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Goal of the talk:

A construction of the BPS monodromy for theories of class S,
directly from the Coulomb branch geometry

» Does not involve knowledge of the BPS spectrum

» Manifest wall-crossing invariance

» Topological nature and symmetries of the superconformal index
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Motivations

» The BPS monodromy U is of central importance in wall crossing. It is also
a spectrum generating function, BPS state counting follows from
knowledge Of U [Kontsevich-Soibelman, Gaiotto-Moore-Neitzke, Dimofte-Gukov].

> Relation to various specializations of the superconformal index
[Cecotti-Neitzke-Vafa, Igbal-Vafa, Cordova-Shao, Cecotti-Song-Vafa-Yan].

» Graphs encoding U are an important link in the Network/Quiver
correspondence
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On Coulomb branches B of 4d N’ = 2 gauge theories gauge symmetry is
spontaneously broken to U(1)".

At generic u € B the lightest charged particles are BPS solitons
|¢) = |y, m) € AP characterized by charge v € Z2*f and spin j3 = m

M) =12, 1¢), Quld) =0 (¥ =ArgZ,).

Z,(u) is topological, linear in v, locally holomorphic in u.

Low energy dynamics on I3 admits a geometric description, involving a family
of complex curves ¥, fibered over B [Seiberg-Witten]

vEH(TwZ)  Zy= 1§ A

™

On R® x S} a 3d o-model into M — B, effective action receives quantum
corrections ~ e~ 2"F1Z11 from BPS particles wrapping Sh.

The metric on M therefore encodes the BPS spectrum, which can be extracted
with geometric tools like spectral networks [Gaiotto-Moore-Neitzke].
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BPS particles interact, forming boundstates
Ebound = ‘Z’Y1+’Y2| - ‘Z’Yl| - |Z“/2| <0
Boundstates form/decay at codimg-1 marginal stability loci

MS(y1,72) = {u € B | ArgZy, (u) = ArgZ,, (u)}
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BPS particles interact, forming boundstates
Evound = |Zy 44, — |21 | — 125,] <0
Boundstates form/decay at codimg-1 marginal stability loci
MS(m1,72) :={u € B | ArgZ,,(u) = ArgZ,, (u)}

Jumps of the BPS spectrum are controlled by an Arg Z,-ordered product of
quantum dilogarithms [Kontsevich-Soibelman]

ArgZ(u) ArgZ(u') N /
IT o)y = I o))
v,m o

> non-commutative: DSZ-twisted product X, X,, = yv 2 X (o,

» BPS degeneracies am(7, u) = (—1)"dim#3, count |, m)
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Jumps of the BPS spectrum are controlled by an Arg Z,-ordered product of
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ArgZ(u) ArgZ(u') N ,
[T o) = T o))" = u
~¥,m ¥,m

> non-commutative: DSZ-twisted product X, X,, = yv 2 X (o,

» BPS degeneracies am(7, u) = (—1)"dim#3, count |, m)
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Surface defects as 2d-4d systems

2d-4d system:
» 2d N = (2,2) theory on R%* c R'?
> chiral matter in a representation of a global symmetry G

» 4d vector multiplets couple to 2d chirals, gauging G

Vevs of 4d VM scalars on B correspond to twisted masses for 2d chirals.
Therefore Coulomb moduli control the 2d effective superpotentlal W( ).

For u generic, W(u) has a finite number of massive vacua Wi(u), i =1,...,d.

2d-4d BPS states: BPS field configurations interpolating between vacua (if)
on the defect, carrying both topological (2d) and flavor (4d) charges

Zij(u) ~ Wi(u) — Wi(u) + Zy(u), Mijy = 1Zij ]

[Hanany-Hori, Dorey, Gaiotto, Gaiotto-Moore-Neitzke, PL, Gaiotto-Gukov-Seiberg]
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2d-4d wall-crossing

2d-4d vacua are fibered nontrivially over the space of 4d vacua B.
Both the chiral ring and central charges Zj;, depend on u, through W(u).

2d-4d wall-crossing: 2d-4d BPS states can form boundstates
(i5,7") + Uk,A") = (ik,7)

Ebind = |Zjjnr + Zik | = | Zjjyr | = | Zig 1] <0

Marginal stability occurs when Arg Zj; ./ (u) = Arg Zj . (u), the 2d-4d BPS
spectrum depends on wu.
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2d-4d wall-crossing

2d-4d vacua are fibered nontrivially over the space of 4d vacua B.
Both the chiral ring and central charges Zj;, depend on u, through W(u).

2d-4d wall-crossing: 2d-4d BPS states can form boundstates
(i5,7") + Uk,A") = (ik,7)
Evind = |Zjj ' + Ziky| = | Zijyr| = | Zj iy | <0

Marginal stability occurs when Arg Zj; ./ (u) = Arg Zj . (u), the 2d-4d BPS
spectrum depends on wu.

2d-4d mixing: Boundstates of solitons of opposite type mix with 4d BPS states
(i5,7") + Gi,y") = (ii,y) ~ v

in this way the surface defect probes the 4d BPS spectrum.
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To compute 2d-4d mixing, introduce a formal generating series of 2d-4d BPS
states preserving Qy:

F('lg, U) = ZQ(ﬂa u, Ij,"}/;y)Xij,'y

ijyy
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To compute 2d-4d mixing, introduce a formal generating series of 2d-4d BPS
states preserving Qy:

F(9,u) =Y Q0 u,ij, 7 y) Xjn

ijyy
7 K4 Particles

Dependence on ¥: F(4, u) is 9
piecewise-constant in ¢,
jumps across 4d BPS rays ¥ = Arg Z,

[Gaiotto-Moore-Neitzke] Anti Particles

)= [[Te(-9)"x:)" ] F@,u) [[TU=)"%)"]
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To compute 2d-4d mixing, introduce a formal generating series of 2d-4d BPS
states preserving Qy:

F(9,u) =Y Q0 u,ij, 7 y) Xjn

ijyy
7 K4 Particles

Dependence on ¥: F(4, u) is 9
piecewise-constant in ¢,
jumps across 4d BPS rays ¥ = Arg Z,

[Gaiotto-Moore-Neitzke] Anti Particles

)= [[Te(-9)"x:)" ] F@,u) [[TU=)"%)"]

4d BPS degeneracies am(7y) control jumps in ¢ (at fixed u). Conversely,
comparing F (¥, u) to F(¢ + 7, u) gives the whole 4d BPS spectrum at u:

F(9+m,u)=UFW,u)U ",
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Spectral Networks

1. For canonical defects of Class S theories, the generating function F(9, u)
is computed by the combinatorics of networks on the (Class &) UV curve

» The shape of a network is controlled by the
geometry of ¥,, and by an angle ¥

» Edges carry soliton data counting 2d-4d BPS
states. Q(¥, u, ij,; y) determined by global
topology

» Finite edges appear at ¢ = ArgZ,,
corresponding to 4d BPS states
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Spectral Networks

1. For canonical defects of Class S theories, the generating function F(9, u)
is computed by the combinatorics of networks on the (Class &) UV curve

» The shape of a network is controlled by the (varying 9, u fixed)
geometry of ¥,, and by an angle ¥

» Edges carry soliton data counting 2d-4d BPS
states. Q(¥, u, ij,; y) determined by global
topology

» Finite edges appear at ¢ = ArgZ,,
corresponding to 4d BPS states

2. Through 2d-4d mixing (ij,~') + (ji,y") ~ (ii,7), the 2d-4d spectrum
encodes the 4d spectrum. [Gaiotto-Moore-Neitzke]
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Spectral Networks

1. For canonical defects of Class S theories, the generating function F(9, u)
is computed by the combinatorics of networks on the (Class &) UV curve

» The shape of a network is controlled by the (varying 9, u fixed)
geometry of ¥,, and by an angle ¥

» Edges carry soliton data counting 2d-4d BPS
states. Q(¥, u, ij,; y) determined by global
topology

» Finite edges appear at ¢ = ArgZ,,
corresponding to 4d BPS states

2. Through 2d-4d mixing (ij,~') + (ji,y") ~ (ii,7), the 2d-4d spectrum
encodes the 4d spectrum. [Gaiotto-Moore-Neitzke]

Then use spectral networks to compute F(¥¢, u), F(J + 7, u) and obtain U.

e still choosing a chamber of B, with some 4d BPS spectrum
o still difficult, due to complexity of 2d-4d wall crossing
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Marginal Stability

Let Bc C B be a locus where central charges of all 4d BPS particles have the
same phase

Be:={ueB, ArgZ,(u) =ArgZ,(u) =V(uv)}

Because of marginal stability, the 4d BPS spectrum is ill-defined at u. € Bc.
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Marginal Stability

Let Bc C B be a locus where central charges of all 4d BPS particles have the
same phase

Be:={ueB, ArgZ,(u) =ArgZ,(u) =V(uv)}

Because of marginal stability, the 4d BPS spectrum is ill-defined at u. € Bc.

However, the 2d-4d spectrum is still well-defined, because
Zijy(u) = Wj(u) = Wiu) + Z,(u) # Z,(v)

central charges of 2d-4d states are phase-resolved.
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Marginal Stability

Let B. C B be a locus where central charges of all 4d BPS particles have the
same phase

Be:={ueB, ArgZ,(u) =ArgZ,(u) =V(uv)}

Because of marginal stability, the 4d BPS spectrum is ill-defined at u. € Bc.

However, the 2d-4d spectrum is still well-defined, because
Zijy(u) = Wj(u) = Wi(u) + Z,(u) # Z,(v)
central charges of 2d-4d states are phase-resolved.
At uc € B. the generating function of 2d-4d Q»-BPS states is well defined

F(ﬁ7 UC) = Zﬂ(ﬂa UC7U7’Y:y)X"J'7’Y

i,y
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at u :

at uc :

> F(¥, uc) exhibits a single jump at 9. which captures the full BPS
monodromy

» From the viewpoint of 2d-4d states nothing special happens at the critical
locus: can “parallel transport” both F and F’ to B.

» Redefining U as the jump F — F’, extends its definition to 5.

P. Longhi Lisbon - 16-01-2017



U is determined by considering several surface defects at once. Each
contributes F/ = U FU™. Both F, F’ are computed by spectral networks.
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U is determined by considering several surface defects at once. Each
contributes F/ = U FU™. Both F, F’ are computed by spectral networks.

The spectral network at (uc,c) is very special. Several finite edges appear
simultaneously. Within the network a critical graph emerges.
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U is determined by considering several surface defects at once. Each
contributes F/ = U FU™. Both F, F’ are computed by spectral networks.

The spectral network at (uc,c) is very special. Several finite edges appear
simultaneously. Within the network a critical graph emerges.

The graph topology, together with a notion of framing, determine U.

5 OTR
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First Example: Argyres-Douglas

The graph has 2 edges, each
contributes an equation

Fp=UF,U"

yan %
with A

Fop =1 +y71XW1 +y71XW1+W2
Fp, =1 +y_1sz
Flgl = 1+y71X’Y1
F;;z =1 +y71sz +y71X71+72

Together, they determine the monodromy

2 2
Y Yy
2X’Yl+72 + (y)2

U=1— 2 (X, +X;,) + 07

()
= ¢(XW1)¢(X72)
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Second Example: SU(2) N = 2*

The graph has three edges p1, p2, p3;
each contributes one equation

/ -1
F,=UF,U
with
£ Xy T X g +Xfyl+2')3+(Y+Y71)X'11+'722+2'13+X‘)1+2"12+2'13 +Xony 12754273
P (1=Xayy 4274243
= 1+X'V1*(y+y71)xv1+'vz+x"f1+2‘v2+(y+y71)xw1+2v2+73+X‘v1+2wz+273+X271+2'Y2*273
PL (1=X2yy +2v54243)
Fpys & Fp, , are obtained by cyclic Zs shifts of y1, 72,73

The solution:
U= <Hn/(20 @ (X’Yl+"(’)1+’yz)))

_ _ -1
x® (X%) ¢ ((*}’)Xwﬁvz) ‘o ((*}’) 1X71+vz) ® (X271+272+73)

X (Hn\zo ¢(Xw+n('v1+'vz)))
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Framing

Fp, F, are computed from the graph by simple rules, based on
> the topology of a graph

» the framing: a cyclic ordering of edges at each node
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Framing

Fp, F, are computed from the graph by simple rules, based on
> the topology of a graph
» the framing: a cyclic ordering of edges at each node

~ B . o
Graphs of A; theories are trivalent: N e
topology and framing define a | /

ribbon graph. }‘ |

To each (Q-algebraic) Riemann surface C is associated a holomorphic map

B : C — P!, with ramification at 0,1, 00 [Belyi].

The preimage B1([0, 1]) is a ribbon graph on C, a dessin d’enfants [Grothendieck].
The ribbon graph is the union of critical leaves of a foliation on C by a Strebel
differential [Harer, Mumford, Penner, Thurston, Mulase-Penkava).
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Graph symmetries

Symmetries of a graph: automorphisms preserving both its topology and
framing, they are inherited by U.

These symmetries are often hidden by the Kontsevich-Soibelman factorization
U =[] ®(X). Instead they become manifest on the graph (Ex. Zs symmetry
in V' =2%).
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Graph symmetries

Symmetries of a graph: automorphisms preserving both its topology and
framing, they are inherited by U.

These symmetries are often hidden by the Kontsevich-Soibelman factorization
U =[] ®(X). Instead they become manifest on the graph (Ex. Zs symmetry
in V' =2%).

Graph symmetries show that U shares important properties of the
superconformal index.

» Punctures on C encode global symmetries of a Class S theory [Gaiotto,

Chacaltana-Distler-Tachikawa].

» The index is computed by correlators of a TQFT on C
[Gadde-Pomoni-Rastelli-Razamat], it is a symmetric function of the flavor fugacities.

» Symmetries of the graph permute punctures, implying that U is a
symmetric function of the corresponding flavor fugacities, like the index.
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Conclusion

1. To a class S theory associate a canonical “critical graph” on the UV curve,
emerging from a degenerate spectral network at B..

A new definition of the BPS monodromy, encoded by the topology and
framing of the graph.

3. Does not use BPS spectrum. Manifest invariance under wall-crossing. At
the critical locus B. the BPS spectrum is ill-defined.

4. Simpler than computing U by using BPS spectra. Symmetries of U are
manifest from the graph.
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Open questions

» Existence conditions for the critical locus B. where the critical graph
emerges

» Equivalence relations among graphs: different topology, same U on
different components of B.

» Constructive approach by gluing graphs [Gabella-PL in progress]

v

Relation to BPS quivers [Gabella-PL-Park-Yamazaki in progress]
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