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Goal of the talk:

A construction of the BPS monodromy for theories of class S,
directly from the Coulomb branch geometry

I Does not involve knowledge of the BPS spectrum

I Manifest wall-crossing invariance

I Topological nature and symmetries of the superconformal index
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Motivations

I The BPS monodromy U is of central importance in wall crossing. It is also
a spectrum generating function, BPS state counting follows from
knowledge of U [Kontsevich-Soibelman, Gaiotto-Moore-Neitzke, Dimofte-Gukov].

I Relation to various specializations of the superconformal index
[Cecotti-Neitzke-Vafa, Iqbal-Vafa, Cordova-Shao, Cecotti-Song-Vafa-Yan].

I Graphs encoding U are an important link in the Network/Quiver
correspondence
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On Coulomb branches B of 4d N = 2 gauge theories gauge symmetry is
spontaneously broken to U(1)r .

At generic u ∈ B the lightest charged particles are BPS solitons
|ψ〉 = |γ,m〉 ∈H BPS

u characterized by charge γ ∈ Z2r+f and spin j3 = m

M |ψ〉 = |Zγ | |ψ〉 , Qϑ|ψ〉 = 0 (ϑ = ArgZγ) .

Zγ(u) is topological, linear in γ, locally holomorphic in u.

Low energy dynamics on B admits a geometric description, involving a family
of complex curves Σu fibered over B [Seiberg-Witten]

γ ∈ H1(Σu,Z) Zγ = 1
π

∮
γ
λ

On R3 × S1
R a 3d σ-model into M→ B, effective action receives quantum

corrections ∼ e−2πR|Zγ | from BPS particles wrapping S1
R .

The metric on M therefore encodes the BPS spectrum, which can be extracted
with geometric tools like spectral networks [Gaiotto-Moore-Neitzke].
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BPS particles interact, forming boundstates

Ebound = |Zγ1+γ2 | − |Zγ1 | − |Zγ2 | ≤ 0

Boundstates form/decay at codimR-1 marginal stability loci

MS(γ1, γ2) := {u ∈ B | ArgZγ1 (u) = ArgZγ2 (u)}

Jumps of the BPS spectrum are controlled by an ArgZγ-ordered product of
quantum dilogarithms [Kontsevich-Soibelman]

ArgZ(u)↗∏
γ,m

Φ((−y)mYγ)am(γ,u) =

ArgZ(u′)↗∏
γ,m

Φ((−y)mYγ)am(γ,u′) ≡ U

I non-commutative: DSZ-twisted product Xγ1Xγ2 = y 〈γ1,γ2〉Xγ1+γ2

I BPS degeneracies am(γ, u) = (−1)mdimH BPS
u,γ,m count |γ,m〉
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Surface defects as 2d-4d systems

2d-4d system:

I 2d N = (2, 2) theory on R1,1 ⊂ R1,3

I chiral matter in a representation of a global symmetry G

I 4d vector multiplets couple to 2d chirals, gauging G

Vevs of 4d VM scalars on B correspond to twisted masses for 2d chirals.
Therefore Coulomb moduli control the 2d effective superpotential W̃ (u).

For u generic, W̃ (u) has a finite number of massive vacua W̃i (u), i = 1, . . . , d .

2d-4d BPS states: BPS field configurations interpolating between vacua (ij)
on the defect, carrying both topological (2d) and flavor (4d) charges

Zij,γ(u) ∼ W̃j(u)− W̃i (u) + Zγ(u) , Mij,γ = |Zij,γ | .

[Hanany-Hori, Dorey, Gaiotto, Gaiotto-Moore-Neitzke, PL, Gaiotto-Gukov-Seiberg]
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2d-4d wall-crossing

2d-4d vacua are fibered nontrivially over the space of 4d vacua B.
Both the chiral ring and central charges Zij,γ depend on u, through W̃ (u).

2d-4d wall-crossing: 2d-4d BPS states can form boundstates

(ij , γ′) + (jk, γ′′) → (ik, γ)

Ebind = |Zij,γ′ + Zjk,γ′′ | − |Zij,γ′ | − |Zjk,γ′′ | ≤ 0

Marginal stability occurs when ArgZij,γ′(u) = ArgZjk,γ′′(u), the 2d-4d BPS
spectrum depends on u.

2d-4d mixing: Boundstates of solitons of opposite type mix with 4d BPS states

(ij , γ′) + (ji , γ′′) → (ii , γ) ∼ γ

in this way the surface defect probes the 4d BPS spectrum.
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To compute 2d-4d mixing, introduce a formal generating series of 2d-4d BPS
states preserving Qϑ:

F (ϑ, u) =
∑
ij,γ

Ω(ϑ, u, ij , γ; y)Xij,γ

Dependence on ϑ: F (ϑ, u) is
piecewise-constant in ϑ,
jumps across 4d BPS rays ϑ = ArgZγ
[Gaiotto-Moore-Neitzke]

F (ϑ′, u) =
[∏

Φ((−y)mXγ)am(γ)
]
F (ϑ, u)

[∏
Φ((−y)mXγ)am(γ)

]−1

4d BPS degeneracies am(γ) control jumps in ϑ (at fixed u). Conversely,
comparing F (ϑ, u) to F (ϑ+ π, u) gives the whole 4d BPS spectrum at u:

F (ϑ+ π, u) = UF (ϑ, u)U−1 .
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Spectral Networks

1. For canonical defects of Class S theories, the generating function F (ϑ, u)
is computed by the combinatorics of networks on the (Class S) UV curve

I The shape of a network is controlled by the
geometry of Σu, and by an angle ϑ

I Edges carry soliton data counting 2d-4d BPS
states. Ω(ϑ, u, ij , γ; y) determined by global
topology

I Finite edges appear at ϑ = ArgZγ ,
corresponding to 4d BPS states

(varying ϑ, u fixed)

2. Through 2d-4d mixing (ij , γ′) + (ji , γ′′) ∼ (ii , γ), the 2d-4d spectrum
encodes the 4d spectrum. [Gaiotto-Moore-Neitzke]

Then use spectral networks to compute F (ϑ, u), F (ϑ+ π, u) and obtain U.
• still choosing a chamber of B and some 4d BPS states
• still impractical: complexity of 2d-4d wall crossing
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Marginal Stability

Let Bc ⊂ B be a locus where central charges of all 4d BPS particles have the
same phase

Bc := {u ∈ B , ArgZγ(u) = ArgZγ′(u) ≡ ϑc(u)}

Because of marginal stability, the 4d BPS spectrum is ill-defined at uc ∈ Bc .

However, the 2d-4d spectrum is still well-defined, because

Zij,γ(u) = W̃j(u)− W̃i (u) + Zγ(u) 6= Zγ(u)

central charges of 2d-4d states are phase-resolved.

At uc ∈ Bc the generating function of 2d-4d Qϑ-BPS states is well defined

F (ϑ, uc) =
∑
ij,γ

Ω(ϑ, uc , ij , γ; y)Xij,γ
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at u : F ′ =
[∏

Φ((−y)mXγ)am(γ,u)] · F · [∏Φ((−y)mXγ)am(γ,u)]−1

at uc : F ′ = U · F · U−1

I F (ϑ, uc) exhibits a single jump at ϑc which captures the full BPS
monodromy

I From the viewpoint of 2d-4d states nothing special happens at the critical
locus: can “parallel transport” both F and F ′ to Bc

I Redefining U as the jump F → F ′, extends its definition to Bc
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U is determined by considering several surface defects at once. Each
contributes F ′ = UF U−1. Both F ,F ′ are computed by spectral networks.

The spectral network at (uc , ϑc) is very special. Several finite edges appear
simultaneously. Within the network a critical graph emerges.

The graph topology, together with a notion of framing, determine U.
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First Example: Argyres-Douglas

The graph has 2 edges, each
contributes an equation

F ′p = UFp U−1

with

Fp1 = 1 + y−1Xγ1 + y−1Xγ1+γ2

Fp2 = 1 + y−1Xγ2

F ′p1
= 1 + y−1Xγ1

F ′p2
= 1 + y−1Xγ2 + y−1Xγ1+γ2

Together, they determine the monodromy

U = 1− y

(y)1

(
Xγ1 + Xγ2

)
+

y 2

(y)2
1

Xγ1+γ2 +
y 2

(y)2

(
X2γ1 + X2γ2

)
+ . . .

= Φ(Xγ1 )Φ(Xγ2 )
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Second Example: SU(2) N = 2∗

The graph has three edges p1, p2, p3;
each contributes one equation

F ′p = UFp U−1

with

Fp1 =
1+Xγ1

+(y+y−1)Xγ1+γ3
+Xγ1+2γ3

+(y+y−1)Xγ1+γ2+2γ3
+Xγ1+2γ2+2γ3

+X2γ1+2γ2+2γ3

(1−X2γ1+2γ2+2γ3 )2

F ′p1
=

1+Xγ1
+(y+y−1)Xγ1+γ2

+Xγ1+2γ2
+(y+y−1)Xγ1+2γ2+γ3

+Xγ1+2γ2+2γ3
+X2γ1+2γ2+2γ3

(1−X2γ1+2γ2+2γ3 )2

Fp2,3 & F ′p2,3
are obtained by cyclic Z3 shifts of γ1, γ2, γ3.

The solution:
U =

(∏↗
n≥0 Φ

(
Xγ1+n(γ1+γ2)

))
×Φ (Xγ3 ) Φ ((−y)Xγ1+γ2 )−1 Φ

(
(−y)−1Xγ1+γ2

)−1
Φ (X2γ1+2γ2+γ3 )

×
(∏↘

n≥0 Φ(Xγ2+n(γ1+γ2))
)
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Framing

Fp,F
′
p are computed from the graph by simple rules, based on

I the topology of a graph

I the framing: a cyclic ordering of edges at each node

Graphs of A1 theories are trivalent:
topology and framing define a
ribbon graph.

To each (Q-algebraic) Riemann surface C is associated a holomorphic map
B : C → P1, with ramification at 0, 1,∞ [Belyi].
The preimage B−1([0, 1]) is a ribbon graph on C , a dessin d’enfants [Grothendieck].
The ribbon graph is the union of critical leaves of a foliation on C by a Strebel
differential [Harer, Mumford, Penner, Thurston, Mulase-Penkava].
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Graph symmetries

Symmetries of a graph: automorphisms preserving both its topology and
framing, they are inherited by U.

These symmetries are often hidden by the Kontsevich-Soibelman factorization
U =

∏
Φ(X ). Instead they become manifest on the graph (Ex. Z3 symmetry

in N = 2∗).

Graph symmetries show that U shares important properties of the
superconformal index.

I Punctures on C encode global symmetries of a Class S theory [Gaiotto,

Chacaltana-Distler-Tachikawa].

I The index is computed by correlators of a TQFT on C
[Gadde-Pomoni-Rastelli-Razamat], it is a symmetric function of the flavor fugacities.

I Symmetries of the graph permute punctures, implying that U is a
symmetric function of the corresponding flavor fugacities, like the index.
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Conclusion

1. To a class S theory associate a canonical “critical graph” on the UV curve,
emerging from a degenerate spectral network at Bc .

2. A new definition of the BPS monodromy, encoded by the topology and
framing of the graph.

3. Does not use BPS spectrum. Manifest invariance under wall-crossing. At
the critical locus Bc the BPS spectrum is ill-defined.

4. Simpler than computing U by using BPS spectra. Symmetries of U are
manifest from the graph.
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Open questions

I Existence conditions for the critical locus Bc where the critical graph
emerges

I Equivalence relations among graphs: different topology, same U on
different components of Bc

I Constructive approach by gluing graphs [Gabella-PL in progress]

I Relation to BPS quivers [Gabella-PL-Park-Yamazaki in progress]
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