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Programme

1. One of the nicest results in AdS/CFT:

Quantum integrability, the dressing phase,
and tests using macroscopic spinning strings.

2. A problem we were stuck on for 3 years:

Generalising from AdS5 ×S5 to AdS3 ×S3 ×T 4:
find a different phase, but this gives a mismatch.

3. How this led us to some new physics:

The limitations of the Bethe Ansatz, and
first unavoidable appearance of massless modes.



Planar AdS/CFT

4D N = 4 Super
Yang–Mills

g 2
YMN =λ¿ 1

(and N =∞)

Spectrum ∆i :

〈
Oi (x)O j (y)

〉= δi j∣∣x − y
∣∣2∆i

∆− J1 − J2 ≡ E

Integrable system

h =p
λ/4π ∀λ

Asymptotic (i.e. L À 1)
Bethe equations:

e i Lpi =
K∏

j 6=i
S(pi , p j )

Input two-particle
S-matrix, and
dispersion relation.
Output:

E{p1···pK } =
∑

j
E(p j )

... plus corrections O (e−L/h) at strong coupling

IIB strings in
Ad S5 ×S5

R2/α
′ =p

λÀ 1
(and gstring=0)

Metsaev–Tseytlin Z4

coset action:
PSU (2,2|4)/SO(1,4)×SO(5)

ˆ L

d 2σ STr
[

j (2)
µ j (2)µ+εab j (1)

a j (3)
b

]
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Compare these two.



su(2) Sector
One-loop dilatation operator
= Heisenberg spin chain H2

Tr (Z Z X Z . . .) = ↓↓↑↓ . . .

With K impurities = magnons,
p j =−i log(x+

j /x−
j ) constrained by

(
x+

k

x−
k

)L

=
K∏

j 6=k

x+
k −x−

j

x−
k −x+

j

and
∑

j p j = 0. Energy is then

E =∑
k

h

2i

[
x+

k −
1

x+
k

−c.c.
]=∑

k

√
1+4h2 sin2(pk /2)

[Bethe, 1931] [Minahan & Zarembo, 2002]
[Beisert, Kristjansen, Staudacher, 2003]

Classical strings in R×S3

also integrable:
≈ complex sine-gordon

Described by almost the same Bethe
equations, but with AFS phase

[Arutyunov, Frolov, Staudacher, 2004]

θ(xk , x j ) = h
∑
s≥2

Q[s (xk )Qs+1](x j )

+ ∑
r,s≥2

cr,sQr Qs +O (1/h)

Quantum effects: HL phase cr,s

[Hernandez, Lopez, 2006]
+ higher terms O (1/h)
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Semiclassical Spinning Strings
Classical solution in S3 ⊂C2 [Arutyunov, Russo, Tseytlin]

Z1 = 1p
2

e iJτ+i mσ, Z2 = 1p
2

e iJτ−i mσ, t = κτ

with charges J1 = J2 = 1
2

p
λJ À 1.

Quantum correction to its energy:

δE = 1

2κ

8+8∑
r

(−1)Fr
∞∑
n

w r
n

frequencies w A
n =

p
n2 +κ2 and wS±

n =
√

n2 +2J 2 ±2
√

n2(J 2 +m2)+J 4 etc.

lead to via [Beisert & Tseytlin]’s resummation:

δE int =− m6

3J 5 + m8

3J 7 − 49m10

120J 9 + 2m12

5J 11 + . . .

Now recover this from Bethe equations...
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Semiclassical Bethe Equations

Charges J2 = J2 À 1 implies half the spins are flipped, on a long chain.

Many Bethe roots ( ∼p
λ ) but all in a line — one-cut resolvent:

G(x̃) =∑
k

1

x̃ − x̃k

x̃2
k

x̃2
k−g̃ 2 = 2πm −

√
1+ (4πmx̃)2 −

√
1+ (4πmg̃ )2

2(x̃ − g̃ 2/x̃)

Energy correction due to arbitrary one-loop dressing phase is

δE = m4c1,2

4J 3 +m6
(−4c1,2 −c1,4 + c2,3

)
16J 5 +m8

(
15c1,2 +5c1,4 +2c1,6−5c2,3 −2c2,5 + c3,4

)
64J 7 +. . .

To match the string theory, you want [Hernandez & Lopez, 2006]

cHL
r,s =−8

(r −1)(s −1)

(r + s −2)(s − r )
, r, s ≥ 2, r + s odd

Many other checks of this phase, all perfect
including derivations from crossing, or from magnon scattering.
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AdS3 ×S3 ×T 4 Integrability
This time around we construct all-λ results from λÀ 1 side only.

[Babichenko, Stefanski, Zarembo, 2010]

AdS5 ×S5 → AdS3 ×S3

massive
× T 4

massless

Best studied part is the massive sector,
where mostly you can ignore the massless modes: 2012-2015

• Centrally extended symm → S-matrix S•• [Borsato et. al.]
and Bethe equations. (No changes in su(2) sector.)

• Unitarity methods for S-matrix [Bianchi, Forini, Hoare]

• Near-BMN scattering [Roiban, Sundin, Tseytlin, Wulff] (all AdSn ×Sn !)

• Calculation of the dressing phase σ•• from crossing [Borsato et. al.]
or semiclassical magnon scattering [MCA].

In addition, the full S-matrix

[
S•• S•◦
S•◦ S◦◦

]
is known up to dressing phases.

[Borsato, Ohlsson Sax, Sfondrini, Stefanski]
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Spinning Strings in AdS3 ×S3 ×T 4

Look at the same comparison as before:

Easy to adapt the string calculation (just explores S3)

δEstring = m4

2J 3 − 7m6

12J 5 + 29m8

48J 7 − 97m10

160J 9 + 2309m12

3840J 11 + . . .

The su(2) Bethe equations are identical, but the one loop phase is

cr,s =
[

2
s − r

r + s −2
−δr,1 +δ1,s

]
, r + s odd, r, s ≥ 1

[Borsato, Ohlsson Sax, Sfondrini, Stefanski, Torrielli, 2013] [MCA, 2013]

which gives the wrong answer:

δEBAE =+ m4

4J 3 − 13m6

48J 5 + 25m8

96J 7 − 311m10

1280J 9 + 1723m12

7680J 11 + . . .

= δEstring − m4

4J 3 + 5m6

16J 5 − 11m8

32J 7 + 93m10

256J 9 − 193m12

512J 11 + . . .

= δEstring +
m2(J −κ)

2κ2 recall κ=
√

m2 +J 2
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Regime Change

In AdS5 ×S5 we can distinguish:

1. Infinite L, with free spectrum
∑

i E(pi )

2. Bethe regime: e i pi L =∏
j 6=i S(pi , p j ) quantises pi giving 1/L corrections

3. Lüscher regime, exponential corrections ∼ e−L/h

4. Small L, studied using TBA.

Lüscher corrections can be derived [Lüscher, 1986] from the new
Feynman diagram possible wrapping a finite box. Result is

δE F =−
ˆ ∞

−∞
d q

2π

4+4∑
b

(−1)Fb e−i q?LSba
ba (p, q?)

with physical (ε(p), p) and virtual (i q, q?),
choose contour q ∈R.

This exponent is very different at mass s = 0:
s

q = pTBA

i q? = ETBA

s =
0
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Applied to Circular Strings

For spinning strings, not one but many (order
p
λ) physical particles.

So we need a multiparticle Lüscher formula derived from TBA: [Bajnok & Janik, 2008]

δE =−
ˆ ∞

−∞
d q

2π

4+4∑
b

(−1)Fb e−i q?L
K∏

k=1
Sba

ba (pk , q?)+zero

Using S•◦ from [Borsato, Ohlsson Sax, Sfondrini, Stefanski, 2015] for massless virtual particle:

δE =
ˆ

dq e−|q|L #stuff = −m4

2J 3 +
15m6 +π2m8

24J 5 −990m8 +135π2m10 +2π4m12

1440J 7 +O
( 1

J 9

)
Right order, wrong coefficients...

... but certainly enough to show that we cannot ignore such corrections:

Regimes #2 and #3 overlap.
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... but certainly enough to show that we cannot ignore such corrections:

Regimes #2 and #3 overlap.



Applied to Circular Strings

For spinning strings, not one but many (order
p
λ) physical particles.

So we need a multiparticle Lüscher formula derived from TBA: [Bajnok & Janik, 2008]

δE =−
ˆ ∞

−∞
d q

2π

4+4∑
b

(−1)Fb e−i q?L
K∏

k=1
Sba

ba (pk , q?)+zero

Using S•◦ from [Borsato, Ohlsson Sax, Sfondrini, Stefanski, 2015] for massless virtual particle:

δE =
ˆ

dq e−|q|L #stuff = −m4

2J 3 +
15m6 +π2m8

24J 5 −990m8 +135π2m10 +2π4m12

1440J 7 +O
( 1

J 9

)
Right order, wrong coefficients...

... but certainly enough to show that we cannot ignore such corrections:

Regimes #2 and #3 overlap.



Massless Multiple Wrapping

Lüscher formula above is usually leading exponential e−L ,
and wrapping twice would give e−2L , and so on.

However with a massless particle, all of these are order 1/L3

so we must sum:

δE =
 ∞

−∞
d q

2π

∞∑
n=1

1

n
e−i nq?L

4+4∑
b

(−1)Fb

[ K∏
k=1

Sba
ba (q?, pk )

]n

= 2

φ

[
− π

3
+ 1

π
Li2

(
e2iθ)+ 1

π
Li2

(
e−2iθ)]

= −m2(J −κ)

κ2 = −2

[
− m4

4J 3 + 5m6

16J 5 − 11m8

32J 7 + 93m8

256J 9 + . . .

]
Almost perfect!

The mixed-mass dressing phase of S•◦ isn’t very well fixed;
here we assume ordinary AFS phase as in [B O S S, 2015].
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Zooming Out

What this means:

• Perhaps there is no Bethe regime, without wrapping.

• Clearly we need a TBA including the massless modes.

Some puzzles:

• SL(2) sector i.e. AdS3 ×S1:

• Circular strings — stricter test than su(2), one more parameter. [H&L 2006]
Lüscher gives correct order δE but wrong coefficients? [2017?]

• Short folded strings — calculated to O (S2) and agrees with Bethe.
[Gromov & Valatka, 2011] [Beccaria & Macorini 2013]

• Two-loop disagreement in dispersion relation for massless particles
[Sundin & Wulff 2015]



Muito Obrigado, Bardzo Dziękuję!
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