gaiotto-Moore-Neitzke].

BPS particles interact, forming boundstates

$$E_{bound} = |Z_{\gamma_1 + \gamma_2}| - |Z_{\gamma_1}| - |Z_{\gamma_2}| \le 0$$

Boundstates form/decay at $codim_{\mathbb{R}}$ -1 marginal stability loci

$$MS(\gamma_1, \gamma_2) := \{ u \in \mathcal{B} \mid \operatorname{Arg} Z_{\gamma_1}(u) = \operatorname{Arg} Z_{\gamma_2}(u) \}$$

・ロン ・四 と ・ ヨ と ・ ヨ と

э

BPS particles interact, forming boundstates

$$E_{bound} = |Z_{\gamma_1 + \gamma_2}| - |Z_{\gamma_1}| - |Z_{\gamma_2}| \le 0$$

Boundstates form/decay at *codim*_R-1 marginal stability loci

$$MS(\gamma_1, \gamma_2) := \{ u \in \mathcal{B} \mid \operatorname{Arg} Z_{\gamma_1}(u) = \operatorname{Arg} Z_{\gamma_2}(u) \}$$

Jumps of the BPS spectrum are controlled by an ${\rm Arg}\,Z_\gamma$ -ordered product of quantum dilogarithms [Kontsevich-Soibelman]

$$\prod_{\gamma,m}^{\operatorname{Arg}Z(u)\nearrow} \Phi((-y)^m X_{\gamma})^{\mathfrak{a}_m(\gamma,u)} = \prod_{\gamma,m}^{\operatorname{Arg}Z(u')\nearrow} \Phi((-y)^m X_{\gamma})^{\mathfrak{a}_m(\gamma,u')}$$

• non-commutative: DSZ-twisted product $X_{\gamma_1}X_{\gamma_2} = y^{\langle \gamma_1, \gamma_2 \rangle}X_{\gamma_1+\gamma_2}$

▶ BPS degeneracies $a_m(\gamma, u) = (-1)^m \dim \mathscr{H}_{u,\gamma,m}^{BPS}$ count $|\gamma, m\rangle$

オロト 本理 トイヨト オヨト ヨー ろくつ

BPS particles interact, forming boundstates

$$E_{bound} = |Z_{\gamma_1 + \gamma_2}| - |Z_{\gamma_1}| - |Z_{\gamma_2}| \le 0$$

Boundstates form/decay at *codim*_R-1 marginal stability loci

$$MS(\gamma_1, \gamma_2) := \{ u \in \mathcal{B} \mid \operatorname{Arg} Z_{\gamma_1}(u) = \operatorname{Arg} Z_{\gamma_2}(u) \}$$

Jumps of the BPS spectrum are controlled by an ${\rm Arg}\,Z_\gamma$ -ordered product of quantum dilogarithms [Kontsevich-Soibelman]

$$\prod_{\gamma,m}^{\operatorname{Arg}Z(u)\nearrow} \Phi((-y)^m X_{\gamma})^{\mathfrak{a}_m(\gamma,u)} = \prod_{\gamma,m}^{\operatorname{Arg}Z(u')\nearrow} \Phi((-y)^m X_{\gamma})^{\mathfrak{a}_m(\gamma,u')} \equiv \mathbb{U}$$

• non-commutative: DSZ-twisted product $X_{\gamma_1}X_{\gamma_2} = y^{\langle \gamma_1, \gamma_2 \rangle}X_{\gamma_1+\gamma_2}$

▶ BPS degeneracies $a_m(\gamma, u) = (-1)^m \dim \mathscr{H}_{u,\gamma,m}^{BPS}$ count $|\gamma, m\rangle$

オロト 本理 トイヨト オヨト ヨー ろくつ

2d-4d system:

- 2d $\mathcal{N} = (2,2)$ theory on $\mathbb{R}^{1,1} \subset \mathbb{R}^{1,3}$
- \blacktriangleright chiral matter in a representation of a global symmetry G
- ▶ 4d vector multiplets couple to 2d chirals, gauging G

Vevs of 4d VM scalars on \mathcal{B} correspond to twisted masses for 2d chirals. Therefore Coulomb moduli control the 2d effective superpotential $\widetilde{W}(u)$. For u generic, $\widetilde{W}(u)$ has a finite number of massive vacua $\widetilde{W}_i(u)$, i = 1, ..., d.

2d-4d BPS states: BPS field configurations interpolating between vacua (ij) on the defect, carrying both topological (2d) and flavor (4d) charges

$$Z_{ij,\gamma}(u) \sim \widetilde{W}_j(u) - \widetilde{W}_i(u) + Z_{\gamma}(u), \qquad M_{ij,\gamma} = |Z_{ij,\gamma}|.$$

[Hanany-Hori, Dorey, Gaiotto, Gaiotto-Moore-Neitzke, PL, Gaiotto-Gukov-Seiberg]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2d-4d vacua are fibered nontrivially over the space of 4d vacua \mathcal{B} . Both the chiral ring and central charges $Z_{ij,\gamma}$ depend on u, through $\widetilde{W}(u)$.

2d-4d wall-crossing: 2d-4d BPS states can form boundstates

 $(ij, \gamma') + (jk, \gamma'') \rightarrow (ik, \gamma)$ $E_{bind} = |Z_{ij,\gamma'} + Z_{jk,\gamma''}| - |Z_{ij,\gamma'}| - |Z_{jk,\gamma''}| \le 0$

Marginal stability occurs when $\operatorname{Arg} Z_{ij,\gamma'}(u) = \operatorname{Arg} Z_{jk,\gamma''}(u)$, the 2d-4d BPS spectrum depends on u.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

2d-4d vacua are fibered nontrivially over the space of 4d vacua \mathcal{B} . Both the chiral ring and central charges $Z_{ij,\gamma}$ depend on u, through $\widetilde{W}(u)$.

2d-4d wall-crossing: 2d-4d BPS states can form boundstates

$$(ij, \gamma') + (jk, \gamma'') \rightarrow (ik, \gamma)$$

 $E_{bind} = |Z_{ij,\gamma'} + Z_{jk,\gamma''}| - |Z_{ij,\gamma'}| - |Z_{jk,\gamma''}| \le 0$

Marginal stability occurs when $\operatorname{Arg} Z_{ij,\gamma'}(u) = \operatorname{Arg} Z_{jk,\gamma''}(u)$, the 2d-4d BPS spectrum depends on u.

2d-4d mixing: Boundstates of solitons of opposite type mix with 4d BPS states

$$(ij,\gamma')+(ji,\gamma'') \rightarrow (ii,\gamma) \sim \gamma$$

in this way the surface defect probes the 4d BPS spectrum.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

To compute 2d-4d mixing, introduce a formal generating series of 2d-4d BPS states preserving \mathcal{Q}_{ϑ} :

$$F(\vartheta, u) = \sum_{ij,\gamma} \Omega(\vartheta, u, ij, \gamma; y) X_{ij,\gamma}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

To compute 2d-4d mixing, introduce a formal generating series of 2d-4d BPS states preserving Q_{ϑ} :

$$F(\vartheta, u) = \sum_{ij,\gamma} \Omega(\vartheta, u, ij, \gamma; y) X_{ij,\gamma}$$

Dependence on ϑ : $F(\vartheta, u)$ is piecewise-constant in ϑ , jumps across 4d BPS rays $\vartheta = \operatorname{Arg} Z_{\gamma}$ [Gaiotto-Moore-Neitzke]

э

$$F(\vartheta', u) = \left[\prod \Phi((-y)^m X_{\gamma})^{\mathfrak{a}_m(\gamma)}\right] F(\vartheta, u) \left[\prod \Phi((-y)^m X_{\gamma})^{\mathfrak{a}_m(\gamma)}\right]^{-1}$$

To compute 2d-4d mixing, introduce a formal generating series of 2d-4d BPS states preserving Q_{ϑ} :

$$F(\vartheta, u) = \sum_{ij,\gamma} \Omega(\vartheta, u, ij, \gamma; y) X_{ij,\gamma}$$

Dependence on ϑ : $F(\vartheta, u)$ is piecewise-constant in ϑ , jumps across 4d BPS rays $\vartheta = \operatorname{Arg} Z_{\gamma}$ [Gaiotto-Moore-Neitzke]

イロト イポト イヨト イヨト

$$F(\vartheta', u) = \left[\prod \Phi((-y)^m X_{\gamma})^{\mathfrak{a}_m(\gamma)}\right] F(\vartheta, u) \left[\prod \Phi((-y)^m X_{\gamma})^{\mathfrak{a}_m(\gamma)}\right]^{-1}$$

4d BPS degeneracies $a_m(\gamma)$ control jumps in ϑ (at fixed u). Conversely, comparing $F(\vartheta, u)$ to $F(\vartheta + \pi, u)$ gives the whole 4d BPS spectrum at u:

$$F(\vartheta + \pi, u) = \mathbb{U}F(\vartheta, u)\mathbb{U}^{-1}$$

1. For canonical defects of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class S) UV curve

- The shape of a network is controlled by the geometry of Σ_u, and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. Ω(ϑ, u, ij, γ; y) determined by global topology
- Finite edges appear at θ = ArgZ_γ, corresponding to 4d BPS states

イロト イポト イヨト イヨト

1. For canonical defects of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class S) UV curve

- The shape of a network is controlled by the geometry of Σ_u, and by an angle θ
- Edges carry soliton data counting 2d-4d BPS states. Ω(ϑ, u, ij, γ; y) determined by global topology
- Finite edges appear at θ = ArgZ_γ, corresponding to 4d BPS states

イロト イポト イヨト イヨト

(varving ϑ , u fixed)

1. For canonical defects of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class S) UV curve

- The shape of a network is controlled by the geometry of Σ_u, and by an angle θ
- Edges carry soliton data counting 2d-4d BPS states. Ω(ϑ, u, ij, γ; y) determined by global topology
- Finite edges appear at θ = ArgZ_γ, corresponding to 4d BPS states

イロト イポト イヨト イヨト

(varving ϑ , u fixed)

1. For canonical defects of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class S) UV curve

- The shape of a network is controlled by the geometry of Σ_u, and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. Ω(ϑ, u, ij, γ; y) determined by global topology
- Finite edges appear at θ = ArgZ_γ, corresponding to 4d BPS states

イロト イポト イヨト イヨト

1. For canonical defects of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class S) UV curve

- The shape of a network is controlled by the geometry of Σ_u, and by an angle θ
- Edges carry soliton data counting 2d-4d BPS states. Ω(ϑ, u, ij, γ; y) determined by global topology
- Finite edges appear at θ = ArgZ_γ, corresponding to 4d BPS states

イロト イポト イヨト イヨト

2. Through 2d-4d mixing $(ij, \gamma') + (ji, \gamma'') \sim (ii, \gamma)$, the 2d-4d spectrum encodes the 4d spectrum. [Gaiotto-Moore-Neitzke]

1. For canonical defects of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class S) UV curve

- The shape of a network is controlled by the geometry of Σ_u, and by an angle θ
- Edges carry soliton data counting 2d-4d BPS states. Ω(ϑ, u, ij, γ; y) determined by global topology
- Finite edges appear at θ = ArgZ_γ, corresponding to 4d BPS states

(varying ϑ , *u* fixed)

2. Through 2d-4d mixing $(ij, \gamma') + (ji, \gamma'') \sim (ii, \gamma)$, the 2d-4d spectrum encodes the 4d spectrum. [Gaiotto-Moore-Neitzke]

Then use spectral networks to compute $F(\vartheta, u)$, $F(\vartheta + \pi, u)$ and obtain \mathbb{U} .

- \bullet still choosing a chamber of $\mathcal B,$ with some 4d BPS spectrum
- still difficult, due to complexity of 2d-4d wall crossing

Marginal Stability

Let $\mathcal{B}_c \subset \mathcal{B}$ be a locus where central charges of all 4d BPS particles have the same phase

$$\mathcal{B}_c := \{ u \in \mathcal{B}, \operatorname{Arg} Z_{\gamma}(u) = \operatorname{Arg} Z_{\gamma'}(u) \equiv \vartheta_c(u) \}$$

Because of marginal stability, the 4d BPS spectrum is ill-defined at $u_c \in \mathcal{B}_c$.

イロン イロン イヨン イヨン

э

Marginal Stability

Let $\mathcal{B}_c \subset \mathcal{B}$ be a locus where central charges of all 4d BPS particles have the same phase

$$\mathcal{B}_c := \{ u \in \mathcal{B}, \operatorname{Arg} Z_{\gamma}(u) = \operatorname{Arg} Z_{\gamma'}(u) \equiv \vartheta_c(u) \}$$

Because of marginal stability, the 4d BPS spectrum is ill-defined at $u_c \in \mathcal{B}_c$.

However, the 2d-4d spectrum is still well-defined, because

$$Z_{ij,\gamma}(u) = \widetilde{W}_j(u) - \widetilde{W}_i(u) + Z_{\gamma}(u) \neq Z_{\gamma}(u)$$

central charges of 2d-4d states are **phase-resolved**.

・ロト ・回ト ・ヨト ・ヨト

э

Marginal Stability

Let $\mathcal{B}_c \subset \mathcal{B}$ be a locus where central charges of all 4d BPS particles have the same phase

$$\mathcal{B}_c := \{ u \in \mathcal{B}, \operatorname{Arg} Z_{\gamma}(u) = \operatorname{Arg} Z_{\gamma'}(u) \equiv \vartheta_c(u) \}$$

Because of marginal stability, the 4d BPS spectrum is ill-defined at $u_c \in B_c$.

However, the 2d-4d spectrum is still well-defined, because

$$Z_{ij,\gamma}(u) = \widetilde{W}_j(u) - \widetilde{W}_i(u) + Z_{\gamma}(u) \neq Z_{\gamma}(u)$$

central charges of 2d-4d states are phase-resolved.

At $u_c \in \mathcal{B}_c$ the generating function of 2d-4d \mathcal{Q}_{ϑ} -BPS states is well defined

$$F(\vartheta, u_c) = \sum_{ij,\gamma} \Omega(\vartheta, u_c, ij, \gamma; y) X_{ij,\gamma}$$

P. Longhi

at
$$u$$
: $F' = \left[\prod \Phi((-y)^m X_\gamma)^{a_m(\gamma,u)}\right] \cdot F \cdot \left[\prod \Phi((-y)^m X_\gamma)^{a_m(\gamma,u)}\right]^{-1}$
at u_c : $F' = \mathbb{U} \cdot F \cdot \mathbb{U}^{-1}$

- ► $F(\vartheta, u_c)$ exhibits a single jump at ϑ_c which captures the full BPS monodromy
- ► From the viewpoint of 2d-4d states nothing special happens at the critical locus: can "parallel transport" both F and F' to B_c

イロト イポト イヨト イヨト

▶ Redefining U as the jump $F \to F'$, extends its definition to \mathcal{B}_c

 \mathbb{U} is determined by considering several surface defects at once. Each contributes $F' = \mathbb{U} F \mathbb{U}^{-1}$. Both F, F' are computed by spectral networks.

э

 \mathbb{U} is determined by considering several surface defects at once. Each contributes $F' = \mathbb{U} F \mathbb{U}^{-1}$. Both F, F' are computed by spectral networks.

The spectral network at (u_c, ϑ_c) is very special. Several finite edges appear simultaneously. Within the network a **critical graph** emerges.

イロト 不得 トイヨト イヨト

-

 \mathbb{U} is determined by considering several surface defects at once. Each contributes $F' = \mathbb{U} F \mathbb{U}^{-1}$. Both F, F' are computed by spectral networks.

The spectral network at (u_c, ϑ_c) is very special. Several finite edges appear simultaneously. Within the network a **critical graph** emerges.

The graph topology, together with a notion of framing, determine U.

イロト イポト イヨト イヨト

イロト イヨト イヨト イヨト

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト → 臣 - ∽ 9 9 0

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト → 臣 - ∽ 9 9 0

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ■ りんの

イロン イヨン イヨン イヨン

・ロン ・四 と ・ ヨ と ・ ヨ と …

イロト イヨト イヨト イヨト

・ロン ・四 と ・ ヨ と ・ ヨ と …

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ ∽ � €

The graph has 2 edges, each contributes an equation

$$F'_{p} = \mathbb{U} F_{p} \mathbb{U}^{-1}$$

with

$$\begin{split} F_{p_1} &= 1 + y^{-1} X_{\gamma_1} + y^{-1} X_{\gamma_1 + \gamma_2} \\ F_{p_2} &= 1 + y^{-1} X_{\gamma_2} \\ F'_{p_1} &= 1 + y^{-1} X_{\gamma_1} \\ F'_{p_2} &= 1 + y^{-1} X_{\gamma_2} + y^{-1} X_{\gamma_1 + \gamma_2} \end{split}$$

イロト イポト イヨト イヨト

э

Together, they determine the monodromy

$$\begin{split} \mathbb{U} &= 1 - \frac{y}{(y)_1} \big(X_{\gamma_1} + X_{\gamma_2} \big) + \frac{y^2}{(y)_1^2} X_{\gamma_1 + \gamma_2} + \frac{y^2}{(y)_2} \big(X_{2\gamma_1} + X_{2\gamma_2} \big) + \dots \\ &= \Phi(X_{\gamma_1}) \Phi(X_{\gamma_2}) \end{split}$$

Second Example: $SU(2) N = 2^*$

The graph has three edges p_1 , p_2 , p_3 ; each contributes one equation

$$F'_{p} = \mathbb{U} F_{p} \mathbb{U}^{-1}$$

・ロン ・四 と ・ ヨ と ・ ヨ と …

э

with

$$\begin{split} F_{p_1} &= \frac{1 + X_{\gamma_1} + \left(y + y^{-1}\right) X_{\gamma_1 + \gamma_3} + X_{\gamma_1 + 2\gamma_3} + \left(y + y^{-1}\right) X_{\gamma_1 + \gamma_2 + 2\gamma_3} + X_{\gamma_1 + 2\gamma_2 + 2\gamma_3} + X_{2\gamma_1 + 2\gamma_2 + 2\gamma_3}}{\left(1 - X_{2\gamma_1 + 2\gamma_2 + 2\gamma_3}\right)^2} \\ F'_{p_1} &= \frac{1 + X_{\gamma_1} + \left(y + y^{-1}\right) X_{\gamma_1 + \gamma_2} + X_{\gamma_1 + 2\gamma_2} + \left(y + y^{-1}\right) X_{\gamma_1 + 2\gamma_2 + 2\gamma_3} + X_{\gamma_1 + 2\gamma_2 + 2\gamma_3} + X_{2\gamma_1 + 2\gamma_2 + 2\gamma_3}}{\left(1 - X_{2\gamma_1 + 2\gamma_2 + 2\gamma_3}\right)^2} \end{split}$$

 $F_{P_{2,3}}$ & $F'_{P_{2,3}}$ are obtained by cyclic \mathbb{Z}_3 shifts of $\gamma_1, \gamma_2, \gamma_3$.

The solution:

$$\mathbb{U} = \left(\prod_{n\geq 0}^{\nearrow} \Phi\left(X_{\gamma_1+n(\gamma_1+\gamma_2)}\right)\right) \\ \times \Phi\left(X_{\gamma_3}\right) \Phi\left((-y)X_{\gamma_1+\gamma_2}\right)^{-1} \Phi\left((-y)^{-1}X_{\gamma_1+\gamma_2}\right)^{-1} \Phi\left(X_{2\gamma_1+2\gamma_2+\gamma_3}\right) \\ \times \left(\prod_{n\geq 0}^{\searrow} \Phi(X_{\gamma_2+n(\gamma_1+\gamma_2)})\right)$$

Framing

 $F_{
ho},F_{
ho}'$ are computed from the graph by simple rules, based on

- the topology of a graph
- the framing: a cyclic ordering of edges at each node

イロン イ団と イヨン イヨン

э

Framing

 F_p, F_p' are computed from the graph by simple rules, based on

- the topology of a graph
- the framing: a cyclic ordering of edges at each node

Graphs of A_1 theories are trivalent: topology and framing define a **ribbon graph**.

イロト イポト イヨト イヨト

To each ($\overline{\mathbb{Q}}$ -algebraic) Riemann surface C is associated a holomorphic map $\mathfrak{B}: C \to \mathbb{P}^1$, with ramification at $0, 1, \infty$ [Belyi]. The preimage $\mathfrak{B}^{-1}([0, 1])$ is a ribbon graph on C, a dessin d'enfants [Grothendieck]. The ribbon graph is the union of critical leaves of a foliation on C by a Strebel differential [Harer, Mumford, Penner, Thurston, Mulase-Penkava].

Graph symmetries

Symmetries of a graph: automorphisms preserving both its topology and framing, they are inherited by \mathbb{U} .

These symmetries are often hidden by the Kontsevich-Soibelman factorization $\mathbb{U} = \prod \Phi(X)$. Instead they become manifest on the graph (Ex. \mathbb{Z}_3 symmetry in $\mathcal{N} = 2^*$).

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つくで

Symmetries of a graph: automorphisms preserving both its topology and framing, they are inherited by \mathbb{U} .

These symmetries are often hidden by the Kontsevich-Soibelman factorization $\mathbb{U} = \prod \Phi(X)$. Instead they become manifest on the graph (Ex. \mathbb{Z}_3 symmetry in $\mathcal{N} = 2^*$).

Graph symmetries show that $\mathbb U$ shares important properties of the superconformal index.

- Punctures on C encode global symmetries of a Class S theory [Gaiotto, Chacaltana-Distler-Tachikawa].
- The index is computed by correlators of a TQFT on C [Gadde-Pomoni-Rastelli-Razamat], it is a symmetric function of the flavor fugacities.
- Symmetries of the graph permute punctures, implying that U is a symmetric function of the corresponding flavor fugacities, like the index.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Conclusion

1. To a class S theory associate a **canonical "critical graph"** on the UV curve, emerging from a degenerate spectral network at B_c .

2. A new definition of the BPS monodromy, encoded by the **topology and framing** of the graph.

3. Does not use BPS spectrum. Manifest invariance under wall-crossing. At the critical locus \mathcal{B}_c the BPS spectrum is ill-defined.

4. Simpler than computing $\mathbb U$ by using BPS spectra. Symmetries of $\mathbb U$ are manifest from the graph.

イロト 不得下 イヨト イヨト 二日

- Existence conditions for the critical locus B_c where the critical graph emerges
- \blacktriangleright Equivalence relations among graphs: different topology, same $\mathbb U$ on different components of $\mathcal B_c$
- Constructive approach by gluing graphs [Gabella-PL in progress]
- Relation to BPS quivers [Gabella-PL-Park-Yamazaki in progress]

イロト 不得 トイヨト イヨト

-