Wall Crossing Invariants from Spectral Networks

Iberian Strings
Lisbon, January 162017

Goal of the talk:

A construction of the BPS monodromy for theories of class S, directly from the Coulomb branch geometry

- Does not involve knowledge of the BPS spectrum
- Manifest wall-crossing invariance
- Topological nature and symmetries of the superconformal index

Motivations

- The BPS monodromy \mathbb{U} is of central importance in wall crossing. It is also a spectrum generating function, BPS state counting follows from knowledge of \mathbb{U} [Kontsevich-Soibelman, Gaiotto-Moore-Neitzke, Dimofte-Gukov].
- Relation to various specializations of the superconformal index [Cecotti-Neitzke-Vafa, Iqbal-Vafa, Cordova-Shao, Cecotti-Song-Vafa-Yan].
- Graphs encoding \mathbb{U} are an important link in the Network/Quiver correspondence

On Coulomb branches \mathcal{B} of $4 \mathrm{~d} \mathcal{N}=2$ gauge theories gauge symmetry is spontaneously broken to $U(1)^{r}$.

At generic $u \in \mathcal{B}$ the lightest charged particles are BPS solitons $|\psi\rangle=|\gamma, m\rangle \in \mathscr{H}_{u}^{\text {BPS }}$ characterized by charge $\gamma \in \mathbb{Z}^{2 r+f}$ and spin $j_{3}=m$

$$
M|\psi\rangle=\left|Z_{\gamma}\right||\psi\rangle, \quad \mathcal{Q}_{\vartheta}|\psi\rangle=0 \quad\left(\vartheta=\operatorname{Arg} Z_{\gamma}\right)
$$

$Z_{\gamma}(u)$ is topological, linear in γ, locally holomorphic in u.
Low energy dynamics on \mathcal{B} admits a geometric description, involving a family of complex curves Σ_{u} fibered over \mathcal{B} [Seiberg-Witten]

$$
\gamma \in H_{1}\left(\Sigma_{u}, \mathbb{Z}\right) \quad Z_{\gamma}=\frac{1}{\pi} \oint_{\gamma} \lambda
$$

On $\mathbb{R}^{3} \times S_{R}^{1}$ a 3d σ-model into $\mathcal{M} \rightarrow \mathcal{B}$, effective action receives quantum corrections $\sim e^{-2 \pi R\left|Z_{\gamma}\right|}$ from BPS particles wrapping S_{R}^{1}.
The metric on \mathcal{M} therefore encodes the BPS spectrum, which can be extracted with geometric tools like spectral networks [Gaiotto-Moore-Neitzke].

BPS particles interact, forming boundstates

$$
E_{\text {bound }}=\left|Z_{\gamma_{1}+\gamma_{2}}\right|-\left|Z_{\gamma_{1}}\right|-\left|Z_{\gamma_{2}}\right| \leq 0
$$

Boundstates form/decay at $\operatorname{codim}_{\mathbb{R}^{-}}-1$ marginal stability loci

$$
M S\left(\gamma_{1}, \gamma_{2}\right):=\left\{u \in \mathcal{B} \mid \operatorname{Arg} Z_{\gamma_{1}}(u)=\operatorname{Arg} Z_{\gamma_{2}}(u)\right\}
$$

BPS particles interact, forming boundstates

$$
E_{\text {bound }}=\left|Z_{\gamma_{1}+\gamma_{2}}\right|-\left|Z_{\gamma_{1}}\right|-\left|Z_{\gamma_{2}}\right| \leq 0
$$

Boundstates form/decay at $\operatorname{codim}_{\mathbb{R}^{-}}-1$ marginal stability loci

$$
M S\left(\gamma_{1}, \gamma_{2}\right):=\left\{u \in \mathcal{B} \mid \operatorname{Arg} Z_{\gamma_{1}}(u)=\operatorname{Arg} Z_{\gamma_{2}}(u)\right\}
$$

Jumps of the BPS spectrum are controlled by an $\operatorname{Arg} Z_{\gamma}$-ordered product of quantum dilogarithms [Kontsevich-Soibelman]

$$
\prod_{\gamma, m}^{\operatorname{Arg} Z(u) \nearrow} \Phi\left((-y)^{m} X_{\gamma}\right)^{a_{m}(\gamma, u)}=\prod_{\gamma, m}^{\operatorname{Arg} Z\left(u^{\prime}\right) \nearrow} \Phi\left((-y)^{m} X_{\gamma}\right)^{a_{m}\left(\gamma, u^{\prime}\right)}
$$

- non-commutative: DSZ-twisted product $X_{\gamma_{1}} X_{\gamma_{2}}=y^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle} X_{\gamma_{1}+\gamma_{2}}$
- BPS degeneracies $a_{m}(\gamma, u)=(-1)^{m} \operatorname{dim} \mathscr{H}_{u, \gamma, m}^{B P S}$ count $|\gamma, m\rangle$

BPS particles interact, forming boundstates

$$
E_{\text {bound }}=\left|Z_{\gamma_{1}+\gamma_{2}}\right|-\left|Z_{\gamma_{1}}\right|-\left|Z_{\gamma_{2}}\right| \leq 0
$$

Boundstates form/decay at $\operatorname{codim}_{\mathbb{R}^{-}}-1$ marginal stability loci

$$
M S\left(\gamma_{1}, \gamma_{2}\right):=\left\{u \in \mathcal{B} \mid \operatorname{Arg} Z_{\gamma_{1}}(u)=\operatorname{Arg} Z_{\gamma_{2}}(u)\right\}
$$

Jumps of the BPS spectrum are controlled by an $\operatorname{Arg} Z_{\gamma}$-ordered product of quantum dilogarithms [Kontsevich-Soibelman]

$$
\prod_{\gamma, m}^{\operatorname{Arg} Z(u) \nearrow} \Phi\left((-y)^{m} X_{\gamma}\right)^{a_{m}(\gamma, u)}=\prod_{\gamma, m}^{\operatorname{Arg} Z\left(u^{\prime}\right) \nearrow} \Phi\left((-y)^{m} X_{\gamma}\right)^{a_{m}\left(\gamma, u^{\prime}\right)} \equiv \mathbb{U}
$$

- non-commutative: DSZ-twisted product $X_{\gamma_{1}} X_{\gamma_{2}}=y^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle} X_{\gamma_{1}+\gamma_{2}}$
- BPS degeneracies $a_{m}(\gamma, u)=(-1)^{m} \operatorname{dim} \mathscr{H}_{u, \gamma, m}^{B P S}$ count $|\gamma, m\rangle$

Surface defects as $2 \mathrm{~d}-4 \mathrm{~d}$ systems

2d-4d system:

- $2 \mathrm{~d} \mathcal{N}=(2,2)$ theory on $\mathbb{R}^{1,1} \subset \mathbb{R}^{1,3}$
- chiral matter in a representation of a global symmetry G
- 4d vector multiplets couple to 2 d chirals, gauging G

Vevs of 4d VM scalars on \mathcal{B} correspond to twisted masses for 2d chirals. Therefore Coulomb moduli control the 2d effective superpotential $\widetilde{W}(u)$. For u generic, $\widetilde{W}(u)$ has a finite number of massive vacua $\widetilde{W}_{i}(u), i=1, \ldots, d$.

2d-4d BPS states: BPS field configurations interpolating between vacua (ij) on the defect, carrying both topological (2d) and flavor (4d) charges

$$
Z_{i j, \gamma}(u) \sim \widetilde{W}_{j}(u)-\widetilde{W}_{i}(u)+Z_{\gamma}(u), \quad M_{i j, \gamma}=\left|Z_{i j, \gamma}\right|
$$

[Hanany-Hori, Dorey, Gaiotto, Gaiotto-Moore-Neitzke, PL, Gaiotto-Gukov-Seiberg]

2d-4d wall-crossing

$2 d-4 d$ vacua are fibered nontrivially over the space of $4 d$ vacua \mathcal{B}. Both the chiral ring and central charges $Z_{i j, \gamma}$ depend on u, through $\widetilde{W}(u)$.

2d-4d wall-crossing: 2d-4d BPS states can form boundstates

$$
\begin{gathered}
\left(i j, \gamma^{\prime}\right)+\left(j k, \gamma^{\prime \prime}\right) \rightarrow(i k, \gamma) \\
E_{b i n d}=\left|Z_{i j, \gamma^{\prime}}+Z_{j k, \gamma^{\prime \prime}}\right|-\left|Z_{i j, \gamma^{\prime}}\right|-\left|Z_{j k, \gamma^{\prime \prime}}\right| \leq 0
\end{gathered}
$$

Marginal stability occurs when $\operatorname{Arg} Z_{i j, \gamma^{\prime}}(u)=\operatorname{Arg} Z_{j k, \gamma^{\prime \prime}}(u)$, the 2d-4d BPS spectrum depends on u.

2d-4d wall-crossing

$2 d-4 d$ vacua are fibered nontrivially over the space of $4 d$ vacua \mathcal{B}. Both the chiral ring and central charges $Z_{i j, \gamma}$ depend on u, through $\widetilde{W}(u)$.

2d-4d wall-crossing: 2d-4d BPS states can form boundstates

$$
\begin{gathered}
\left(i j, \gamma^{\prime}\right)+\left(j k, \gamma^{\prime \prime}\right) \rightarrow(i k, \gamma) \\
E_{b i n d}=\left|Z_{i j, \gamma^{\prime}}+Z_{j k, \gamma^{\prime \prime}}\right|-\left|Z_{i j, \gamma^{\prime}}\right|-\left|Z_{j k, \gamma^{\prime \prime}}\right| \leq 0
\end{gathered}
$$

Marginal stability occurs when $\operatorname{Arg} Z_{i j, \gamma^{\prime}}(u)=\operatorname{Arg} Z_{j k, \gamma^{\prime \prime}}(u)$, the 2d-4d BPS spectrum depends on u.

2d-4d mixing: Boundstates of solitons of opposite type mix with 4d BPS states

$$
\left(i j, \gamma^{\prime}\right)+\left(j i, \gamma^{\prime \prime}\right) \rightarrow(i i, \gamma) \sim \gamma
$$

in this way the surface defect probes the 4 d BPS spectrum.

To compute 2d-4d mixing, introduce a formal generating series of 2d-4d BPS states preserving \mathcal{Q}_{ϑ} :

$$
F(\vartheta, u)=\sum_{i j, \gamma} \Omega(\vartheta, u, i j, \gamma ; y) X_{i j, \gamma}
$$

To compute 2d-4d mixing, introduce a formal generating series of 2d-4d BPS states preserving \mathcal{Q}_{ϑ} :

$$
F(\vartheta, u)=\sum_{i j, \gamma} \Omega(\vartheta, u, i j, \gamma ; y) X_{i j, \gamma}
$$

Dependence on ϑ : $F(\vartheta, u)$ is piecewise-constant in ϑ, jumps across 4d BPS rays $\vartheta=\operatorname{Arg} Z_{\gamma}$ [Gaiotto-Moore-Neitzke]

$$
F\left(\vartheta^{\prime}, u\right)=\left[\Pi \Phi\left((-y)^{m} X_{\gamma}\right)^{a_{m}(\gamma)}\right] F(\vartheta, u)\left[\Pi \Phi\left((-y)^{m} X_{\gamma}\right)^{a_{m}(\gamma)}\right]^{-1}
$$

To compute $2 \mathrm{~d}-4 \mathrm{~d}$ mixing, introduce a formal generating series of $2 \mathrm{~d}-4 \mathrm{~d}$ BPS states preserving \mathcal{Q}_{ϑ} :

$$
F(\vartheta, u)=\sum_{i j, \gamma} \Omega(\vartheta, u, i j, \gamma ; y) X_{i j, \gamma}
$$

Dependence on $\vartheta: F(\vartheta, u)$ is piecewise-constant in ϑ, jumps across 4d BPS rays $\vartheta=\operatorname{Arg} Z_{\gamma}$ [Gaiotto-Moore-Neitzke]

$$
F\left(\vartheta^{\prime}, u\right)=\left[\prod \Phi\left((-y)^{m} X_{\gamma}\right)^{a_{m}(\gamma)}\right] F(\vartheta, u)\left[\prod \Phi\left((-y)^{m} X_{\gamma}\right)^{a_{m}(\gamma)}\right]^{-1}
$$

4d BPS degeneracies $a_{m}(\gamma)$ control jumps in ϑ (at fixed u). Conversely, comparing $F(\vartheta, u)$ to $F(\vartheta+\pi, u)$ gives the whole 4d BPS spectrum at u :

$$
F(\vartheta+\pi, u)=\mathbb{U} F(\vartheta, u) \mathbb{U}^{-1}
$$

Spectral Networks

1. For canonical defects of Class \mathcal{S} theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class \mathcal{S}) UV curve

- The shape of a network is controlled by the geometry of Σ_{u}, and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. $\Omega(\vartheta, u, i j, \gamma ; y)$ determined by global topology
- Finite edges appear at $\vartheta=\operatorname{Arg} Z_{\gamma}$, corresponding to 4d BPS states

Spectral Networks

1. For canonical defects of Class \mathcal{S} theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class \mathcal{S}) UV curve

- The shape of a network is controlled by the
(varying ϑ, u fixed) geometry of Σ_{u}, and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. $\Omega(\vartheta, u, i j, \gamma ; y)$ determined by global topology
- Finite edges appear at $\vartheta=\operatorname{Arg} Z_{\gamma}$, corresponding to 4 d BPS states

Spectral Networks

1. For canonical defects of Class \mathcal{S} theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class \mathcal{S}) UV curve

- The shape of a network is controlled by the
(varying ϑ, u fixed) geometry of Σ_{u}, and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. $\Omega(\vartheta, u, i j, \gamma ; y)$ determined by global topology
- Finite edges appear at $\vartheta=\operatorname{Arg} Z_{\gamma}$, corresponding to 4d BPS states

Spectral Networks

1. For canonical defects of Class \mathcal{S} theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class \mathcal{S}) UV curve

- The shape of a network is controlled by the geometry of Σ_{u}, and by an angle ϑ
- Edges carry soliton data counting $2 \mathrm{~d}-4 \mathrm{~d}$ BPS
states. $\Omega(\vartheta, u, i j, \gamma ; y)$ determined by global

Edges carry soliton data counting $2 \mathrm{~d}-4 \mathrm{~d}$ BP
states. $\Omega(\vartheta, u, i j, \gamma ; y)$ determined by global topology

- Finite edges appear at $\vartheta=\operatorname{Arg} Z_{\gamma}$, corresponding to 4 d BPS states

Spectral Networks

1. For canonical defects of Class \mathcal{S} theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class \mathcal{S}) UV curve

- The shape of a network is controlled by the geometry of Σ_{u}, and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. $\Omega(\vartheta, u, i j, \gamma ; y)$ determined by global topology
- Finite edges appear at $\vartheta=\operatorname{Arg} Z_{\gamma}$, corresponding to 4 d BPS states

2. Through 2d-4d mixing $\left(i j, \gamma^{\prime}\right)+\left(j i, \gamma^{\prime \prime}\right) \sim(i i, \gamma)$, the $2 d-4 d$ spectrum encodes the 4d spectrum.
[Gaiotto-Moore-Neitzke]

Spectral Networks

1. For canonical defects of Class \mathcal{S} theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the (Class \mathcal{S}) UV curve

- The shape of a network is controlled by the geometry of Σ_{u}, and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. $\Omega(\vartheta, u, i j, \gamma ; y)$ determined by global topology
- Finite edges appear at $\vartheta=\operatorname{Arg} Z_{\gamma}$, corresponding to 4d BPS states

2. Through 2d-4d mixing $\left(i j, \gamma^{\prime}\right)+\left(j i, \gamma^{\prime \prime}\right) \sim(i i, \gamma)$, the $2 d-4 d$ spectrum encodes the 4d spectrum.
[Gaiotto-Moore-Neitzke]
Then use spectral networks to compute $F(\vartheta, u), F(\vartheta+\pi, u)$ and obtain \mathbb{U}.

- still choosing a chamber of \mathcal{B}, with some $4 d$ BPS spectrum
- still difficult, due to complexity of 2d-4d wall crossing

Marginal Stability

Let $\mathcal{B}_{c} \subset \mathcal{B}$ be a locus where central charges of all 4d BPS particles have the same phase

$$
\mathcal{B}_{c}:=\left\{u \in \mathcal{B}, \operatorname{Arg} Z_{\gamma}(u)=\operatorname{Arg} Z_{\gamma^{\prime}}(u) \equiv \vartheta_{c}(u)\right\}
$$

Because of marginal stability, the 4d BPS spectrum is ill-defined at $u_{c} \in \mathcal{B}_{c}$.

Marginal Stability

Let $\mathcal{B}_{c} \subset \mathcal{B}$ be a locus where central charges of all 4d BPS particles have the same phase

$$
\mathcal{B}_{c}:=\left\{u \in \mathcal{B}, \operatorname{Arg} Z_{\gamma}(u)=\operatorname{Arg} Z_{\gamma^{\prime}}(u) \equiv \vartheta_{c}(u)\right\}
$$

Because of marginal stability, the 4d BPS spectrum is ill-defined at $u_{c} \in \mathcal{B}_{c}$.

However, the $2 \mathrm{~d}-4 \mathrm{~d}$ spectrum is still well-defined, because

$$
Z_{i j, \gamma}(u)=\widetilde{W}_{j}(u)-\widetilde{W}_{i}(u)+Z_{\gamma}(u) \neq Z_{\gamma}(u)
$$

central charges of $2 \mathrm{~d}-4 \mathrm{~d}$ states are phase-resolved.

Marginal Stability

Let $\mathcal{B}_{c} \subset \mathcal{B}$ be a locus where central charges of all 4d BPS particles have the same phase

$$
\mathcal{B}_{c}:=\left\{u \in \mathcal{B}, \operatorname{Arg} Z_{\gamma}(u)=\operatorname{Arg} Z_{\gamma^{\prime}}(u) \equiv \vartheta_{c}(u)\right\}
$$

Because of marginal stability, the 4 d BPS spectrum is ill-defined at $u_{c} \in \mathcal{B}_{c}$.

However, the $2 \mathrm{~d}-4 \mathrm{~d}$ spectrum is still well-defined, because

$$
Z_{i j, \gamma}(u)=\widetilde{W}_{j}(u)-\widetilde{W}_{i}(u)+Z_{\gamma}(u) \neq Z_{\gamma}(u)
$$

central charges of $2 \mathrm{~d}-4 \mathrm{~d}$ states are phase-resolved.
At $u_{c} \in \mathcal{B}_{c}$ the generating function of $2 \mathrm{~d}-4 \mathrm{~d} \mathcal{Q}_{\vartheta}$-BPS states is well defined

$$
F\left(\vartheta, u_{c}\right)=\sum_{i j, \gamma} \Omega\left(\vartheta, u_{c}, i j, \gamma ; y\right) X_{i j, \gamma}
$$

$$
\begin{aligned}
\text { at } u: & F^{\prime}=\left[\prod \Phi\left((-y)^{m} X_{\gamma}\right)^{a_{m}(\gamma, u)}\right] \cdot F \cdot\left[\prod \Phi\left((-y)^{m} X_{\gamma}\right)^{a_{m}(\gamma, u)}\right]^{-1} \\
\text { at } u_{c}: & F^{\prime}=\mathbb{U} \cdot F \cdot \mathbb{U}^{-1}
\end{aligned}
$$

- $F\left(\vartheta, u_{c}\right)$ exhibits a single jump at ϑ_{c} which captures the full BPS monodromy
- From the viewpoint of 2d-4d states nothing special happens at the critical locus: can "parallel transport" both F and F^{\prime} to \mathcal{B}_{c}
- Redefining \mathbb{U} as the jump $F \rightarrow F^{\prime}$, extends its definition to \mathcal{B}_{c}
\mathbb{U} is determined by considering several surface defects at once. Each contributes $F^{\prime}=\cup \mathcal{U} \mathbb{U}^{-1}$. Both F, F^{\prime} are computed by spectral networks.
\mathbb{U} is determined by considering several surface defects at once. Each contributes $F^{\prime}=\cup \mathcal{U} \mathbb{U}^{-1}$. Both F, F^{\prime} are computed by spectral networks.

The spectral network at $\left(u_{c}, \vartheta_{c}\right)$ is very special. Several finite edges appear simultaneously. Within the network a critical graph emerges.
\mathbb{U} is determined by considering several surface defects at once. Each contributes $F^{\prime}=\mathbb{U} F \mathbb{U}^{-1}$. Both F, F^{\prime} are computed by spectral networks.

The spectral network at $\left(u_{c}, \vartheta_{c}\right)$ is very special. Several finite edges appear simultaneously. Within the network a critical graph emerges.

The graph topology, together with a notion of framing, determine \mathbb{U}.

First Example: Argyres-Douglas

First Example: Argyres-Douglas

First Example: Argyres-Douglas

First Example: Argyres-Douglas

First Example: Argyres-Douglas

First Example: Argyres-Douglas

The graph has 2 edges, each contributes an equation

$$
F_{p}^{\prime}=U F_{p} U^{-1}
$$

with

$$
\begin{aligned}
& F_{p_{1}}=1+y^{-1} X_{\gamma_{1}}+y^{-1} X_{\gamma_{1}+\gamma_{2}} \\
& F_{p_{2}}=1+y^{-1} X_{\gamma_{2}} \\
& F_{p_{1}}^{\prime}=1+y^{-1} X_{\gamma_{1}} \\
& F_{p_{2}}^{\prime}=1+y^{-1} X_{\gamma_{2}}+y^{-1} X_{\gamma_{1}+\gamma_{2}}
\end{aligned}
$$

Together, they determine the monodromy

$$
\begin{aligned}
U & =1-\frac{y}{(y)_{1}}\left(X_{\gamma_{1}}+X_{\gamma_{2}}\right)+\frac{y^{2}}{(y)_{1}^{2}} X_{\gamma_{1}+\gamma_{2}}+\frac{y^{2}}{(y)_{2}}\left(X_{2 \gamma_{1}}+X_{2 \gamma_{2}}\right)+\ldots \\
& =\Phi\left(X_{\gamma_{1}}\right) \Phi\left(X_{\gamma_{2}}\right)
\end{aligned}
$$

Second Example: $S U(2) N=2^{*}$

The graph has three edges p_{1}, p_{2}, p_{3}; each contributes one equation

$$
F_{p}^{\prime}=U F_{p} \mathbb{U}^{-1}
$$

with

$$
\begin{aligned}
& F_{p_{1}}=\frac{1+x_{\gamma_{1}}+\left(y+y^{-1}\right) x_{\gamma_{1}+\gamma_{3}}+x_{\gamma_{1}+2 \gamma_{3}}+\left(y+y^{-1}\right) x_{\gamma_{1}+\gamma_{2}+2 \gamma_{3}}+x_{\gamma_{1}+2 \gamma_{2}+2 \gamma_{3}}+x_{2 \gamma_{1}+2 \gamma_{2}+2 \gamma_{3}}}{\left(1-x_{2 \gamma_{1}+2 \gamma_{3}}+2 \gamma_{3}\right)^{2}} \\
& F_{p_{1}}^{\prime}=\frac{1+x_{\gamma_{1}}+\left(y+y^{-1}\right) x_{\gamma_{1}+\gamma_{2}+x_{\gamma_{1}+2 \gamma_{2}}+\left(y+y^{-1}\right) x_{2 \gamma_{1}}+2 \gamma_{2}+\gamma_{3}}+x_{\gamma_{1}+2 \gamma_{2}+2 \gamma_{3}+x_{2 \gamma_{1}+2 \gamma_{2}+2 \gamma_{3}}}^{\left(1-x_{\left.2 \gamma_{1}+2 \gamma_{2}+2 \gamma_{3}\right)^{2}}{ }^{2}\right.}}{}
\end{aligned}
$$

$F_{p_{2,3}} \& F_{p_{2,3}}^{\prime}$ are obtained by cyclic \mathbb{Z}_{3} shifts of $\gamma_{1}, \gamma_{2}, \gamma_{3}$.
The solution:
$U=\left(\Pi_{n \geq 0}^{Z} \Phi\left(X_{\gamma_{1}+n\left(\gamma_{1}+\gamma_{2}\right)}\right)\right)$

$$
\begin{aligned}
\times \Phi\left(X_{\gamma_{3}}\right) \Phi\left((-y) X_{\gamma_{1}+\gamma_{2}}\right)^{-1} \Phi\left((-y)^{-1} X_{\gamma_{1}+\gamma_{2}}\right)^{-1} \Phi & \left(X_{2 \gamma_{1}+2 \gamma_{2}+\gamma_{3}}\right) \\
& \times\left(\prod_{n \geq 0}^{\searrow} \Phi\left(X_{\gamma_{2}+n\left(\gamma_{1}+\gamma_{2}\right)}\right)\right)
\end{aligned}
$$

Framing

F_{p}, F_{p}^{\prime} are computed from the graph by simple rules, based on

- the topology of a graph
- the framing: a cyclic ordering of edges at each node

Framing

F_{p}, F_{p}^{\prime} are computed from the graph by simple rules, based on

- the topology of a graph
- the framing: a cyclic ordering of edges at each node

Graphs of A_{1} theories are trivalent: topology and framing define a ribbon graph.

To each (\bar{Q}-algebraic) Riemann surface C is associated a holomorphic map $\mathfrak{B}: C \rightarrow \mathbb{P}^{1}$, with ramification at $0,1, \infty$ [Belyi].
The preimage $\mathfrak{B}^{-1}([0,1])$ is a ribbon graph on C, a dessin d'enfants [Grothendieck]. The ribbon graph is the union of critical leaves of a foliation on C by a Strebel differential [Harer, Mumford, Penner, Thurston, Mulase-Penkava].

Graph symmetries

Symmetries of a graph: automorphisms preserving both its topology and framing, they are inherited by \mathbb{U}.

These symmetries are often hidden by the Kontsevich-Soibelman factorization $\mathbb{U}=\Pi \Phi(X)$. Instead they become manifest on the graph (Ex. \mathbb{Z}_{3} symmetry in $\mathcal{N}=2^{*}$).

Graph symmetries

Symmetries of a graph: automorphisms preserving both its topology and framing, they are inherited by \mathbb{U}.

These symmetries are often hidden by the Kontsevich-Soibelman factorization $U=\Pi \Phi(X)$. Instead they become manifest on the graph (Ex. \mathbb{Z}_{3} symmetry in $\mathcal{N}=2^{*}$).

Graph symmetries show that \mathbb{U} shares important properties of the superconformal index.

- Punctures on C encode global symmetries of a Class \mathcal{S} theory [Gaiotto, Chacaltana-Distler-Tachikawa].
- The index is computed by correlators of a TQFT on C [Gadde-Pomoni-Rastelli-Razamat], it is a symmetric function of the flavor fugacities.
- Symmetries of the graph permute punctures, implying that \mathbb{U} is a symmetric function of the corresponding flavor fugacities, like the index.

Conclusion

1. To a class S theory associate a canonical "critical graph" on the UV curve, emerging from a degenerate spectral network at \mathcal{B}_{c}.
2. A new definition of the BPS monodromy, encoded by the topology and framing of the graph.
3. Does not use BPS spectrum. Manifest invariance under wall-crossing. At the critical locus \mathcal{B}_{c} the BPS spectrum is ill-defined.
4. Simpler than computing \mathbb{U} by using BPS spectra. Symmetries of \mathbb{U} are manifest from the graph.

Open questions

- Existence conditions for the critical locus \mathcal{B}_{c} where the critical graph emerges
- Equivalence relations among graphs: different topology, same \mathbb{U} on different components of \mathcal{B}_{c}
- Constructive approach by gluing graphs [Gabella-PL in progress]
- Relation to BPS quivers [Gabella-PL-Park-Yamazaki in progress]

