A Puzzle Solved by Massless Modes in $A d S_{3}$ Integrability

Programme

1. One of the nicest results in AdS/CFT:

Quantum integrability, the dressing phase, and tests using macroscopic spinning strings.
2. A problem we were stuck on for 3 years:

> Generalising from $A d S_{5} \times S^{5}$ to $A d S_{3} \times S^{3} \times T^{4}$: find a different phase, but this gives a mismatch.
3. How this led us to some new physics:

The limitations of the Bethe Ansatz, and first unavoidable appearance of massless modes.

Planar AdS/CFT

4D $\mathscr{N}=4$ Super

Yang-Mills

$$
\begin{aligned}
& g_{\mathrm{YM}}^{2} N=\lambda \ll 1 \\
& (\text { and } N=\infty)
\end{aligned}
$$

Spectrum Δ_{i} :
$\left\langle O_{i}(x) O_{j}(y)\right\rangle=\frac{\delta_{i j}}{|x-y|^{2 \Delta_{i}}}$
$\Delta-J_{1}-J_{2} \equiv E$

IIB strings in

AdS $\mathbf{5}_{\mathbf{5}} \times \boldsymbol{S}^{5}$
$R^{2} / \alpha^{\prime}=\sqrt{\lambda} \gg 1$
(and $g_{\text {string }}=0$)
Metsaev-Tseytlin \mathbb{Z}_{4}
coset action:
$\operatorname{PSU}(2,2 \mid 4) / S O(1,4) \times S O(5)$
$\int^{L} d^{2} \sigma \operatorname{STr}\left[j_{\mu}^{(2)} j^{(2) \mu}+\epsilon^{a b} j_{a}^{(1)} j_{b}^{(3)}\right.$

Planar AdS/CFT ... Triality

4D $\mathscr{N}=4$ Super

Yang-Mills

$g_{\mathrm{YM}}^{2} N=\lambda \ll 1$
(and $N=\infty$)
Spectrum Δ_{i} :
$\left\langle O_{i}(x) O_{j}(y)\right\rangle=\frac{\delta_{i j}}{|x-y|^{2 \Delta_{i}}}$
$\Delta-J_{1}-J_{2} \equiv E$

IIB strings in

Integrable system
$h=\sqrt{\lambda} / 4 \pi \quad \forall \lambda$
Asymptotic (i.e. $L \gg 1$)
Bethe equations:

$$
e^{i L p_{i}}=\prod_{j \neq i}^{K} S\left(p_{i}, p_{j}\right)
$$

Input two-particle S-matrix, and dispersion relation. Output:

$$
E_{\left\{p_{1} \cdots p_{K}\right\}}=\sum_{j} E\left(p_{j}\right)
$$

... plus corrections $\mathscr{O}\left(e^{-L / h}\right)$ at strong coupling

Planar AdS/CFT ... Triality

4D $\mathscr{N}=4$ Super

Yang-Mills

$g_{\mathrm{YM}}^{2} N=\lambda \ll 1$
(and $N=\infty$)
Spectrum Δ_{i} :
$\left\langle O_{i}(x) O_{j}(y)\right\rangle=\frac{\delta_{i j}}{|x-y|^{2 \Delta_{i}}}$
$\Delta-J_{1}-J_{2} \equiv E$

IIB strings in

Integrable system
$h=\sqrt{\lambda} / 4 \pi \quad \forall \lambda$
Asymptotic (i.e. $L \gg 1$)
Bethe equations:

$$
e^{i L p_{i}}=\prod_{j \neq i}^{K} S\left(p_{i}, p_{j}\right)
$$

Input two-particle S-matrix, and dispersion relation. Output:

AdS $\mathbf{5}_{5} \times \boldsymbol{S}^{5}$
$R^{2} / \alpha^{\prime}=\sqrt{\lambda} \gg 1$ (and $g_{\text {string }}=0$)
Metsaev-Tseytlin \mathbb{Z}_{4}
coset action:
$\operatorname{PSU}(2,2 \mid 4) / S O(1,4) \times S O(5)$ $\int^{L} d^{2} \sigma \operatorname{STr}\left[j_{\mu}^{(2)} j^{(2) \mu}+\epsilon^{a b} j_{a}^{(1)} j_{b}^{(3)}\right.$

Compare these two.

$$
E_{\left\{p_{1} \cdots p_{K}\right\}}=\sum_{j} E\left(p_{j}\right)
$$

... plus corrections $\mathscr{O}\left(e^{-L / h}\right)$ at strong coupling

su(2) Sector

One-loop dilatation operator

= Heisenberg spin chain H_{2}

$$
\operatorname{Tr}(Z Z X Z \ldots)=\downarrow \downarrow \uparrow \downarrow \ldots
$$

With K impurities $=$ magnons,
$p_{j}=-i \log \left(x_{j}^{+} / x_{j}^{-}\right)$constrained by

$$
\left(\frac{x_{k}^{+}}{x_{k}^{-}}\right)^{L}=\prod_{j \neq k}^{K} \frac{x_{k}^{+}-x_{j}^{-}}{x_{k}^{-}-x_{j}^{+}}
$$

and $\sum_{j} p_{j}=0$. Energy is then
$E=\sum_{k} \frac{h}{2 i}\left[x_{k}^{+}-\frac{1}{x_{k}^{+}}-\right.$c.c. $]=\sum_{k} \sqrt{1+4 h^{2} \sin ^{2}\left(p_{k} / 2\right)}$
[Bethe, 1931] [Minahan \& Zarembo, 2002]
[Beisert, Kristjansen, Staudacher, 2003]

su(2) Sector: Weak and Strong Coupling

One-loop dilatation operator

$=$ Heisenberg spin chain H_{2}

$$
\operatorname{Tr}(Z Z X Z \ldots)=\downarrow \downarrow \uparrow \ldots
$$

With K impurities = magnons, $p_{j}=-i \log \left(x_{j}^{+} / x_{j}^{-}\right)$constrained by

$$
\left(\frac{x_{k}^{+}}{x_{k}^{-}}\right)^{L}=\prod_{j \neq k}^{K} \frac{x_{k}^{+}-x_{j}^{-}}{x_{k}^{-}-x_{j}^{+}}
$$

and $\sum_{j} p_{j}=0$. Energy is then
$E=\sum_{k} \frac{h}{2 i}\left[x_{k}^{+}-\frac{1}{x_{k}^{+}}-\right.$c.c. $]=\sum_{k} \sqrt{1+4 h^{2} \sin ^{2}\left(p_{k} / 2\right)}$
[Bethe, 1931] [Minahan \& Zarembo, 2002]
[Beisert, Kristjansen, Staudacher, 2003]

su(2) Sector: Weak and Strong Coupling

One-loop dilatation operator
$=$ Heisenberg spin chain H_{2}

$$
\operatorname{Tr}(Z Z X Z \ldots)=\downarrow \downarrow \uparrow \downarrow \ldots
$$

With K impurities $=$ magnons, $p_{j}=-i \log \left(x_{j}^{+} / x_{j}^{-}\right)$constrained by

Classical strings in $\mathbb{R} \times S^{3}$
also integrable:
₹ complex sine-gordon
Described by almost the same Bethe equations, but with AFS phase
[Arutyunov, Frolov, Staudacher, 2004]
$\sigma=1+\mathscr{O}\left(\lambda^{4}\right) \quad\left(\frac{x_{k}^{+}}{x_{k}^{-}}\right)^{L}=\prod_{j \neq k}^{K} \frac{x_{k}^{+}-x_{j}^{-}}{x_{k}^{-}-x_{j}^{+}}\left(\frac{1-\frac{1}{x_{k}^{+} x_{j}^{-}}}{1-\frac{1}{x_{k}^{-} x_{j}^{+}}}\right) \sigma^{2}\left(x_{k}, x_{j}\right) \quad \sigma=e^{i \theta}$
and $\sum_{j} p_{j}=0$. Energy is then

$$
\theta\left(x_{k}, x_{j}\right)=h \sum_{s \geq 2} Q_{[s}\left(x_{k}\right) Q_{s+1]}\left(x_{j}\right)
$$

$E=\sum_{k} \frac{h}{2 i}\left[x_{k}^{+}-\frac{1}{x_{k}^{+}}-\right.$c.c. $]=\sum_{k} \sqrt{1+4 h^{2} \sin ^{2}\left(p_{k} / 2\right)}$
[Bethe, 1931] [Minahan \& Zarembo, 2002]
[Beisert, Kristjansen, Staudacher, 2003]

su(2) Sector: Weak and Strong Coupling

One-loop dilatation operator
$=$ Heisenberg spin chain H_{2}

$$
\operatorname{Tr}(Z Z X Z \ldots)=\downarrow \downarrow \uparrow \downarrow \ldots
$$

With K impurities $=$ magnons, $p_{j}=-i \log \left(x_{j}^{+} / x_{j}^{-}\right)$constrained by

Classical strings in $\mathbb{R} \times S^{3}$
also integrable:
₹ complex sine-gordon
Described by almost the same Bethe equations, but with AFS phase
[Arutyunov, Frolov, Staudacher, 2004]

$$
\left(\frac{x_{k}^{+}}{x_{k}^{-}}\right)^{L}=\prod_{j \neq k}^{K} \frac{x_{k}^{+}-x_{j}^{-}}{x_{k}^{-}-x_{j}^{+}}\left(\frac{1-\frac{1}{x_{k}^{+} x_{j}^{-}}}{1-\frac{1}{x_{k}^{-} x_{j}^{+}}}\right) \sigma^{2}\left(x_{k}, x_{j}\right) \quad \sigma=e^{i \theta}
$$

and $\sum_{j} p_{j}=0$. Energy is then

$$
\theta\left(x_{k}, x_{j}\right)=h \sum_{s \geq 2} Q_{[s}\left(x_{k}\right) Q_{s+1]}\left(x_{j}\right)
$$

$$
+\sum_{r, s \geq 2} c_{r, s} Q_{r} Q_{s}+\mathscr{O}(1 / h)
$$

Quantum effects: HL phase $c_{r, s}$
[Bethe, 1931] [Minahan \& Zarembo, 2002]
[Hernandez, Lopez, 2006]
[Beisert, Kristjansen, Staudacher, 2003]

+ higher terms $\mathscr{O}(1 / h)$

Semiclassical Spinning Strings

Classical solution in $S^{3} \subset \mathbb{C}^{2}$

$$
Z_{1}=\frac{1}{\sqrt{2}} e^{i \mathscr{F} \tau+i m \sigma}, \quad Z_{2}=\frac{1}{\sqrt{2}} e^{i \mathscr{F} \tau-i m \sigma}, \quad t=\kappa \tau
$$

with charges $J_{1}=J_{2}=\frac{1}{2} \sqrt{\lambda} \mathscr{J} \gg 1$.

Semiclassical Spinning Strings

Classical solution in $S^{3} \subset \mathbb{C}^{2}$

$$
Z_{1}=\frac{1}{\sqrt{2}} e^{i \mathscr{F} \tau+i m \sigma}, \quad Z_{2}=\frac{1}{\sqrt{2}} e^{i \mathscr{F} \tau-i m \sigma}, \quad t=\kappa \tau
$$

with charges $J_{1}=J_{2}=\frac{1}{2} \sqrt{\lambda} \mathscr{J} \gg 1$.
Quantum correction to its energy:

$$
\delta E=\frac{1}{2 \kappa} \sum_{r}^{8+8}(-1)^{F_{r}} \sum_{n}^{\infty} w_{n}^{r}
$$

frequencies $w_{n}^{A}=\sqrt{n^{2}+\kappa^{2}}$ and $w_{n}^{S \pm}=\sqrt{n^{2}+2 \mathscr{J}^{2} \pm 2 \sqrt{n^{2}\left(\mathscr{J}^{2}+m^{2}\right)+\mathscr{J}^{4}}}$ etc.

Semiclassical Spinning Strings

Classical solution in $S^{3} \subset \mathbb{C}^{2}$

$$
Z_{1}=\frac{1}{\sqrt{2}} e^{i \mathscr{F} \tau+i m \sigma}, \quad Z_{2}=\frac{1}{\sqrt{2}} e^{i \mathscr{F} \tau-i m \sigma}, \quad t=\kappa \tau
$$

with charges $J_{1}=J_{2}=\frac{1}{2} \sqrt{\lambda} \mathscr{J} \gg 1$.
Quantum correction to its energy:

$$
\delta E=\frac{1}{2 \kappa} \sum_{r}^{8+8}(-1)^{F_{r}} \sum_{n}^{\infty} w_{n}^{r}
$$

frequencies $w_{n}^{A}=\sqrt{n^{2}+\kappa^{2}}$ and $w_{n}^{S \pm}=\sqrt{n^{2}+2 \mathscr{J}^{2} \pm 2 \sqrt{n^{2}\left(\mathscr{J}^{2}+m^{2}\right)+\mathscr{J}^{4}}}$ etc. lead to via [Beisert \& Tseytin]'s resummation:

$$
\delta E^{\text {int }}=-\frac{m^{6}}{3 \mathscr{J}^{5}}+\frac{m^{8}}{3 \mathscr{J}^{7}}-\frac{49 m^{10}}{120 \mathscr{J}^{9}}+\frac{2 m^{12}}{5 \mathscr{J}^{11}}+\ldots
$$

Now recover this from Bethe equations...

Semiclassical Bethe Equations

Charges $J_{2}=J_{2} \gg 1$ implies half the spins are flipped, on a long chain.
Many Bethe roots $(\sim \sqrt{\lambda})$ but all in a line - one-cut resolvent:

$$
G(\tilde{x})=\sum_{k} \frac{1}{\tilde{x}-\tilde{x}_{k}} \frac{\tilde{x}_{k}^{2}}{\tilde{x}_{k}^{2}-\tilde{g}^{2}}=2 \pi m-\frac{\sqrt{1+(4 \pi m \tilde{x})^{2}}-\sqrt{1+(4 \pi m \tilde{g})^{2}}}{2\left(\tilde{x}-\tilde{g}^{2} / \tilde{x}\right)}
$$

Semiclassical Bethe Equations

Charges $J_{2}=J_{2} \gg 1$ implies half the spins are flipped, on a long chain.
Many Bethe roots $(\sim \sqrt{\lambda})$ but all in a line - one-cut resolvent:

$$
G(\tilde{x})=\sum_{k} \frac{1}{\tilde{x}-\tilde{x}_{k}} \frac{\tilde{x}_{k}^{2}}{\tilde{x}_{k}^{2}-\tilde{g}^{2}}=2 \pi m-\frac{\sqrt{1+(4 \pi m \tilde{x})^{2}}-\sqrt{1+(4 \pi m \tilde{g})^{2}}}{2\left(\tilde{x}-\tilde{g}^{2} / \tilde{x}\right)}
$$

Energy correction due to arbitrary one-loop dressing phase is

$$
\delta E=\frac{m^{4} c_{1,2}}{4 \mathscr{J}^{3}}+\frac{m^{6}\left(-4 c_{1,2}-c_{1,4}+c_{2,3}\right)}{16 \mathscr{J}^{5}}+\frac{m^{8}\left(15 c_{1,2}+5 c_{1,4}+2 c_{1,6}-5 c_{2,3}-2 c_{2,5}+c_{3,4}\right)}{64 \mathscr{J}^{7}}+\ldots
$$

Semiclassical Bethe Equations

Charges $J_{2}=J_{2} \gg 1$ implies half the spins are flipped, on a long chain.
Many Bethe roots $(\sim \sqrt{\lambda})$ but all in a line - one-cut resolvent:

$$
G(\tilde{x})=\sum_{k} \frac{1}{\tilde{x}-\tilde{x}_{k}} \frac{\tilde{x}_{k}^{2}}{\tilde{x}_{k}^{2}-\tilde{g}^{2}}=2 \pi m-\frac{\sqrt{1+(4 \pi m \tilde{x})^{2}}-\sqrt{1+(4 \pi m \tilde{g})^{2}}}{2\left(\tilde{x}-\tilde{g}^{2} / \tilde{x}\right)}
$$

Energy correction due to arbitrary one-loop dressing phase is

$$
\delta E=\frac{m^{4} c_{1,2}}{4 \mathscr{J}^{3}}+\frac{m^{6}\left(-4 c_{1,2}-c_{1,4}+c_{2,3}\right)}{16 \mathscr{J}^{5}}+\frac{m^{8}\left(15 c_{1,2}+5 c_{1,4}+2 c_{1,6}-5 c_{2,3}-2 c_{2,5}+c_{3,4}\right)}{64 \mathscr{J}^{7}}+\ldots
$$

To match the string theory, you want

$$
c_{r, s}^{\mathrm{HL}}=-8 \frac{(r-1)(s-1)}{(r+s-2)(s-r)}, \quad r, s \geq 2, \quad r+s \text { odd }
$$

Semiclassical Bethe Equations

Charges $J_{2}=J_{2} \gg 1$ implies half the spins are flipped, on a long chain.
Many Bethe roots $(\sim \sqrt{\lambda})$ but all in a line - one-cut resolvent:

$$
G(\tilde{x})=\sum_{k} \frac{1}{\tilde{x}-\tilde{x}_{k}} \frac{\tilde{x}_{k}^{2}}{\tilde{x}_{k}^{2}-\tilde{g}^{2}}=2 \pi m-\frac{\sqrt{1+(4 \pi m \tilde{x})^{2}}-\sqrt{1+(4 \pi m \tilde{g})^{2}}}{2\left(\tilde{x}-\tilde{g}^{2} / \tilde{x}\right)}
$$

Energy correction due to arbitrary one-loop dressing phase is

$$
\delta E=\frac{m^{4} c_{1,2}}{4 \mathscr{J}^{3}}+\frac{m^{6}\left(-4 c_{1,2}-c_{1,4}+c_{2,3}\right)}{16 \mathscr{J}^{5}}+\frac{m^{8}\left(15 c_{1,2}+5 c_{1,4}+2 c_{1,6}-5 c_{2,3}-2 c_{2,5}+c_{3,4}\right)}{64 \mathscr{J}^{7}}+\ldots
$$

To match the string theory, you want

$$
c_{r, s}^{\mathrm{HL}}=-8 \frac{(r-1)(s-1)}{(r+s-2)(s-r)}, \quad r, s \geq 2, \quad r+s \text { odd }
$$

Many other checks of this phase, all perfect including derivations from crossing, or from magnon scattering.

AdS $S_{3} \times S^{3} \times T^{4}$ Integrability

This time around we construct all $-\lambda$ results from $\lambda \gg 1$ side only.
[Babichenko, Stefanski, Zarembo, 2010]

$$
\underset{\text { massive }}{A d S_{5} \times S^{5} \rightarrow \underset{\text { massless }}{A d S_{3} \times S^{3} \times} \quad T^{4}}
$$

AdS $S_{3} \times S^{3} \times T^{4}$ Integrability

This time around we construct all- λ results from $\lambda \gg 1$ side only.
[Babichenko, Stefanski, Zarembo, 2010]

$$
\underset{\text { massive }}{A d S_{5} \times S^{5} \rightarrow} \underset{\text { massless }}{A d S_{3} \times S^{3} \times} \quad T^{4}
$$

Best studied part is the massive sector, where mostly you can ignore the massless modes:

- Centrally extended symm \rightarrow S-matrix $S^{\bullet \bullet}$ [Borsato et. al.] and Bethe equations. (No changes in $s u(2)$ sector.)
- Unitarity methods for S-matrix [Bianchi, Forini, Hoare]
- Near-BMN scattering [Roiban, Sundin, Tseytlin, Wulff (all $A d S_{n} \times S^{n}$!)
- Calculation of the dressing phase $\sigma^{\bullet \bullet}$ from crossing [Borsato et. al.] or semiclassical magnon scattering [MCA].

AdS $S_{3} \times S^{3} \times T^{4}$ Integrability

This time around we construct all $-\lambda$ results from $\lambda \gg 1$ side only.
[Babichenko, Stefanksi, Zarembo, 2010]

$$
\underset{\text { massive }}{A d S_{5} \times S^{5} \rightarrow} \quad \underset{\text { massless }}{A d S_{3} \times S^{3} \times} \quad T^{4}
$$

Best studied part is the massive sector, where mostly you can ignore the massless modes:

- Centrally extended symm \rightarrow S-matrix $S^{\bullet \bullet}$ [Borsato et. al.] and Bethe equations. (No changes in $s u(2)$ sector.)
- Unitarity methods for S-matrix [Bianchi, Forini, Hoare]
- Near-BMN scattering [Roiban, Sundin, Tseytlin, Wulff (all $A d S_{n} \times S^{n}!$)
- Calculation of the dressing phase $\sigma^{\bullet \bullet}$ from crossing [Borsato et. al.] or semiclassical magnon scattering [MCA].

In addition, the full S-matrix $\left[\begin{array}{ll}S^{\bullet \bullet} & S^{\bullet \circ} \\ S^{\bullet \circ} & S^{\circ \circ}\end{array}\right]$ is known up to dressing phases.

Spinning Strings in $\mathrm{AdS}_{3} \times S^{3} \times T^{4}$

Look at the same comparison as before:
Easy to adapt the string calculation (just explores S^{3})

$$
\delta E_{\text {string }}=\frac{m^{4}}{2 \mathscr{J}^{3}}-\frac{7 m^{6}}{12 \mathscr{J}^{5}}+\frac{29 m^{8}}{48 \mathscr{J}^{7}}-\frac{97 m^{10}}{160 \mathscr{J}^{9}}+\frac{2309 m^{12}}{3840 \mathscr{J}^{11}}+\ldots
$$

The $s u(2)$ Bethe equations are identical, but the one loop phase is

$$
c_{r, s}=\left[2 \frac{s-r}{r+s-2}-\delta_{r, 1}+\delta_{1, s}\right], \quad r+s \text { odd, } r, s \geq 1
$$

[Borsato, Ohlsson Sax, Sfondrini, Stefanski, Torrielli, 2013] [MCA, 2013]

Spinning Strings in $\mathrm{AdS}_{3} \times S^{3} \times T^{4}$

Look at the same comparison as before:
Easy to adapt the string calculation (just explores S^{3})

$$
\delta E_{\text {string }}=\frac{m^{4}}{2 \mathscr{J}^{3}}-\frac{7 m^{6}}{12 \mathscr{J}^{5}}+\frac{29 m^{8}}{48 \mathscr{J}^{7}}-\frac{97 m^{10}}{160 \mathscr{J}^{9}}+\frac{2309 m^{12}}{3840 \mathscr{J}^{11}}+\ldots
$$

The $s u(2)$ Bethe equations are identical, but the one loop phase is

$$
c_{r, s}=\left[2 \frac{s-r}{r+s-2}-\delta_{r, 1}+\delta_{1, s}\right], \quad r+s \text { odd, } r, s \geq 1
$$

which gives the wrong answer: [Borsato, Ohlsson Sax, Sfondrini, Stefanski, Torrielli, 2013] [MCA, 2013]

$$
\begin{aligned}
\delta E_{\mathrm{BAE}} & =+\frac{m^{4}}{4 \mathscr{J}^{3}}-\frac{13 m^{6}}{48 \mathscr{J}^{5}}+\frac{25 m^{8}}{96 \mathscr{J}^{7}}-\frac{311 m^{10}}{1280 \mathscr{J}^{9}}+\frac{1723 m^{12}}{7680 \mathscr{J}^{11}}+\ldots \\
& =\delta E_{\text {string }}-\frac{m^{4}}{4 \mathscr{J}^{3}}+\frac{5 m^{6}}{16 \mathscr{J}^{5}}-\frac{11 m^{8}}{32 \mathscr{J}^{7}}+\frac{93 m^{10}}{256 \mathscr{J}^{9}}-\frac{193 m^{12}}{512 \mathscr{J}^{11}}+\ldots \\
& =\delta E_{\text {string }}+\frac{m^{2}(\mathscr{J}-\kappa)}{2 \kappa^{2}} \quad \text { recall } \kappa=\sqrt{m^{2}+\mathscr{J}^{2}}
\end{aligned}
$$

Regime Change

In $A d S_{5} \times S^{5}$ we can distinguish:

1. Infinite L, with free spectrum $\sum_{i} E\left(p_{i}\right)$
2. Bethe regime: $e^{i p_{i} L}=\prod_{j \neq i} S\left(p_{i}, p_{j}\right)$ quantises p_{i} giving $1 / L$ corrections
3. Lüscher regime, exponential corrections $\sim e^{-L / h}$
4. Small L, studied using TBA.

Regime Change

In $A d S_{5} \times S^{5}$ we can distinguish:

1. Infinite L, with free spectrum $\sum_{i} E\left(p_{i}\right)$
2. Bethe regime: $e^{i p_{i} L}=\prod_{j \neq i} S\left(p_{i}, p_{j}\right)$ quantises p_{i} giving $1 / L$ corrections
3. Lüscher regime, exponential corrections $\sim e^{-L / h}$
4. Small L, studied using TBA.

Lüscher corrections can be derived [Luischer, 1986] from the new Feynman diagram possible wrapping a finite box. Result is

$$
\delta E^{F}=-\int_{-\infty}^{\infty} \frac{d q}{2 \pi} \sum_{b}^{4+4}(-1)^{F_{b}} e^{-i q_{\star} L} S_{b a}^{b a}\left(p, q_{\star}\right)
$$

Regime Change

In $A d S_{5} \times S^{5}$ we can distinguish:

1. Infinite L, with free spectrum $\sum_{i} E\left(p_{i}\right)$
2. Bethe regime: $e^{i p_{i} L}=\prod_{j \neq i} S\left(p_{i}, p_{j}\right)$ quantises p_{i} giving $1 / L$ corrections
3. Lüscher regime, exponential corrections $\sim e^{-L / h}$
4. Small L, studied using TBA.

Lüscher corrections can be derived [Luischer, 1986] from the new Feynman diagram possible wrapping a finite box. Result is

$$
\delta E^{F}=-\int_{-\infty}^{\infty} \frac{d q}{2 \pi} \sum_{b}^{4+4}(-1)^{F_{b}} e^{-i q_{\star} L} S_{b a}^{b a}\left(p, q_{\star}\right)
$$

with physical $(\epsilon(p), p)$ and virtual ($i q, q_{\star}$), choose contour $q \in \mathbb{R}$.

This exponent is very different at mass $s=0$:

Applied to Circular Strings

For spinning strings, not one but many (order $\sqrt{\lambda}$) physical particles.
So we need a multiparticle Lüscher formula derived from TBA: [Bajok \& Janik, 2008]

$$
\delta E=-\int_{-\infty}^{\infty} \frac{d q}{2 \pi} \sum_{b}^{4+4}(-1)^{F_{b}} e^{-i q_{\star} L} \prod_{k=1}^{K} S_{b a}^{b a}\left(p_{k}, q_{\star}\right)+\text { zero }
$$

Applied to Circular Strings

For spinning strings, not one but many (order $\sqrt{\lambda}$) physical particles.
So we need a multiparticle Lüscher formula derived from TBA:

$$
\delta E=-\int_{-\infty}^{\infty} \frac{d q}{2 \pi} \sum_{b}^{4+4}(-1)^{F_{b}} e^{-i q_{\star} L} \prod_{k=1}^{K} S_{b a}^{b a}\left(p_{k}, q_{\star}\right)+\text { zero }
$$

Using $S^{\bullet \circ}$ from [Borsto, Ohlsson Sax, Sfondrini, Stefanski, 2015] for massless virtual particle:

$$
\delta E=\int d q e^{-|q| L \#} \text { stuff }=\frac{-m^{4}}{2 \mathscr{J}^{3}}+\frac{15 m^{6}+\pi^{2} m^{8}}{24 \mathscr{J}^{5}}-\frac{990 m^{8}+135 \pi^{2} m^{10}+2 \pi^{4} m^{12}}{1440 \mathscr{J}^{7}}+\mathscr{O}\left(\frac{1}{\mathscr{J}^{9}}\right)
$$

Right order, wrong coefficients...

Applied to Circular Strings

For spinning strings, not one but many (order $\sqrt{\lambda}$) physical particles.
So we need a multiparticle Lüscher formula derived from TBA:

$$
\delta E=-\int_{-\infty}^{\infty} \frac{d q}{2 \pi} \sum_{b}^{4+4}(-1)^{F_{b}} e^{-i q_{\star} L} \prod_{k=1}^{K} S_{b a}^{b a}\left(p_{k}, q_{\star}\right)+\text { zero }
$$

Using $S^{\bullet \circ}$ from [Borsto, Ohlsson Sax, Sfondrini, Stefanski, 2015] for massless virtual particle:

$$
\delta E=\int d q e^{-|q| L \#} \text { stuff }=\frac{-m^{4}}{2 \mathscr{J}^{3}}+\frac{15 m^{6}+\pi^{2} m^{8}}{24 \mathscr{J}^{5}}-\frac{990 m^{8}+135 \pi^{2} m^{10}+2 \pi^{4} m^{12}}{1440 \mathscr{J}^{7}}+\mathscr{O}\left(\frac{1}{\mathscr{J}^{9}}\right)
$$

Right order, wrong coefficients...
... but certainly enough to show that we cannot ignore such corrections:
Regimes \#2 and \#3 overlap.

Massless Multiple Wrapping

Lüscher formula above is usually leading exponential e^{-L}, and wrapping twice would give $e^{-2 L}$, and so on.

However with a massless particle, all of these are order $1 / L^{3}$ so we must sum:

$$
\delta E=f_{-\infty}^{\infty} \frac{d q}{2 \pi} \sum_{n=1}^{\infty} \frac{1}{n} e^{-i n q_{\star} L} \sum_{b}^{4+4}(-1)^{F_{b}}\left[\prod_{k=1}^{K} S_{b a}^{b a}\left(q_{\star}, p_{k}\right)\right]^{n}
$$

Massless Multiple Wrapping

Lüscher formula above is usually leading exponential e^{-L}, and wrapping twice would give $e^{-2 L}$, and so on.

However with a massless particle, all of these are order $1 / L^{3}$ so we must sum:

$$
\begin{aligned}
\delta E & =f_{-\infty}^{\infty} \frac{d q}{2 \pi} \sum_{n=1}^{\infty} \frac{1}{n} e^{-i n q_{\star} L} \sum_{b}^{4+4}(-1)^{F_{b}}\left[\prod_{k=1}^{K} S_{b a}^{b a}\left(q_{\star}, p_{k}\right)\right]^{n} \\
& =\frac{2}{\phi}\left[-\frac{\pi}{3}+\frac{1}{\pi} \operatorname{Li}_{2}\left(e^{2 i \theta}\right)+\frac{1}{\pi} \operatorname{Li}_{2}\left(e^{-2 i \theta}\right)\right] \\
& =-\frac{m^{2}(\mathscr{J}-\kappa)}{\kappa^{2}}=-2\left[-\frac{m^{4}}{4 \mathscr{J}^{3}}+\frac{5 m^{6}}{16 \mathscr{J}^{5}}-\frac{11 m^{8}}{32 \mathscr{J}^{7}}+\frac{93 m^{8}}{256 \mathscr{J}^{9}}+\ldots\right]
\end{aligned}
$$

Almost perfect!

Massless Multiple Wrapping

Lüscher formula above is usually leading exponential e^{-L}, and wrapping twice would give $e^{-2 L}$, and so on.

However with a massless particle, all of these are order $1 / L^{3}$ so we must sum:

$$
\begin{aligned}
\delta E & =f_{-\infty}^{\infty} \frac{d q}{2 \pi} \sum_{n=1}^{\infty} \frac{1}{n} e^{-i n q_{\star} L} \sum_{b}^{4+4}(-1)^{F_{b}}\left[\prod_{k=1}^{K} S_{b a}^{b a}\left(q_{\star}, p_{k}\right)\right]^{n} \\
& =\frac{2}{\phi}\left[-\frac{\pi}{3}+\frac{1}{\pi} \operatorname{Li}_{2}\left(e^{2 i \theta}\right)+\frac{1}{\pi} \mathrm{Li}_{2}\left(e^{-2 i \theta}\right)\right] \\
& =-\frac{m^{2}(\mathscr{J}-\kappa)}{\kappa^{2}}=-2\left[-\frac{m^{4}}{4 \mathscr{J}^{3}}+\frac{5 m^{6}}{16 \mathscr{J}^{5}}-\frac{11 m^{8}}{32 \mathscr{J}^{7}}+\frac{93 m^{8}}{256 \mathscr{J}^{9}}+\ldots\right]
\end{aligned}
$$

Almost perfect!
The mixed-mass dressing phase of $S^{\bullet \circ}$ isn't very well fixed; here we assume ordinary AFS phase as in $[B O S S, 2015]$.

Zooming Out

What this means:

- Perhaps there is no Bethe regime, without wrapping.
- Clearly we need a TBA including the massless modes.

Some puzzles:

- $S L(2)$ sector i.e. $A d S_{3} \times S^{1}$:
- Circular strings - stricter test than $s u(2)$, one more parameter. Lüscher gives correct order δE but wrong coefficients?
- Short folded strings - calculated to $\mathscr{O}\left(S^{2}\right)$ and agrees with Bethe. [Gromov \& Valatka, 2011] [Beccaria \& Macorini 2013]
- Two-loop disagreement in dispersion relation for massless particles

Muito Obrigado, Bardzo Dziękuję!

