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Departament de F́ısica Teòrica.
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Superspaces and superfields

A superspace is constructed from a certain
topological space |X| by putting on it the struc-
tural sheaf, a sheaf of superalgebras

U ⊂open |X| → F(U)

in such way that there are a restriction maps
for V ⊂open U

F(U)→ F(V )

which glue together correctly.

There is a stalk at each point a ∈ |X|, Fa,
that is a local superalgebra (it has a unique
maximal ideal Ia)

xIa ⊂ Ia, ∀x ∈ Fa.

Examples of sheaves: Continuous functions (topo-
logical space); smooth functions (differentiable
manifolds); polynomials (algebraic varieties).
The stalk in these cases are germs of func-
tions. For example, C∞(R): at each a the
maximal ideal is 〈x− a〉.



Toy model of superspace. R1|1. To each
open set we associate O1|1(U) := C∞(U) ⊗
∧(θ) = C∞(U)[θ].

If x is the global coordinate in R, we say that
(x, θ) are global coordinates on R1|1.

When U = R we speak about global sections

Φ̃ = Ã+ G̃ θ ,

with Ã, G̃ ∈ C∞(R). They are both even !!
Φ̃ is the defining object of the superspace, still
it is not a superfield, as understood in physics.

One could multiply G̃ by some odd quantity
ψ = ξG̃ but this presents problems:
1. Is it possible to recover the multiplication
of the structural sheaf?
2. What do we do with quantities like

ψ(x)ψ(x′) = 0??

ψ(x)ψ̇(x) = 0??



Volkov-Akulov multiplet. C4|2. Chiral super-

field in D = 2

Φ = A+ θαχα + θαθαF, α = 1,2 ,

satisfying Φ2 = 0.

A2 = 0, Aχα = 0, 4AF − χαχα = 0

If F is invertible;

A =
χ1χ2

4F
.

If one imposes the constraint on elements of

the structural sheaf

Φ̃ = Ã+ θαG̃α + θαθαF̃ , α = 1,2 ,

Φ̃2 = 0 implies

Ã2 = 0, 2ÃG̃α = 0, ÃF̃ = 0 ,

whose solution is, for invertible F̃ , Ã = 0.

Some work of interpretation is needed here.



The even rules principle

Theorem. (Deligne and Morgan). Let {Vi}i∈I,
I = 1, . . . , n be a family of super vector spaces,
V another super vector space and B = B0 ⊕
B1 a commutative superalgebra. We denote
Vi0(B) = (B ⊗ Vi)0 = B0 ⊗ V0 + B1 ⊗ V1 and
V0(B) = (B ⊗ V )0.

Any family of B0-multilinear maps

V1 0(B)× · · · × Vn0(B)
fB−−→ V0(B)

which is functorial in B comes from a unique
morphism

V1 ⊗ · · · ⊗ Vn
f−→ V

that is,

fB(b1 ⊗ v1, b2 ⊗ v2, . . . , bn ⊗ vn) =

(−1)pb1 · · · bn f(v1 ⊗ · · · ⊗ vn) ,

where p is the number of pairs (i, j) with i < j

and vi, vj odd.

�



Definition. Let V and W be two superspaces.

We say that a family of morphisms{
fB : V (B)→W (B), B ∈ (c salgebras)

}
is functorial in B if given a superalgebra mor-

phism

B h−→ B′

the diagram

V (B)
fB−−→ W (B)

V (h)

y yW (h)

V (B′)
fB′−−→ W (B′) .

commutes.
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Definition. A superfield in R1|1 is a functorial

family

Φ = {ΦB ∈ (B ⊗ C∞(R)[θ])0 , B ∈ (c salgebras) } .

�

Clearly, superfields can be multiplied. By the

even rules principle, this family of products de-

fines the standard product in C∞(R)[θ]. (First

question answered).

Let us consider B = C∞(R)⊗ ∧[ξ1, ξ2]. Then

A(x) = A0(x) +A12(x)ξ1ξ2,

φ(x) = φ1(x)ξ1 + φ2(x)ξ2 .

φ(x)φ(x′) = (φ1(x)φ2(x′)− φ2(x)φ1(x′))ξ1ξ2,

φ(x)φ̇(x) = (φ1(x)φ̇2(x)− φ2(x)φ̇1(x))ξ1ξ2 ,

which, generically, are different from zero.



We will need as many odd variables in B as
different points or number of derivatives we
want to consider.

But we have them all! Provided a functorial
behaviour is assumed. Moreover: it is enough
to consider Grassmann algebras.

The odd variables ξi are not physical quanti-
ties; they serve only to reproduce the correct
algebraic behaviour of superfields. (We will
talk later about observables and nilpotent vari-
ables)

(Second question answered).

Remark. We haven’t introduced at all the su-
per Poincaré group, so no supersymmetry is
assumed here. These considerations are pre-
vious to the introduction of a transformation
supergroup.
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Superchemes

We can still see the superfield in another way.
We fix C4|2.

Φ = A+ θαχα + θαθαF, α = 1,2 ,

A, F ∈ B0 ⊗ C∞(C4) and χα,∈ B1 ⊗ C∞(C4).

A morphism of superspaces C4|n → C2|2 is a
homeomorphism of the topological spaces to-
gether with a map of algebras

C∞(R2)[θ1, θ2]→ C∞(R4)[ξ1, . . . , ξn] .

This is determined once we provide two even
sections and two odd sections of C4|n, which
are the images of the global coordinates in
C2|2. Each superfield, as above, provides with
its component fields (A,F, χ1, χ2) a morphism
of the corresponding superspaces.

We want to study how to impose constraints
in the component fields. We need some defi-
nitions.



We consider first affine algebras: commuta-
tive, over C, finitely generated, with no nilpo-
tents. Then, there is an equivalence of cate-
gories with affine algebraic varieties, commonly
seen as the zero locus of some polynomials.

Points of an affine algebraic variety are in cor-
respondence with maximal ideals. For example

a ∈ C � 〈x− a〉 ⊂ C∞(R) .

One step further is to consider all the prime
ideals. Then we recover the points of the va-
riety and all its irreducible subvarieties. This
space has a topology (Zariski) where closed
sets are sets of prime ideals that contain a
certain ideal and it is called the spectrum of
A, Spec(A). (Essentially, algebraic subsets).

Localization of the affine algebra over a point
p gives the stalk of a the structural sheaf{

f

g
, f, g ∈ A, g ∈ F − p

}
.



We have then defined

Spec(F ) := (Spec(F ),OF ) ≈ X := (|X|,OX) .

What if now we relax some of the properties of
the affine algebras? Suppose they are over R
or that they contain nilpotents. What geomet-
rical objects correspond to general algebras? It
is the category of affine schemes (affine?).

Example. C[x, y] and the ideal 〈x2〉. The quo-
tient, F = C[x, y]/〈x2〉, has a nilpotent x.

f0 + x f1 ∈ F, f0, f1 ∈ C[y] .

The solution of the polynomial equation x2 =
0 over C is x = 0. Quotienting by the ideal
of all nilpotents, Fred

∼= C[y]. But F ‘reminds’
the double multiplicity of the solution. Points
in Spec(F ) are 〈y − a, x2〉, with stalk

Fa =

{
f0 + x f1

g0 + x g1

∣∣∣ fi, gi ∈ C[y], g0(a) 6= 0

}
.
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Definition. An affine scheme X is a topologi-

cal space |X| together with a sheaf of algebras

OX which is isomorphic to Spec(F ) for some

algebra F . �

Affine superalgebras are commutative super-

algebras whose reduced algebra (quotient by

the ideal of the odd nilpotents) is affine. Also,

one requires finite generation of A0 and A1.

Spec(A) defines an affine supervariety.

Definition. An affine superscheme S is a topo-

logical space |S| together with a sheaf of alge-

bras OS which is isomorphic to Spec(A) for

some superalgebra A. �

We can now go back to the Volkov-Akulov

multiplet.



Φ = A+ θαχα + θαθαF, α = 1,2 ,

Forcing Φ2 = 0 implies to take quotient by the
ideal in C∞(C2)[χ1, χ2].

〈A2, Aχα, 2AF − χ1χ2〉 .
We study first the reduced scheme (setting the
fermions to 0)

〈A2, AF 〉 .
A is a nilpotent, so the algebra is not affine.
There is an open set where the scheme is iso-
morphic to an affine one: the points where F

is invertible.

C∞(C2)[F−1]
/〈
A, FF−1 − 1〉 ' C∞(C×) .

This is the regular or smooth part of the scheme,
represented by the object C× = C− {0}.

The same construction can be carried over the
full superscheme by a change of variables

A′ = 4AF − χαχα, F ′ = F χ′α = χα .



The regular part of the scheme

C∞(C2)[χ1, χ2][F−1]
/〈
A′, FF−1 − 1

〉
'

C∞(C×)[χ1, χ2] .

Let us consider now Φn = 0, n > 2. The ideal

is now〈
An, An−1χα, An−2 (4AF − (n− 1)χαχα)

〉
.

The reduced scheme is given by the ideal〈
An, An−1F

〉
.

One can still invert F , but this will give An−1 =

0, so we cannot get rid of the nilpotents. This

scheme does not have regular part.



Devil’s trick (by physicists). Impose an extra

relation

A = aχαχα .

(a could be function of F ). This solves trivially

all the equations.

For n = 2, a is determined; for n = 3 it is not,

so there are extra solutions.

The drawback: SUSY is broken (not in n = 2).

In order to have SUSY invariance, even

nilpotents must be kept



A comment on observables and nilpotent

variables

Let F be an algebra, consider Spec(F ) and p,

a prime in F . We consider the integral domain

F/p (the product of two 6= 0 elements is 6= 0).

Let Fp the localization and consider κ(p) :=

Fp/p. This is a field, called the residue field. It

can be different from point to point.

Example. F = C[x]. At 〈x−a〉 the residue field

is C. At 〈0〉 it is the field of rational functions.

�

For every f ∈ F we can define a ‘function’ on

Spec(F ) with values in the residue field via the

canonical maps

F −→ Fp −→ κ(p)

f −→ f −→ f(p) .



This is the way of recovering the interpretation

of ‘algebra of functions’ for topological spaces,

algebraic varieties, differential manifolds...

If F contains a nilpotent n then n ∈ p for

all prime ideals, so n(p) = 0. F cannot be

reproduced from an algebra of functions on

Spec(F ).

Classically, observables are functions on a phase

space (or a space of fields) and the possible re-

sults of measurements are numbers, the values

of these functions. In this interpretation, odd

degrees of freedom (or odd fields, like elec-

trons) cannot be seen classically.

Of course in quantum physics things change.

The commutative algebra of observables is de-

formed to a non commutative one (operators

on a Hilbert space).



Example. Let us consider a Grassmann alge-

bra ∧(θ, π) with canonical super Poisson bracket

{θ, π}+ = 1 .

The Grassmann algebra is deformed to a non-

commutative superalgebra freely generated by

indeterminates Θ,Π satisfying the commuta-

tion rules

[Θ,Π]+ = i~ id ,

and the rest 0. By a change of variables, this

can be seen isomorphic to the Clifford algebra

C(1,1). All the Clifford algebras are noncom-

mutative superalgberas.

From here one constructs a Hilbert space and

hermitian observables as in the even case. Odd

variables acquire ‘visibility’ in the quantum realm.



Conlusions

The translation between the physics understand-

ing of superfields and the structural sheaf of

a superspace is done through the functorial

mechanism of the ‘even rules’.

We considered here only scalar superfields, but

one could take sheaves of modules for different

types of superfields.

Systems that realize non linearly supersymme-

try may need the introduction of even nilpotent

variables.

The classical limit of odd degrees of freedom is

only mathematical, not related to observables.

Quantum, even nilpotent variables? (No idea).


