Two time scale stochastic approximation for reinforcement learning with linear function approximation

Pedro A. Santos

Joint work with Diogo Carvalho and Francisco Melo

MPML April 9th 2021

Contents

Reinforcement learning

- 2 Markov Decision Processes and RL
- Some Learning Algorithms
- 4 Stochastic Approximation
- 5 Two-time scale Reinforcement learning

6 Conclusions

Contents

Reinforcement learning

- 2 Markov Decision Processes and RL
- 3 Some Learning Algorithms
- 4 Stochastic Approximation
- 5 Two-time scale Reinforcement learning

6 Conclusions

Reinforcement learning

 $x_0, a_0, r_0, x_1, a_1, r_1, x_2, a_2, r_2, x_3 \dots$

Contents

Reinforcement learning

2 Markov Decision Processes and RL

- 3 Some Learning Algorithms
- 4 Stochastic Approximation
- 5 Two-time scale Reinforcement learning

6 Conclusions

Markov Decision Processes

Definition (MDP)

A Markov decision process is a tuple $\{\mathcal{X}, \mathcal{A}, \mathcal{P}, r, \gamma\}$, where

- X denotes a finite set of n states;
- \mathcal{A} a finite set of *m* actions;
- *P* is a set of *n* × *n* stochastic matrices *P_a* associated with each action *a* ∈ *A* with entries [*P_a*]_{x,y} ∈ [0, 1] representing the probability that the state transitions from *x* to *y* given that the action *a* was performed;
- $R: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ is a reward stochastic mapping;
- $\gamma \in [0, 1[$ is a discount factor.

The Markov Zoo

States	Actions	State Knowledge	
No	Yes		Multi-armed Bandit
Yes	No	Yes	Markov Process
Yes	No	No	Hidden MM
Yes	Yes	Yes	MDP
Yes	Yes	No	POMDP

Policy

Definition (Policy)

A policy $\pi : \mathcal{X} \to \Delta(\mathcal{A})$ is a stochastic map from states to actions.

The state value function of a given policy π :

Definition (State value function)

The state value function $V_{\pi}:\mathcal{X}\rightarrow\mathbb{R}$ is

$$V_{\pi}(x) := \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R_t | x_0 = x],$$

where the expectation is taken with respect to the states $x_{t+1} \sim [P_{a_t}]_{x_t,\cdot}$ and the actions $a_t \sim \pi(x_t)$.

The Q function

Definition (State action value function)

The state action value function $\mathcal{Q}_{\pi}:\mathcal{X} imes\mathcal{A}
ightarrow\mathbb{R}$ is

$$Q_{\pi}(x,a) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} | x_{0} = x, a_{0} = a\right],$$

where the expectation is taken with respect to the states $x_{t+1} \sim [P_{a_t}]_{x_t,\cdot}$ and the actions $a_t \sim \pi(x_t)$.

The Q function

,	Action 1	Action 2
State 1	0	5
State 2	0	5
State 3	0	5
State 4	20	0

The Prediction Problem

Evaluate a policy π by approximating its state value function V_{π}

Proposition (Fixed point equation for the state value function) The following relation holds:

$$V_{\pi}(x) = \mathbb{E}[R(x, a) + \gamma V_{\pi}(y)], \qquad (1)$$

where the expectation is taken with respect to the next state $y \sim [P_a]_{x,\cdot}$ and the action $a \sim \pi(x)$.

The Control Problem

Find a policy π^* that maximizes the cumulative reward $V_{(.)}$

A policy π is better than another policy π' if $V_{\pi}(x) \ge V_{\pi'}(x)$ for all $x \in \mathcal{X}$.

Definition

An optimal policy π^* is any such that, for any policy π ,

$$V_{\pi^*}(x) \geq V_{\pi}(x),$$

for all $x \in \mathcal{X}$.

Optimal Policy

Theorem (Existence of solution) There exists an optimal policy π^* .

Corollary (Optimal Value Equation)

The state value function of the optimal policy π^* , which we shall denote by V^* , verifies

$$V^*(x) = \max_{a \in \mathcal{A}} \mathbb{E}[R(x, a) + \gamma V^*(y)]$$
⁽²⁾

for all $x \in \mathcal{X}$, where the expectation is taken with respect to the next state $y \sim P_{a_{x,\cdot}}$.

Optimal state value function

Letting Q^* denote Q_{π^*} , we have that

Proposition (Optimal Q equation)

The following relation holds:

$$Q^*(x,a) = \mathbb{E}[R(x,a) + \gamma \max_{a' \in \mathcal{A}} Q^*(y,a')],$$
(3)

where the expectation is taken with respect to the next state $y \sim [P_a]_{x,\cdot}$ and the action $a' \sim \pi(x)$

Finding V_{π}

• As a system of $n \times n$ linear equations:

$$V_{\pi}(x) = \mathbb{E}[R(x,a) + \gamma V_{\pi}(y)]$$

= $\sum_{a} \pi(a|x) \sum_{y,r} p(y,r|x,a)(r + \gamma V_{\pi}(y))$

$$V_{\pi} = TV_{\pi}$$

• Iterative policy evaluation:

$$V_{k+1} = TV_k$$

Approximating π^*

Given V_{π} ,

$$\pi(x) \leftarrow \operatorname*{argmax}_{a} \sum_{y,r} p(y,r|x,a)(r+\gamma V_{\pi}(y))$$

Policy Iteration

$$\pi_0 \rightarrow V_{\pi_0} \rightarrow \pi_1 \rightarrow V_{\pi_1} \rightarrow \pi_2 \rightarrow ... \approx \pi^*$$

Problems with this simplistic approach

• We need to work with the whole state space

• We need to know the model of the world

Contents

1 Reinforcement learning

- 2 Markov Decision Processes and RL
- Some Learning Algorithms
- 4 Stochastic Approximation
- 5 Two-time scale Reinforcement learning

6 Conclusions

Who needs a model?

Model-free Methods

- Monte Carlo Methods
- Temporal-Difference Learning

Q-learning algorithm for estimating π^*

```
Initialize Q(x, a) for all x \in \mathcal{X} and a \in \mathcal{A} (e.g. Q(x, a) = 0);

repeat for each Episode

Choose an initial state x;

repeat for each step of Episode

Choose action a using policy derived from Q (e.g. \epsilon-greedy);

Execute a, observe reward r and new state x';

Q(x, a) \leftarrow (1 - \alpha)Q(x, a) + \alpha(r + \gamma \max_{a'} Q(x', a'));

x \leftarrow x'

until x is terminal;

until satisfied;
```

$$Q(x,a) \leftarrow (1-\alpha)Q(x,a) + \alpha (r + \gamma \max_{a'} Q(x',a'))$$

$$Q(x,a) \leftarrow (1-\alpha)Q(x,a) + \alpha(\mathbf{r} + \gamma \max_{a'} Q(x',a'))$$

$$Q(x, a) \leftarrow (1 - \alpha)Q(x, a) + \alpha (\mathbf{r} + \gamma \max_{a'} Q(x', a'))$$

$$egin{aligned} \mathcal{Q}(x, a) \leftarrow \mathcal{Q}(x, a) + lphaig(oldsymbol{r} + \gamma \max_{a'} \mathcal{Q}(x', a') & - \mathcal{Q}(x, a) \end{pmatrix} \end{aligned}$$

$$Q(x, a) \leftarrow Q(x, a) + \alpha \delta$$

with
$$\delta = r + \gamma \max_{a'} Q(x', a') - Q(x, a)$$

Q-learning with function approximation We wish to approximate Q^* using $Q = \{Q_w : w \in \mathbb{R}^k\}$

Fixed point equation for the optimal state action value function

$$Q^*(x, a) = \mathbb{E}[R(x, a) + \gamma \max_{a' \in \mathcal{A}} Q^*(y, a')].$$

Loss function:

$$L(w) = \frac{1}{2} \mathbb{E}_{\mu}[(Q^*(x, a) - Q_w(x, a))^2]$$

$$w \leftarrow w + \alpha \mathbb{E}_{\mu}[(Q^*(x,a) - Q_w(x,a))\nabla_w Q_w(x,a)]$$
$$w \leftarrow w + \alpha \mathbb{E}_{\mu}[(Q^*(x,a) - Q_w(x,a))\nabla_w Q_w(x,a)]$$

 $w \leftarrow w + \alpha \mathbb{E}_{\mu}[(R(x,a) + \gamma \max_{a' \in \mathcal{A}} Q_w(y,a') - Q_w(x,a)) \nabla_w Q_w(x,a)]$

Q-learning with function approximation

The $w \rightarrow 2w$ example (Tsitsiklis and Van Roy 1996)

Consider the state space $\mathcal{X} = \{x_1, x_2\}$, one action, all rewards 0, and the transition matrix

$$P = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$Q^* = V = 0$$

Q-learning with function approximation

The $w \rightarrow 2w$ example (Tsitsiklis and Van Roy 1996)

with $\phi:\mathcal{X}
ightarrow \mathbb{R}$ such that $\phi(x_1)=1, \phi(x_2)=2$

The spiral example (Tsitsiklis and Van Roy 1997)

Markov chain $\mathcal{X} = \{s_1, s_2, s_3\}, \ \mathcal{A} = \{a\} \text{ and}$ $\mathsf{P} = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$

Approximation architecture

$$\frac{dQ_w}{dw} = (S + \epsilon \mathsf{I})Q_w,$$

where ϵ is very small and

$$S = egin{bmatrix} 1 & rac{1}{2} & rac{3}{2} \ rac{3}{2} & 1 & rac{1}{2} \ rac{1}{2} & rac{3}{2} & 1 \end{bmatrix}$$

MDP Example (Baird 1995)

$egin{aligned} Q_0({\sf Solid}) > Q_0({\sf Dashed}) \ Q_0(6 o 6) \ {\sf largest} \end{aligned}$

The Deadly Triad

- Function Approximation
- Bootstraping
- Off-policy training

Deepmind's breakthrough

Eully connected

Deepmind's breakthrough

Two special techniques used:

- Replay Buffer
- Target Network

$$w \leftarrow w + \alpha \mathbb{E}_{\mu}[(R(x,a) + \gamma \max_{a' \in \mathcal{A}} Q_w(y,a') - Q_w(x,a))\nabla_w Q_w(x,a)]$$
$$w \leftarrow w + \alpha \mathbb{E}_{\mu}[(R(x,a) + \gamma \max_{a' \in \mathcal{A}} Q_u(y,a') - Q_w(x,a))\nabla_w Q_w(x,a)]$$

Contents

1 Reinforcement learning

- 2 Markov Decision Processes and RL
- 3 Some Learning Algorithms
- 4 Stochastic Approximation
 - Two-time scale Reinforcement learning

6 Conclusions

Stochastic Approximation

$$w = h(w) = \mathbb{E}_{\mu}[H(w, X)]$$
$$w \leftarrow w + \alpha (\mathbb{E}_{\mu}[H(w, X)] - w)$$
$$w \leftarrow w + \alpha (\mathbb{E}_{\mu}[H(w, X)] - w)$$

$$w_{t+1} = w_t + \alpha (H(w_t, x_t) - w_t)$$

= $w_t + \alpha (H(w_t, x_t) - w_t + h(w) - h(w))$
= $w_t + \alpha (h(w) - w + H(w_t, x_t) - h(w))$
= $w_t + \alpha (h(w) - w + H(w_t, x_t) - h(w))$
= $w_t + \alpha (h(w) - w + M_t)$

Stochastic Approximation

The O.D.E. approach

The equation

$$w_{t+1} = w_t + \alpha_t (h(w_t) - w + M_t)$$

can be thought as a noisy discretization for the o.d.e.

$$\dot{w} = h(w) - w$$

$$\sum_t \alpha_t = \infty, \qquad \qquad \sum_t \alpha_t^2 < \infty$$

 M_t is a Martingale difference sequence

Two time scale stochastic approximation

$$\begin{cases} v_{t+1} = v_t + \alpha_t (f(v_t, u_t) + M_{t+1}) \\ u_{t+1} = u_t + \beta_t (g(v_t, u_t) + N_{t+1}) \end{cases}, t \in \mathbb{N} \end{cases}$$

Assumptions:

•
$$\sum_t \beta_t = \infty, \sum_t \alpha^2 < \infty, \ \beta_t / \alpha_t \to 0$$

• $f : \mathbb{R}^{k+d} \to \mathbb{R}^k, \ g : \mathbb{R}^{k+d} \to \mathbb{R}^d$ are locally Lipschitz

•
$$\sup_t(||v_t|| + ||u_t||) < \infty$$
 w.p.1.

• $M_t \in \mathbb{R}^k$ and $N_t \in \mathbb{R}^d$ are Martingale difference sequences and

$$\mathbb{E}[||M_t||^2] \le c_M(1+||v_t||^2+||u_t||^2)$$
$$\mathbb{E}[||N_t||^2] \le c_N(1+||v_t||^2+||u_t||^2)$$

Two time scale stochastic approximation

$$\begin{cases} v_{t+1} = v_t + \alpha_t (f(v_t, u_t) + M_{t+1}) \\ u_{t+1} = u_t + \beta_t (g(v_t, u_t) + N_{t+1}), \end{cases}, t \in \mathbb{N} \end{cases}$$

Assumptions (cont):

• The o.d.e.

$$\dot{v}_t = f(v_t, u)$$

has a unique globally asymptotically stable equilibrium $\lambda(u)$, where $\lambda : \mathbb{R}^d \to \mathbb{R}^k$ is a Lipschitz-continuous function.

The o.d.e.

$$\dot{u}_t = g(\lambda(u_t), u_t)$$

has a unique globally asymptotically stable equilibrium u^* .

Two time scale stochastic approximation

Theorem (Borkar 2008)

If the assumptions are true, then

$$(v_t, u_t) \rightarrow^{a.s.} (\lambda(u^*), u^*).$$

Contents

1 Reinforcement learning

- 2 Markov Decision Processes and RL
- 3 Some Learning Algorithms
- 4 Stochastic Approximation
- 5 Two-time scale Reinforcement learning

Conclusions

Coupled Q-learning

Update rule

$$\begin{aligned} \mathbf{v}_{t+1} &= \mathbf{v}_t + \alpha_t \big(\mathbf{r}_t + \max_{\mathbf{a}' \in \mathcal{A}} Q_{u_t}(\mathbf{y}_t, \mathbf{a}') - Q_{v_t}(\mathbf{x}_t, \mathbf{a}_t) \big) \nabla Q_{v_t}(\mathbf{x}_t, \mathbf{a}_t) \\ u_{t+1} &= u_t + \beta_t (\nabla Q_{v_t}(\mathbf{x}_t, \mathbf{a}_t) Q_{v_t}(\mathbf{x}_t, \mathbf{a}_t) - u_t) \end{aligned}$$

Each function $\mathcal{Q}_w:\mathcal{X}\times\mathcal{A}\to\mathbb{R}$ is such that

$$Q_w(x,a) = \phi^T(x,a)w$$

we call $\phi: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}^k$ the feature vector

Then $\nabla_w Q_w(x,a) = \phi(x,a)$

Convergence result

Assumptions

- **①** State-action pairs are independent and identically distributed to μ ;
- **2** $\Sigma_{\mu} = \mathbb{E}_{\mu}[\phi(x_t, a_t)\phi^{T}(x_t, a_t)]$ is non-singular; $||\phi(x, a)||_2 \leq 1$;

Theorem (Carvalho, Melo and Santos, 2020)

Under assumptions 1 through 3, the sequence $\{u^{(t)}, v^{(t)}\}$ generated by coupled Q-learning converges a.s. to a single limit solution (u^*, v^*) .

Error bounds

Assume $\{\phi_k\}$ are ortogonal and $\mathbb{E}_{\mu}[\phi_k] = \sigma$, i.e. $\Sigma_{\mu} = \sigma I$

Theorem

The limit solution Q_{v^*} of coupled Q-learning verifies

$$\|Q^* - Q_{\nu^*}\|_{\infty} \leq \frac{1}{1 - \gamma} \|Q^* - \operatorname{Proj}_{\Phi} Q^*\|_{\infty} + \xi_{\sigma}, \ \text{where} \ \xi_{\sigma} = \frac{1 - \sigma}{\sigma} \frac{\gamma \rho}{(1 - \gamma)^2}$$

Error bounds

The $\theta \rightarrow 2\theta$ example

The modified star problem

The mountain car

Other applications of two-time scale stochastic approximation

Double-tap: approximate policy iteration (ongoing work)

$$w_{t+1} = w_t + \alpha_t (r_t + \gamma Q_{w_t}(x_{t+1}, a_{t+1}) - Q_{w_t}(x_t, a_t)) \nabla Q_{w_t}(x_t, a_t)$$

$$\pi_{t+1} = \pi_t + \beta_t (\Gamma Q_{w_t} - \pi_t),$$

where Γ projects a state action value function to an ϵ -soft policy and is Lipschitz-continuous.

Other applications of two-time scale stochastic approximation

Regular gradient actor critic

$$w_{t+1} = w_t + \alpha_t (r_t - j_t + \gamma V_{w_t}(x_{t+1}) - V_{w_t}(x_t)) \nabla V_{w_t}(x_t)$$

$$\theta_{t+1} = \theta_t + \beta_t (r_t - j_t + \gamma V_{w_t}(x_{t+1}) - V_{w_t}(x_t)) \nabla \pi_{\theta_t}(x_t, a_t),$$

where j_t is the average reward at time t.

Contents

1 Reinforcement learning

- 2 Markov Decision Processes and RL
- 3 Some Learning Algorithms
- 4 Stochastic Approximation
- Two-time scale Reinforcement learning

6 Conclusions

Conclusions

Coupled Q-learning

- Is variant of Q-learning
- The algorithm converges with linear function approximation
- This method also allows to transform outer-inner-cycle algorithms into one cycle two-time step algorithms