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“introduction” 
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black holes are thermodynamic systems

their entropy is proportional to the area of the event 
horizon

information loss paradox: holography:

a theory of quantum gravity 
should have information ~ area

a BH formed from a pure state 
will evolve into a mixed state (of 

Hawking radiation)
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AdS/CFT relates gravity (often in AdS) to unitary field theory (often CFT)  

Lots of progress gravity ➛ CFT (my favorite: AdS/CMT) 

 
Less known about CFT ➛ (quantum) gravity  
 
➙ despite developments in CFT, CMT:  
 
- time evolution and spread of entanglement  
- thermalization of closed quantum systems (e.g. via eigenstates)  
- non-perturbative methods (e.g. bootstrap)

General Plan

Thermalization ➛ BH formation (& evaporation)



1. Introduction

2. Part I: Unitarity vs. Gravity

3. Part II: The anti-information paradox

4. Conclusions

Outline



Part I: Unitarity vs. 
Gravity



“the trouble with black holes” 
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• outgoing Hawking radiation 
is thermal ρGibbs(TH)

• a horizon       cloaks the 
singularity

• initial pure state         of matter 
collapses inwards

H
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black holes evaporate
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⇢
mixed

⇢pure

• gravity as an EFT implies pure 
to mixed evolution

• fundamentally incompatible 
with a unitary S-matrix

1. quantum gravity is non-unitary 

2. gravity EFT makes no sense 

3. (subtle) corrections to 
Hawking result

The Paradox
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hence AdS/CFT only allows for options 2 & 3.

Holography:

quantum gravity = quantum field theory



hence AdS/CFT only allows for options 2 & 3.

Holography:

quantum gravity = quantum field theory

the anti-information loss paradox:

how does an obviously unitary theory lose information?



1. define an initial state in CFT which forms a black hole

2. understand time evolution in strong-coupling regime

3. diagnose signs of information loss & recovery

4. translate this into a consistent picture of bulk quantum gravity

The Plan
(of a first-principles calculation in holographic CFT)
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1. define an initial state in CFT which forms a black hole

2. understand time evolution in strong-coupling regime

3. diagnose signs of information loss & recovery

4. translate this into a consistent picture of bulk quantum gravity

The Plan
(of a first-principles calculation in holographic CFT)

➛ “quantum quench”

➛ non-equilibrium CFT (monodromy method / CFT2)

➛ unitarity constraints on correlations

➛ wouldn’t that be nice?



“unitarity constraints” 



 Correlations in a closed quantum system, e.g.

Unitarity vs Thermalization
(constraints on long-time correlations from unitarity)

G(t) = tr⇢O(t)O(0)

Time average over a large time T cannot vanish by unitarity

lim
T!1

|G(t)|2 6= 0

Need to assume spectrum is generic (no specific ordering principle) 
 
➛ fails for integrable theories 
➛ connection with ETH



Unitarity vs Thermalization
(constraints on long-time correlations from unitarity)

G(t)

e�S

⇢ = e��H

quantum noise

see also  [Barbon & Rabonivici]



Essence of 2-point function: dephasing at late times

Spectral Probes
(to appear with del Campo and Molina-Vilaplana)

Conveniently captured in spectral form factor

Well-studied object in random matrix theory 
 
Recently re-surfaced in context of SYK [Cotler et al.]  
& 2D CFT [Dyer & Gur-Ari]

G(t) =
1

Z

X

i,j

e��Ei�it(Ei�Ej)|Oij |2

g(�, t) =
1

Z2
|Z(� + it)|2



An Illustration (Dirac SYK)

[Francfort, JS, Vielma]

initial decay (~information loss), then “dip, ramp & plateau”

can we characterise these properties more generally?

g(
�
,t
)

2

average over 1000 realisations

also see [Cotler et al.]



Fidelity Decay
(a new perspective on spectral form factor)

Prepare the system in the “thermofield double” state on

| (�)i := 1p
Z

X

n

e�
�
2En |ni ⌦ |ni

Consider time evolution, U(t,0), with respect to
H = Hs ⌦ 1

We can re-express the spectral form factor as the overlap

F(t) = |h (�)|U(t, 0)| (�), 0i|2

⇒ Unitarity constraints on behaviour of  “fidelity”           (e.g QSL)F(t)

H⌦2
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Selected Results

1. Initial Gaussian decay 
governed by “Zeno Time” ⌧Z = h�Ei�

2. Intermediate decay slower 
than exponential 

e.g. SYK & RMT 

3. Very late time: non-commuting 
limits & information loss 

c.f. rest of talk!⇠ 1/t3

� exp (�#t)

[del Campo, Molina-Vilaplana, JS]

g(
�
,t
)



Upshot

QFT correlations probe information loss 

Unitarity demands non-trivial late-time behaviour 
(assume finite-size system) 

Fidelity of thermofield double state allows to map bounds on 
spectral form factor to QSL

O �
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Part II: the anti-
information loss paradox



Looking for the Right Place

0D matrix models(IOP,…): connection to geometry? 
2D black hole (CGHS): solvable but very different 
SYK/2D black hole: Einstein dual,… ?

3D story shares salient features of 4D (and higher) 
in fact central to micro-state counting success (D1-D5)

the trouble: no local degrees of freedom (Achucarro & Townsend):

S3D = SCS[A]� SCS[Ā]

other side of the coin: CFT2 puts powerful tools at our disposal
also see [Fitzpatrick, Kaplan,…]



3D Gravity + Matter

 
From bulk point of view this is 1/GN expansion 

CFT2 gives a non-perturbative definition of quantum gravity.

➙ add matter: get local dof. BUT need new tools

3D gravity + matter non-trivial, but solvable  
➙ ideal place to study BH puzzles!

focus on a universal sector, by defining a 1/c expansion: 
 
➙  any microscopic theory in this class defines some 3D quantum gravity 
theory (sparse spectrum)



The Black Hole in the Tin Can

Throw in a shell of n dust particles 
 
 
smooth limit: 

 
BH collapse: Vaidya metric 

Use light operators      to probe 
geometry as function of t

 (z1)

 (z2)

 (zk)

remark: certain quantities such as entanglement entropy are sensitive 
to behind horizon physics (away from equilibrium)

Q

global AdSd+1

n ! 1
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“à la recherche de l’information perdue” 



Translating to the CFT

 (z1)

 (z2)
 (zk)

z

|Vi = 1

N

nY

k=1

 (ek, ēk)|0i

start in excited state at t=0:  
 
prepare by Euclidean path integral  
➛ regulator σ

t

t = 0 prepare state

for t-evolution



Interrogating the CFT

c ! 1
n ! 1
� ! 0

E ⇠ nh /� ! O(c)

G(1, 2, . . . p) = hV|Q1 , . . .Qp|Vi

Start probing the physics via 2n + p correlations

we want to approach smooth, semi-classical gravity

infinite-point correlations in strongly-coupled CFT!



Benefits of 2D CFT

in the semi-classical limit (large c), get sum of exponentials

correlator approximated by largest term, the identity block

the dominant contribution comes from the identity Virasoro 
block, that is the unit operator id and all its descendants 
 T, ∂T, T2 T∂T…, (multi-graviton exchange in bulk)

“it from id”

G(1, 2, . . . p) =
X

blocks

ake
� c

6 f
(n)
k (1,2,...p)
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the dominant contribution comes from the identity Virasoro 
block, that is the unit operator id and all its descendants 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subleading corrections exponentially suppressed in e-c ~ e-1/G
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6 f
(n)
k (1,2,...p)



still need to calculate the semi-classical block:

Nuclear Physics B285 [FS19] (1987) 481-503 
North-Holland, Amsterdam 

C O N F O R M A L  SCALAR FIELD ON T H E  H Y P E R E L L I P T I C  CURVE 
AND CRITICAL ASHKIN-TELLER M U L T I P O I N T  

CORRELATION F U N C T I O N S  

AI.B. ZAMOLODCHIKOV 

Scientific Council of "'Cybernetics" Academy of Sciences, USSR 

Received 3 December 1986 

A multipoint conformal block of Ramond states of the two-dimensional free scalar field is 
calculated. This function is related to the free energy of the scalar field on the hyperelliptic 
Riemann surface under a particular choice of boundary conditions. Being compactified on the 
circle this field leads to the crossing symmetric correlation functions with a discrete spectrum of 
scale dimensions. These functions are supposed to describe multipoint spin correlations of the 
critical Ashkin-Teller model. 

1. Introduction 

Conformal  quantum field theory is an effective tool for the study and classifica- 
tion of the critical behaviour of two-dimensional statistical systems [1]. In particular, 
in ref. [1] an infinite series of exactly solvable "minimal"  models of conformal field 
theory was found, which are related to degenerate representations of the conformal 
(Virasoro) algebra; some of these models, related to unitarizable representations [2], 
are able to describe the critical points of a series of model two-dimensional 
statistical systems. The Tsing model, the three-state Potts model and the corre- 
sponding tricritical models are among them. The central charges in the conformal 
algebras of these unitarizable models form the following sequence C = 1 - 6 / p (  p + 
1), p = 3 , 4  . . . .  

Much of the critical properties of the two-dimensional Ashkin-Teller model [3] 
can be understood in terms of the conformal massless Thirring model [4] which 
describes the self-interacting two-dimensional complex Fermi field. The central 
charge in this conformal theory is C = 1. This is in agreement with the known 
bosonization of the Thirring Fermi field in terms of the massless real scalar field. 
Conformal  dimensions of the Thirring field vary continuously with the variation of 
the Ashkin-Teller model parameters along the line of criticality. At the same time, 
the spin-field dimensions are constant and equal to ( 1 ,  ~6)- 

In ref. [5] the following expression for the conformal block of four invariant 
operators  with dimension 8 = ~ was found by the explicit construction in the 

0619-6823/87/$03.50@Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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USSR: fighting hyper-intelligent Robot overlords with CFT?



The Monodromy Method

each contraction of operators in the plane defines a cycle

Q1 Q2

z

 

 †

fix monodromies of y00(z) + Ty(z) = 0

T =
2n+pX

k=1


6h/c

(z � zk)2
+

ck
z � zk

�

defines . . .

⌃(2n+p)

f (n)
k (1, 2, . . . p)

ck



Taking the smooth Limit

generally a hard problem, big simplification occurs for n ⟶ ∞

stress tensor  ⟼  distribution on 

defines

⌃(1)

�I

�II

TH ⇠ 1/z2

TH = 0

z

zc1

zc4

zc3 zc2

⌃(1)

continuum monodromy method 3D semi-classical gravity
L
geo

(1, 2, . . . p)f1
0 (1, 2, . . . , p)



Two-point Autocorrelation

let us now return to the black hole and compute

G(t) = tr⇢O(t)O(0)

in the collapse state |Vi

G(t1, t2) =

✓
1

⇡T
cos

✓
t1
2

◆
sinh (⇡Tt2)� 2 sin

✓
t1
2

◆
cosh (⇡Tt2)

◆�2�Q

G(1, 2) =

can be done analytically:



Physical Consequences

not (yet) known from gravity (but matches known limits)  
⟹ CFT prediction for 3D gravity

The correlation function decays without bound at large time

G(t1, t2) ⇠ exp(�2⇡�Qt

�
)

Manifestly in conflict with unitarity:  CFT loses information!

Can also compute entanglement entropy of interval A

S(A) ! SGibbs(A;T ) ⇢(A) = ⇢Gibbs(A;T )



Restoring Unitarity

This is the anti-information paradox: what happened to unitarity?

➙ correlations cannot become arbitrarily small in 

Neglected contributions exponentially suppressed at t=0 (must be 
present due to crossing symmetry)

6= 0

restore unitary at large time ➙ non-perturbative effects in 1/GN

|G(t)| =
���
X

n,k

ei(En�Ek)t ⇤
n(V)hn|Q|kihk|Q|Vi

���

⇠ e�S

|Vi

X

k 6=vac

ake
� c

6 f
1
k (1,2,...p)



Conclusions

time-dependent 3D quantum gravity with matter in 1/c expansion  
‘it from id’ ➙ ideal arena to think about quantum BHs 

unitarity constraints on 2-point functions, spectral form factor,… can be 
mapped to fidelity decay and quantum speed limits (QSL) 
➙  bounds on scrambling exponent? 

CFT correlation functions seemingly violate unitarity (naïve).  
non-perturbative corrections  in c restore unitarity 

on gravity side these correspond to non-perturbative effects in GN. 
geometric interpretation? bulk interpretation? 

are the corrections universal? make a black hole that evaporates,… 



thank you!



entanglement entropy

40

Q-type operators ➙ twist insertions:

crossing points zc1 & zc2 ↔ refraction at bulk shell

it from id ➙ require trivial monodromy on smile contour

write z1 = ei✓1 , z2 = ei(✓1+L) & continue to Lorentzian time ✓1 = t

maximize S(A) over crossing points ➙ parametric equation for S(t)

Gq(t) = hV|�q(t, `1)�̃q(t, `2)|Vi

S(A) = lim
q!1

1

1� q
Gq(t)



entanglement entropy

41

matches exactly global AdS3 Vaidya: 

- thermal at late time 

- EE growth = change of channel 

- sees beyond horizon  

CFT calculation shows that purity of state is preserved: S(A) = S(Ac)

��� ��� ��� ��� ���
���

���

���

���

���

���

�π�/β

�(
�)
/�
(��
��
�
��
)

Implicit formula for growth of entanglement entropy:

t =
�

2⇡
cosh

�1

⇢
cosh (2⇡Tq) + 2⇡T tan

✓
L

2

� q

◆
sinh (2⇡Tq)

�

SEE =

c

3

log

(
sin

�
L
2 � q

�
cosh (2⇡Tq) + 1

2⇡T

⇥
1 +

1
2

�
1 + 4⇡2T 2

 
tan

2
�
L
2 � q

�⇤
cos

�
L
2 � q

�
sinh (2⇡Tq)

✏UV /2

)



alternative picture: IN-IN computation

42

 (e1)
 (e2)  (ek)

 †(1/ēk)

 †(1/ē1)

 †(1/ē2)

1.) prepare 
initial state by 
Euclidean 
evolution for 
time σ 

2.) evolve in 
Lorentzian time 
until Q-operator 
insertion point(s)

3,4.) evolve 
back in 
Lorentzian time, 
then Euclidean 
time to form 
conjugate


