
AN ABSTRACT THEORY OF PHYSICAL MEASUREMENTS

Pedro Resende
Centre for Mathematical Analysis, Geometry, and Dynamical Systems,

Department of Mathematics, Instituto Superior Técnico
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Measurement z

One run yields one bit of classical information:

0 = down

1 = up

Stern–Gerlach analyzer



Information-induced order

z

z− (can only yield 0)

z+ (can only yield 1)

Disjunction

z = z− ∨ z+



Temporal/causal order

Can have sequentially composed measurements:

zz+ = z+

zx+z+ = z−x+z+ ∨ z+x+z+ 6= z



I Topological and algebraic structure of spaces of measurements.

I Multiple runs of z also yield statistical information:

0 occurs in M runs

1 occurs in N runs

Will not address this in this talk (no measure-theoretic structure).
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Part 1 — The measurement problem

“... the quantum postulate implies that any observation
of atomic phenomena will involve an interaction with the
agency of observation not to be neglected. Accordingly,
an independent reality in the ordinary physical sense can
neither be ascribed to the phenomena nor to the agencies
of observation.”

– Niels Bohr, The quantum postulate and the recent development of quantum
theory, Supplement to “Nature,” April 14, 1928.



“...the description of the experimental arrangement and the
recording of observations must be given in plain language,
suitably refined by the usual physical terminology. This is a
simple logical demand, since by the word “experiment” we
can only mean a procedure regarding which we are able to
communicate to others what we have done and what we
have learnt.”

– Niels Bohr (1958), Quantum physics and philosophy—causality and
complementarity (pp. 1–7) Woodbridge: Ox Bow Press (Reprinted in The
Philosophical writings of Niels Bohr, Essays 1958–1962 on atomic physics and
human knowledge originally, Wiley 1963).



von Neumann

I Two-state system (a qubit)

I Hilbert space HS = C2

I Basis states: |0〉 and |1〉

I Experimental apparatus

I Hilbert space HA

I Initial state: |Pointer=?〉

Time evolution in HS ⊗ HA

e−i Ĥ∆t

��

α |0〉 ⊗ |Pointer=?〉 + β |1〉 ⊗ |Pointer=?〉

α |0〉 ⊗ |Pointer=0〉 + β |1〉 ⊗ |Pointer=1〉



“But in any case, no matter how far we calculate — to
the mercury vessel, to the scale of the thermometer, to
the retina, or into the brain, at some time we must say:
and this is perceived by the observer. That is, we must
always divide the world into two parts, the one being the
observed system, the other the observer.

– John von Neumann, Mathematical Foundations of Quantum Mechanics,
Princeton Univ. Press, 1955 (translation of the 1932 german original).

“What exactly qualifies some physical systems to play the
role of ‘measurer’? Was the wavefunction of the world wai-
ting to jump for thousands of millions of years until a single-
celled living creature appeared? Or did it have to wait a little
longer, for some better qualified system... with a PhD?”

– John S. Bell, Against ‘measurement’, Phys. World 3 (1990).



Interpretations and variants

I Realist: decoherence, many-worlds, stochastic collapse, gravity-induced
collapse, de Broglie–Bohm mechanics, contextual topos-based models...

I Epistemic/subjective: “Copenhagen” (partially), QBism...

I “New interpretations appear every year. None ever disappear.”
– David Mermin



Part 2 — Rationale

Classical mechanics:

I Systems have states.

I States are defined by their
properties (position,
momentum...).

I States are abstract and
state spaces are geometric.

Quantum mechanics:

I Systems do or do not have
states, according to
interpretation.

I Measurements condition
the types of answers
obtained from systems.

I If systems have states,
measurements may change
them.

Idea: define spaces of abstract measurements.



Classical physics



Copenhagen



Feynman



Measurement 1



Measurement 2



Measurement 3



Measurement 4



Measurement 5



Measurement 6







“Definition”

A measurement is a finite physical procedure,

performed with an experimental apparatus,

in the course of which a finite amount of

communicable classical information

is recorded.



Part 3 — Measurement spaces

(Based on arXiv:2102.01712)

I Set M of measurements.

I From each m ∈ M finite quantities of communicable classical information
can be obtained (∼ finite strings of 0s and 1s).

I These finite pieces of classical information are the observable properties
associated with m.

I Each observable property can be identified with a subset U ⊂ M.

I m ∈ U reads: U can be recorded by performing m.

z ∈ U+ ∩ U−

z+ ∈ U+ \ U−

z− ∈ U− \ U+



Topology

I U ∩ V logical conjunction of properties: observable

I U ∪ V logical disjunction of properties: observable

I Infinitary disjunction
⋃

i Ui : observable

I Infinitary conjunction
⋂

i Ui : not necessarily observable

I The observable properties are the open sets of a topology on M
[cf. S.J. Vickers, Topology Via Logic, CUP, 1989].

I M trivial property

I ∅ impossible property

I m ∼ n if m and n have the same neighborhoods.

I The equivalence classes [m] are the abstract measurements.

I Quotient space of abstract measurements is T0.



I In fact M should be sober.

I Then the specialization order

m ≤ n ⇐⇒ m ∈ {n}

is a directed complete partial order, and the topology is contained in the
Scott topology.

I The open sets are upper-closed in the specialization order (and also
inaccessible by directed joins):

p

n

m

p ≤ m p ≤ n



Disjunctions

Disjunctions are joins (suprema) in the specialization order:

z

z+ z–



Disjunctions

Disjunctions are joins (suprema) in the specialization order:

z

z+ z–

WV



Disjunctions

Disjunctions are continuous operations because V ∨W = V ∩W :

z

z+ z–

WV

U



Definition

A sober lattice is a sober space L whose specialization order has a least element
0 and a continuous binary join operation ∨ : L× L→ L.

Fact: any sober lattice is a complete lattice (all joins exist).



Compositions

I mn is n and then m.

I If the composition is
meaningless then mn = 0.

I (mn)p = m(np)

I (m ∨ n)p = mp ∨ np

I 0m = 0

I Composition is continuous.

I m∗ is continuous formal
reversal of m.

I m∗∗ = m

I (mn)∗ = n∗m∗

I m is reversible if mm∗m = m.

I Fake reversibility is ruled out:

mm∗m ≤ m =⇒ mm∗m = m

M is a stably Gelfand quantale.



Definition

A measurement space M is a topological involutive semigroup which is a sober
lattice and for all m, n, p ∈ M satisfies:

1. 0m = 0;

2. (m ∨ n)p = mp ∨ np;

3. mm∗m = m whenever mm∗m ≤ m.

Shorter definition: a measurement space is a sober involutive semiring that
satisfies condition 3.

Even shorter definition: a measurement space is a sober stably Gelfand
quantale.



EXAMPLES



Measurement spaces from C*-algebras

Theorem

Let A be a C*-algebra. The involutive quantale MaxA [Mulvey 1989], with the
lower Vietoris topology, is a measurement space.

(Sobriety in [R–Santos (2016)]; stably Gelfand condition in [R 2018a].)

I P ∈ MaxA ⇐⇒ P is a closed linear subspace of A

I PQ = 〈{ab | a ∈ P, b ∈ Q}〉
I P ∨ Q = P + Q

I P∗ = {a∗ | a ∈ P}
I The lower Vietoris topology has a subbasis of open sets

Ũ = {P ∈ MaxA | P ∩ U 6= ∅}

where U is open in A.



For the spin 1/2 example: A = M2(C).

z+ =

〈(
1 0
0 0

)〉
z− =

〈(
0 0
0 1

)〉
z =

〈(
1 0
0 1

)
,

(
1 0
0 −1

)〉

x+ =

〈(
1 1
1 1

)〉
x− =

〈(
1 −1
−1 1

)〉
x =

〈(
1 0
0 1

)
,

(
0 1
1 0

)〉

Fragment of the specialization order:

x z

x− x+ z− z+

0



Theorem (Kruml–R, 2004)

For unital C*-algebras (even without the topology on the quantales):

A ∼= B ⇐⇒ MaxA ∼= MaxB.

I Automorphism of MaxC2:

α
(
〈(z ,w)〉

)
= 〈(w , z)〉 if z 6= 0 and w 6= 0

α
(
〈(z , 0)〉

)
= 〈(z , 0)〉

α
(
〈(0,w)〉

)
= 〈(0,w)〉 .

α does not come from any ∗-automorphism of C2.

I But α is not continuous.



Part 4 — Classical measurement spaces

First question: what is a measurement space of classical type?

Example 1 — Lab wall

Let X be a locally compact space. The topology Ω(X ), equipped with the
Scott topology, is a measurement space:

UV = U ∩ V U ∨ V = U ∪ V U∗ = U

Corresponding physical situation: observe a wall of the lab by visual inspection,
using light.

We never see points of the wall — each photon that
hits our retina carries information about a region of
the wall, no matter how small.

The “picture” of the wall as a space with points emerges from an integrated
mental image that translates mathematically to a geometric model.



Example 2 — Adding partial symmetries

The composition is associative and defines a pseudogroup (a complete and
infinitely distributive inverse semigroup [cf. Mark V. Lawson, Inverse
Semigroups: The Theory of Partial Symmetries, WS, 2002]).
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Example 2 — Adding partial symmetries

The composition is associative and defines a pseudogroup (a complete and
infinitely distributive inverse semigroup [cf. Mark V. Lawson, Inverse
Semigroups: The Theory of Partial Symmetries, WS, 2002]).



I Let G0 be a locally compact Hausdorff space (the lab wall).

I The partial symmetries form a pseudogroup S whose idempotents
correspond to the open sets of G0.

I For each symmetry f ∈ S let Uf ⊂ G0 × G0 be its graph, and let

G1 =
⋃
f∈S

Uf .

I G1 is an equivalence relation on G0, so it defines a principal groupoid G .

I The family (Uf )f∈S is a basis for a topology on G1 that makes G a locally
compact Hausdorff étale groupoid (second-countable if S is countable).

Measurement space of G

The topology Ω(G1), equipped with the Scott topology, is a measurement
space O(G):

UV = composition of U and V as binary relations

U ∨ V = U ∪ V

U∗ = reversal of U as a binary relation



Example

flip z+ = z− flip z+



Example 3 — Schwinger’s selective measurements

I Physical quantity A with finitely many values a, a′, a′′, . . .

I M(a) is the measurement that selects those systems whose value of A is a
and rejects all others.

Example: z+ = M(+~/2)

I M(a′, a) selects the systems whose value of A is a, after which those
systems emerge in a new state for which the value is a′.

Example: M(−~/2,+~/2) = flip z+ = z−xz+

I M(a) is identified with M(a, a).

I Finite pair groupoid: G0 = {a, a′, a′′, . . .}; G1 = G0 × G0.

I More generally: G0 = space of values of A.

I M(U) selects those systems whose value of A lies in open set U.

I M(f ) selects the systems whose value of A is some a ∈ U, after which
those systems emerge in a new state for which the value is f (a), where
f : U → V is a partial symmetry of G0.

I Principal étale groupoid G and measurement space O(G) obtained as in
the lab wall example.

I Or define G to be the (non-étale) pair groupoid G0 × G0.



Part 5 — Quantizations and observers

What about “observers”?

Each observer has a repertoire of measure-
ments O ⊂ M.

Communication: each observer approximates
measurements done by others:

α : M → O



Definition

Let M be a measurement space. An observer of M is a pair (O,α) in which O
is a classical subspace of measurements (e.g., ∼= O(G)) and α : M → O is a
topological retraction onto O such that for all m, n ∈ M and ω ∈ O

α(m ∨ n) = α(m) ∨α(n)

α(m∗) = α(m)∗

α(0) = 0

α(ωm) = ωα(m)

The observer is persistent if it further satisfies

α(mωn) = α(m)ωα(n),

and localizable if m ≤ α(m) for all m ∈ M.

I α(m) is the best approximation of m from the point of view of the
observer.

I If (O′,α′) is another observer, the restriction α|O′ : O′ → O translates
measurements of an observer to the other.



Example

I G second countable locally compact Hausdorff étale groupoid.

I “Quantization”: A = C∗r (G) (or A = C∗r (G ,E) for Fell line bundle).

Lemma (partially from [R 2018a])

The embedding ι : O(G)→ MaxA given by U 7→ Cc(U) is continuous
and preserves composition, involution and joins.

If A = C∗r (G) the relative topology of the image O := ι(O(G)) is the
Scott topology.

I Open support map suppo : MaxA→ O(G):

suppo(P) = {x ∈ G1 | ∃a∈P a(x) 6= 0}

I Define α : MaxA→ O by α = ι ◦ suppo.

Theorem (from [R 2018a] )

The pair (O,α) is an observer of MaxA.

If G is compact: (1) the observer is localizable; (2) if G is principal with
discrete orbits the observer is persistent; (3) if the observer is persistent then G
is principal.



Multiple observers

I There are many étale groupoids associated to any measurement space M
(at least one per projection m = m2 = m∗ ∈ M) [R 2018b].

I From commutative sub-C*-algebras of a C*-algebra A the groupoids are
locally compact and locally Hausdorff — cf. [Renault 2008, R 2018a].

I Consider (O,α) and (O′,α′) with O ∼= O(G) and O′ ∼= O(G ′). There are
measurements in M corresponding to partial symmetries

f : U → U ′

where U ⊂ G0 and U ′ ⊂ G ′0 are open sets. The totality of these
symmetries defines a (partial) Morita equivalence [Lawson–R 2020,
Quijano–R 2021] between the two observers.

I The partial symmetries are the Stern–Gerlach measurements in the
terminology of Ciaglia et al.

I Example: in M2(C)〈(
1 0
0 0

)〉
︸ ︷︷ ︸

z+

〈(
1 1
0 0

)〉〈(
1 1
1 1

)〉
︸ ︷︷ ︸

x+

=

〈(
1 1
0 0

)〉
︸ ︷︷ ︸

z+←x+





Part 6 — Wrapping up

I Attempting to approach quantum mechanics geometrically (in a broad
sense) and in a paradox free way, by taking measurements rather than
states to be the points.

I The model is both realist and operational.

I The open sets correspond to the classical information that can be
extracted from measurements.

I On the other hand, measurements are defined in terms of the classical
information they yield.

I Neither information nor measurement takes precedence: measurement
spaces bootstrap a definition of both.



I Observers provide a mathematical formulation of Bohr’s classical/quantum
divide, however without requiring observers in the definition of
measurements in the first place: observers are derived “entities,” so here
the “shifty split” is not fundamental.

I A way to address Bell’s qualms regarding information?

“Information? Whose information? Information about what?”

I Is classical information (and measurements) fundamental?

“... every physical quantity, every it, derives its ultimate sig-
nificance from bits, binary yes-or-no indications, a conclusion
which we epitomize in the phrase, it from bit.”
– John A. Wheeler, 1989

I Open problems related to C*-algebras and Fell bundles; statistical
interpretation; dynamics; geometrization of observers...


