Black Hole Collapse in CFT

Julian Sonner

Iberian Strings 16 January 2017

BH Collapse in CFT

Tarek Anous (MIT/UBC)

Thomas Hartman (Cornell)

Antonin Rovai (Geneva)

[arXiv: 1603.04856 & to appear]

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation Fidelity Decay vs. Unitarity (featuring: the Iberians)

Adolfo del Campo (UMass)

Javi Molina-Vilaplana (Cartagena)

Laura Garcia-Alvarez & QUTIS

[arXiv: 1607.08560 & 1701.XXYYZ]

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

"introduction"

black holes are thermodynamic systems

their entropy is proportional to the area of the event horizon

information loss paradox:

a BH formed from a pure state will evolve into a mixed state (of Hawking radiation) holography:

a theory of quantum gravity should have information ~ area

black holes are thermodynamic systems

their entropy is proportional to the area of the event horizon

holography:

a BH formed from a pure state will evolve into a mixed state (of Hawking radiation)

a theory of quantum gravity should have information ~ area

General Plan

AdS/CFT relates gravity (often in AdS) to unitary field theory (often CFT)

Lots of progress gravity - CFT (my favorite: AdS/CMT)

Less known about CFT → (quantum) gravity

→ despite developments in CFT, CMT:

- time evolution and spread of entanglement
- thermalization of closed quantum systems (e.g. via eigenstates)
- non-perturbative methods (e.g. bootstrap)

Thermalization \rightarrow BH formation (& evaporation)

Outline

1. Introduction

2. Part I: Unitarity vs. Gravity

3. Part II: The anti-information paradox

4. Conclusions

Part I: Unitarity vs. Gravity

"the trouble with black holes"

 outgoing Hawking radiation is thermal ρ_{Gibbs}(T_H)

- a horizon ${\mathcal H}$ cloaks the singularity

- initial pure state $|\Psi\rangle$ of matter collapses inwards

black holes evaporate

The Paradox

- gravity as an EFT implies pure to mixed evolution
- fundamentally incompatible with a unitary S-matrix
- 1. quantum gravity is non-unitary
- 2. gravity EFT makes no sense
- 3. (subtle) corrections to Hawking result

hence AdS/CFT only allows for options 2 & 3.

hence AdS/CFT only allows for options 2 & 3.

the anti-information loss paradox:

how does an obviously unitary theory lose information?

(of a first-principles calculation in holographic CFT)

1. define an initial state in CFT which forms a black hole

2. understand time evolution in strong-coupling regime

3. diagnose signs of information loss & recovery

4. translate this into a consistent picture of bulk quantum gravity

(of a first-principles calculation in holographic CFT)

define an initial state in CFT which forms a black hole
 → "quantum quench"

2. understand time evolution in strong-coupling regime

3. diagnose signs of information loss & recovery

4. translate this into a consistent picture of bulk quantum gravity

(of a first-principles calculation in holographic CFT)

define an initial state in CFT which forms a black hole
 → "quantum quench"

2. understand time evolution in strong-coupling regime
 → non-equilibrium CFT (monodromy method / CFT₂)

3. diagnose signs of information loss & recovery

4. translate this into a consistent picture of bulk quantum gravity

(of a first-principles calculation in holographic CFT)

- define an initial state in CFT which forms a black hole
 → "quantum quench"
- 2. understand time evolution in strong-coupling regime
 → non-equilibrium CFT (monodromy method / CFT₂)
- 3. diagnose signs of information loss & recovery
 - unitarity constraints on correlations
- 4. translate this into a consistent picture of bulk quantum gravity

(of a first-principles calculation in holographic CFT)

- define an initial state in CFT which forms a black hole
 → "quantum quench"
- 2. understand time evolution in strong-coupling regime
 → non-equilibrium CFT (monodromy method / CFT₂)
- 3. diagnose signs of information loss & recovery
 - unitarity constraints on correlations
- 4. translate this into a consistent picture of bulk quantum gravity
 → wouldn't that be nice?

"unitarity constraints"

Unitarity vs Thermalization

(constraints on long-time correlations from unitarity)

Correlations in a closed quantum system, e.g.

$$G(t) = \mathrm{tr}\rho\mathcal{O}(t)\mathcal{O}(0)$$

Time average over a large time T cannot vanish by unitarity

$$\lim_{T \to \infty} \overline{|G(t)|^2} \neq 0$$

Need to assume spectrum is generic (no specific ordering principle)

→ fails for integrable theories
→ connection with ETH

Unitarity vs Thermalization

(constraints on long-time correlations from unitarity)

$$\rho = e^{-\beta H}$$

see also [Barbon & Rabonivici]

Spectral Probes

(to appear with del Campo and Molina-Vilaplana)

Essence of 2-point function: dephasing at late times

$$G(t) = \frac{1}{Z} \sum_{i,j} e^{-\beta E_i - it(E_i - E_j)} |O_{ij}|^2$$

Conveniently captured in spectral form factor

$$g(\beta, t) = \frac{1}{Z^2} |Z(\beta + it)|^2$$

Well-studied object in random matrix theory

Recently re-surfaced in context of SYK [Cotler et al.] & 2D CFT [Dyer & Gur-Ari]

initial decay (~information loss), then "dip, ramp & plateau"

can we characterise these properties more generally?

Fidelity Decay

(a new perspective on spectral form factor)

Prepare the system in the "thermofield double" state on $\mathcal{H}^{\otimes 2}$

$$|\psi(\beta)\rangle := \frac{1}{\sqrt{Z}} \sum_{n} e^{-\frac{\beta}{2}E_n} |n\rangle \otimes |n\rangle$$

Consider time evolution, U(t,0), with respect to $H=H_{\rm s}\otimes {\bf 1}$

We can re-express the spectral form factor as the overlap

$$\mathcal{F}(t) = |\langle \psi(\beta) | U(t,0) | \psi(\beta), 0 \rangle|^2$$

 \Rightarrow Unitarity constraints on behaviour of "fidelity" $\mathcal{F}(t)$ (e.g QSL)

Selected Results [del Campo, Molina-Vilaplana, JS]

1. Initial Gaussian decay governed by "Zeno Time" $\tau_Z = \langle \Delta E \rangle_\beta$

2. Intermediate decay slower than exponential

e.g. SYK & RMT $\sim 1/t^3$

3. Very late time: non-commuting limits & information loss

c.f. rest of talk!

Upshot

QFT correlations probe information loss

Unitarity demands non-trivial late-time behaviour $\mathcal{O}\left(e^{-S}\right)$ (assume finite-size system)

Fidelity of thermofield double state allows to map bounds on spectral form factor to QSL

Upshot

QFT correlations probe information loss

Unitarity demands non-trivial late-time behaviour $\mathcal{O}\left(e^{-S}\right)$ (assume finite-size system)

Fidelity of thermofield double state allows to map bounds on spectral form factor to QSL

Part II: the antiinformation loss paradox

Looking for the Right Place

0D matrix models(IOP,...): connection to geometry? 2D black hole (CGHS): solvable but very different SYK/2D black hole: Einstein dual,...?

3D story shares salient features of 4D (and higher) in fact central to micro-state counting success (D1-D5)

the trouble: no local degrees of freedom (Achucarro & Townsend):

$$S_{3D} = S_{CS}[A] - S_{CS}[\bar{A}]$$

other side of the coin: CFT₂ puts powerful tools at our disposal also see [Fitzpatrick, Kaplan,...]

3D Gravity + Matter

→ add matter: get local dof. BUT need new tools

focus on a universal sector, by defining a 1/c expansion:

→ any microscopic theory in this class defines some 3D quantum gravity theory (sparse spectrum)

3D gravity + matter non-trivial, but solvable → ideal place to study BH puzzles!

From bulk point of view this is $1/G_N$ expansion

CFT₂ gives a non-perturbative definition of quantum gravity.

The Black Hole in the Tin Can

global AdS_{d+1}

Throw in a shell of n dust particles

smooth limit: $n \to \infty$

BH collapse: Vaidya metric

Use light operators ${\mathcal Q}$ to probe geometry as function of t

remark: certain quantities such as entanglement entropy are sensitive to behind horizon physics (away from equilibrium)

The Black Hole in the Tin Can

global AdS_{d+1}

Throw in a shell of n dust particles

smooth limit: $n \to \infty$

BH collapse: Vaidya metric

Use light operators ${\mathcal Q}$ to probe geometry as function of t

remark: certain quantities such as entanglement entropy are sensitive to behind horizon physics (away from equilibrium) "à la recherche de l'information perdue"

Translating to the CFT

Interrogating the CFT

Start probing the physics via 2n + p correlations

$$G(1,2,\ldots p) = \langle \mathcal{V} | \mathcal{Q}_1, \ldots \mathcal{Q}_p | \mathcal{V} \rangle$$

we want to approach smooth, semi-classical gravity

$$c \to \infty$$
$$n \to \infty$$
$$\sigma \to 0$$
$$E \sim nh_{\psi}/\sigma \to \mathcal{O}(c)$$

infinite-point correlations in strongly-coupled CFT!

Benefits of 2D CFT

in the semi-classical limit (large c), get sum of exponentials

$$G(1, 2, \dots p) = \sum_{\text{blocks}} a_k e^{-\frac{c}{6}f_k^{(n)}(1, 2, \dots p)}$$

correlator approximated by largest term, the identity block

"it from id"

the dominant contribution comes from the identity Virasoro block, that is the unit operator **id** and all its descendants *T*, ∂*T*, *T*² *T*∂*T*..., (multi-graviton exchange in bulk)

Benefits of 2D CFT

in the semi-classical limit (large c), get sum of exponentials

$$G(1, 2, \dots p) = \sum_{\text{blocks}} a_k e^{-\frac{c}{6}f_k^{(n)}(1, 2, \dots p)}$$

correlator approximated by largest term, the identity block

"it from id"

the dominant contribution comes from the identity Virasoro block, that is the unit operator **id** and all its descendants *T*, *∂T*, *T*² *T∂T*..., (multi-graviton exchange in bulk)

subleading corrections exponentially suppressed in e^{-c} ~ e^{-1/G}

still need to calculate the semi-classical block:

CONFORMAL SCALAR FIELD ON THE HYPERELLIPTIC CURVE AND CRITICAL ASHKIN-TELLER MULTIPOINT CORRELATION FUNCTIONS

Al.B. ZAMOLODCHIKOV

Scientific Council of "Cybernetics", Academy of Sciences, USSR

Received 3 December 1986

A multipoint conformal block of Ramond states of the two-dimensional free scalar field is calculated. This function is related to the free energy of the scalar field on the hyperelliptic Riemann surface under a particular choice of boundary conditions. Being compactified on the still need to calculate the semi-classical block:

CONFORMAL SCALAR FIELD ON THE HYPERELLIPTIC CURVE AND CRITICAL ASHKIN-TELLER MULTIPOINT CORRELATION FUNCTIONS

Al.B. ZAMOLODCHIKOV

Scientific Council of "Cybernetics", Academy of Sciences, USSR

Received 3 December 1986

A multipoint conformal block of Ramond states of the two-dimensional free scalar field is calculated. This function is related to the free energy of the scalar field on the hyperelliptic Riemann surface under a particular choice of boundary conditions. Being compactified on the

USSR: fighting hyper-intelligent Robot overlords with CFT?

The Monodromy Method

each contraction of operators in the plane defines a cycle

fix monodromies of y''(z) + Ty(z) = 0 $\xrightarrow{c_k} f_k^{(n)}(1, 2, \dots p)$

Taking the smooth Limit

generally a hard problem, big simplification occurs for n $\longrightarrow \infty$

stress tensor \mapsto distribution on $\Sigma_{(\infty)}$

continuum monodromy method $f_0^\infty(1,2,\ldots,p)$

3D semi-classical gravity $\mathcal{L}_{ ext{geo}}(1,2,\ldots p)$

Two-point Autocorrelation

let us now return to the black hole and compute

 $G(t) = \mathrm{tr}\rho\mathcal{O}(t)\mathcal{O}(0)$

can be done analytically:

$$G(t_1, t_2) = \left(\frac{1}{\pi T} \cos\left(\frac{t_1}{2}\right) \sinh\left(\pi T t_2\right) - 2\sin\left(\frac{t_1}{2}\right) \cosh\left(\pi T t_2\right)\right)^{-2\Delta^{\mathcal{Q}}}$$

Physical Consequences

not (yet) known from gravity (but matches known limits) \implies CFT prediction for 3D gravity

The correlation function decays without bound at large time

$$G(t_1, t_2) \sim \exp(-\frac{2\pi\Delta^{\mathcal{Q}}t}{\beta})$$

Manifestly in conflict with unitarity: **CFT loses information!**

Can also compute entanglement entropy of interval A

$$S(A) \to S_{\text{Gibbs}}(A;T) \longrightarrow \rho(A) = \rho_{\text{Gibbs}}(A;T)$$

Restoring Unitarity

This is the anti-information paradox: what happened to unitarity?

$$|G(t)| = \left| \sum_{n,k} e^{i(E_n - E_k)t} \Psi_n^*(\mathcal{V}) \langle n | \mathcal{Q} | k \rangle \langle k | \mathcal{Q} | \mathcal{V} \rangle \right| \neq 0$$

ightarrow correlations cannot become arbitrarily small in $|\mathcal{V}\rangle$

Neglected contributions exponentially suppressed at t=0 (must be present due to crossing symmetry)

$$\sum_{k \neq \text{vac}} a_k e^{-\frac{c}{6} f_k^{\infty}(1,2,\dots,p)} \sim e^{-S}$$

restore unitary at large time \rightarrow non-perturbative effects in 1/G_N

Conclusions

time-dependent 3D quantum gravity with matter in 1/c expansion 'it from id' \rightarrow ideal arena to think about quantum BHs

unitarity constraints on 2-point functions, spectral form factor,... can be mapped to fidelity decay and quantum speed limits (QSL) → bounds on scrambling exponent?

CFT correlation functions seemingly violate unitarity (naïve). non-perturbative corrections in c restore unitarity

on gravity side these correspond to non-perturbative effects in $G_{N.}$ geometric interpretation? bulk interpretation?

are the corrections universal? make a black hole that evaporates,...

thank you!

entanglement entropy

Q-type operators \rightarrow twist insertions: $G_q(t) = \langle \mathcal{V} | \sigma_q(t, \ell_1) \tilde{\sigma}_q(t, \ell_2) | \mathcal{V} \rangle$

 z_1

$$S(A) = \lim_{q \to 1} \frac{1}{1 - q} G_q(t)$$

crossing points $z_{c1} \& z_{c2} \leftrightarrow$ refraction at bulk shell

it from id → require trivial monodromy on smile contour

write
$$z_1=e^{i heta_1}, z_2=e^{i(heta_1+L)}$$
 & continue to Lorentzian time $heta_1=t$

maximize S(A) over crossing points \rightarrow parametric equation for S(t)

 z_2

 \dot{z}_{c2}

entanglement entropy

Implicit formula for growth of entanglement entropy:

$$t = \frac{\beta}{2\pi} \cosh^{-1} \left\{ \cosh\left(2\pi Tq\right) + 2\pi T \tan\left(\frac{L}{2} - q\right) \sinh\left(2\pi Tq\right) \right\}$$
$$S_{EE} = \frac{c}{3} \log \left\{ \frac{\sin\left(\frac{L}{2} - q\right) \cosh\left(2\pi Tq\right) + \frac{1}{2\pi T} \left[1 + \frac{1}{2} \left\{1 + 4\pi^2 T^2\right\} \tan^2\left(\frac{L}{2} - q\right)\right] \cos\left(\frac{L}{2} - q\right) \sinh\left(2\pi Tq\right)}{\epsilon_{UV}/2} \right\}$$

matches **exactly** global AdS₃ Vaidya:

- thermal at late time
- EE growth = change of channel
- sees beyond horizon

CFT calculation shows that purity of state is preserved:

alternative picture: IN-IN computation

