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Motivation
• Machine learning (ML) has received great attention in the 

quantum community these days.

Classical ML 
for quantum physics/chemistry

Enhancing ML 
with quantum computers

The goal      : 
Solve challenging quantum 

many-body problems 
better than 

traditional classical algorithms

The goal      : 
Design quantum ML algorithms 

that yield 
significant advantage 

over any classical algorithm

“Solving the quantum many-body problem with artificial neural networks.” Science 355.6325 (2017): 602-606. 
"Learning phase transitions by confusion." Nature Physics 13.5 (2017): 435-439. 
"Supervised learning with quantum-enhanced feature spaces." Nature 567.7747 (2019): 209-212.



Motivation
• Yet, many fundamental questions remain to be answered.

Classical ML 
for quantum physics/chemistry

Enhancing ML 
with quantum computers

The question      : 
How can ML be more useful 

than non-ML algorithms?

The question      : 
What are the advantages of 

quantum ML in general?

“Solving the quantum many-body problem with artificial neural networks.” Science 355.6325 (2017): 602-606. 
"Learning phase transitions by confusion." Nature Physics 13.5 (2017): 435-439. 
"Supervised learning with quantum-enhanced feature spaces." Nature 567.7747 (2019): 209-212.



General Setting
• In this work, we focus on training an ML model to predict 

                                         , 
where  is a classical input,  is an unknown CPTP map, and  is an observable. 

• This is very general: includes any function computable by a quantum computer.

x ↦ fℰ(x) = Tr(Oℰ(|x⟩⟨x|))
x ℰ O

Example 1 Example 2
Predicting outcomes of 
physical experiments

Predicting ground state properties 
of a physical system

 parameters describing the experimentx :

 the physical process in the experimentℰ :

 what the scientist measureO :

 parameters describing a physical systemx :

 a process for preparing ground stateℰ :

 the property we want to predictO :
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• Learning agents can actively 

perform experiments to learn a 

prediction model. 

• Each query begins with a choice of 

classical input  and ends with an 

arbitrary POVM measurement. 

• A prediction model  is 

created after learning.

x

h(x) ≈ fℰ(x)
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General Setting
Quantum machine learning 

• Similar to classical ML setting. 

• Each query consists of an arbitrary 

access to the CPTP map  (the 

input can be entangled, and no 

measurement at the end). 

• A prediction model  is 

stored in a quantum memory 

instead of a classical memory.

ℰ

h(x) ≈ fℰ(x)
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The setup is closely related to Quantum Algorithmic Measurements by Aharonov, Cotler, Qi



Main Question

Information-theoretic aspect:
Do classical ML need significantly more experiments (query complexity) 
than quantum ML to predict  ?fℰ(x) = Tr(Oℰ(|x⟩⟨x|))

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.



Main Theorem

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Consider any observable , any family of CPTP maps  with -qubit 
input and -qubit output, and any input distribution . 

Suppose a quantum ML uses  queries to the unknown CPTP map  to 
learn a prediction model  that achieves a prediction error of  

                                           

then there is a classical ML using  to learn a prediction model 
 that achieves a prediction error of  

                                          

O ℱ = {ℰ} n
m 𝒟

NQ ℰ
hQ(x)

𝔼x∼𝒟 hQ(x) − fℰ(x)
2

≤ ϵ,
NC ≤ 𝒪(mNQ/ϵ)

hC(x)
𝔼x∼𝒟 hC(x) − fℰ(x)

2
≤ 𝒪(ϵ) .

Theorem (Huang, Kueng, Preskill; 2021 [1])



Main Theorem

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Consider any observable , any family of CPTP maps  with -qubit 
input and -qubit output, and any input distribution . 

Suppose a quantum ML uses  queries to the unknown CPTP map  to 
learn a prediction model  that achieves a prediction error of  

                                           

then there is a classical ML using  to learn a prediction model 
 that achieves a prediction error of  

                                          

O ℱ = {ℰ} n
m 𝒟

NQ ℰ
hQ(x)

𝔼x∼𝒟 hQ(x) − fℰ(x)
2

≤ ϵ,
NC ≤ 𝒪(mNQ/ϵ)

hC(x)
𝔼x∼𝒟 hC(x) − fℰ(x)

2
≤ 𝒪(ϵ) .

Theorem (Huang, Kueng, Preskill; 2021 [1])
Concept/hypothesis class 

in statistical learning theory



Main Theorem

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Consider any observable , any family of CPTP maps  with -qubit 
input and -qubit output, and any input distribution . 

Suppose a quantum ML uses  queries to the unknown CPTP map  to 
learn a prediction model  that achieves a prediction error of  

                                           

then there is a classical ML using  to learn a prediction model 
 that achieves a prediction error of  

                                          

O ℱ = {ℰ} n
m 𝒟

NQ ℰ
hQ(x)

𝔼x∼𝒟 hQ(x) − fℰ(x)
2

≤ ϵ,
NC ≤ 𝒪(mNQ/ϵ)

hC(x)
𝔼x∼𝒟 hC(x) − fℰ(x)

2
≤ 𝒪(ϵ) .

Theorem (Huang, Kueng, Preskill; 2021 [1])

Average prediction error



Proof idea: 
Quantum lower bound

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.
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[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.
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ϵ
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[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

1. Alice chooses a CPTP map  among packing net ℰ Mp
ϵ

ℰ
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[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

2. Bob uses the quantum machine learning algorithm to get

      , 

where = quantum processing (CPTP maps), 
And  is the physical experiment to learn.

ρNQ,ℰ = (ℰ ⊗ I )…C2(ℰ ⊗ I )C1(ℰ ⊗ I )(ρ0)

C1, C2, …
ℰ ⊗ I

1. Alice chooses a CPTP map  among packing net ℰ Mp
ϵ

ℰ

Proof idea: 
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1. Alice chooses a CPTP map  among packing net ℰ Mp
ϵ

2. Bob uses the quantum machine learning algorithm to get

      , 

where = quantum processing (CPTP maps), 
And  is the physical experiment to learn.

ρNQ,ℰ = (ℰ ⊗ I )…C2(ℰ ⊗ I )C1(ℰ ⊗ I )(ρ0)

C1, C2, …
ℰ ⊗ I

3. Bob can use  to predict   

    to -error, so Bob could determine  (bc. of packing net).

ρNQ,ℰ fℰ(x) = Tr(Oℰ(|x⟩⟨x|))

ϵ ℰ
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[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

1. Alice chooses a CPTP map  among packing net ℰ Mp
ϵ

2. Bob uses the quantum machine learning algorithm to get
      .ρNQ,ℰ = (ℰ ⊗ I )…C2(ℰ ⊗ I )C1(ℰ ⊗ I )(ρ0)

3. Bob can use  to determine  (bc. of packing net).ρNQ,ℰ ℰ

Proof idea: 
Quantum lower bound

Mutual information between  and  

is at least an order of .
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ϵ | )
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[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Proof idea: 
Quantum lower bound

Mutual information between  and  

is at least an order of .

ℰ ∈ Mp
ϵ ρNQ,ℰ

log( |Mp
ϵ | )
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[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Proof idea: 
Quantum lower bound

Mutual information between  and  

is at least an order of .

ℰ ∈ Mp
ϵ ρNQ,ℰ

log( |Mp
ϵ | )

(ℰ ⊗ I)…C2(ℰ ⊗ I)C1(ℰ ⊗ I)(ρ0)
Each query increases information by at most order m
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Proof idea: 
Quantum lower bound

Mutual information between  and  

is at least an order of .
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ϵ ρNQ,ℰ

log( |Mp
ϵ | )
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Mutual information is upper bounded by order mNQ
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[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Proof idea: 
Quantum lower bound

Mutual information between  and  

is at least an order of .

ℰ ∈ Mp
ϵ ρNQ,ℰ

log( |Mp
ϵ | )

(ℰ ⊗ I)…C2(ℰ ⊗ I)C1(ℰ ⊗ I)(ρ0)
Mutual information is upper bounded by order mNQ

NQ ≥ Ω(log( |Mp
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[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Proof idea: 
Classical upper bound
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The set of CPTP maps ℱ = {ℰ}

-ballϵ

Construct the maximum packing net Mp
ϵ

 covers the entire set  with -ball.Mp
ϵ ℱ ϵ



[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Proof idea: 
Classical upper bound
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1. Randomly select inputs  from distribution x1, …, xNC
𝒟



[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Proof idea: 
Classical upper bound
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2. Measure observable  on the output state of the 

CPTP map that takes in input  to obtain outcome .

O

xi oi



[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Proof idea: 
Classical upper bound
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1. Randomly select inputs  from distribution x1, …, xNC
𝒟

2. Measure observable  on the output state of the 

CPTP map that takes in input  to obtain outcome .

O

xi oi

3. Output the function    from  that minimizes 

                              .

hC Mp
ϵ

1
NC

NC

∑
i=1

|hC(xi) − oi |
2



[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Proof idea: 
Classical upper bound
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1. Randomly select inputs  from distribution x1, …, xNC
𝒟

2. Measure observable  on the output state of the 

CPTP map that takes in input  to obtain outcome .

O

xi oi

3. Output the function    from  that minimizes 

                              .

hC Mp
ϵ

1
NC

NC

∑
i=1

|hC(xi) − oi |
2

Prediction error  

using .

𝔼x∼𝒟 hC(x) − fℰ(x)
2

≤ 𝒪(ϵ)

NC = 𝒪(log( |Mp
ϵ | )/ϵ)

A proper/complicated statistical analysis gives this.



[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Proof idea: 
Combining the two bounds

.NC ≤ 𝒪(log( |Mp
ϵ | )/ϵ).NQ ≥ Ω(log( |Mp

ϵ | )/m)

.NC ≤ 𝒪(mNQ/ϵ)

Classical upper boundQuantum lower bound



Main Theorem

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Consider any observable , any family of CPTP maps  with -qubit 
input and -qubit output, and any input distribution . 

Suppose a quantum ML uses  queries to the unknown CPTP map  to 
learn a prediction model  that achieves a prediction error of  

                                           

then there is a classical ML using  to learn a prediction model 
 that achieves a prediction error of  

                                          

O ℱ = {ℰ} n
m 𝒟

NQ ℰ
hQ(x)

𝔼x∼𝒟 hQ(x) − fℰ(x)
2

≤ ϵ,
NC ≤ 𝒪(mNQ/ϵ)

hC(x)
𝔼x∼𝒟 hC(x) − fℰ(x)

2
≤ 𝒪(ϵ) .

Theorem (Huang, Kueng, Preskill; 2021 [1])



Implication of  NC ≤ 𝒪(mNQ/ϵ)

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

• Quantum ML can perform better than classical ML when  
 is small or when  is large. 

• This can still be useful in practice! 

• But the advantage in query complexity is limited as above 
in any quantum problem.

ϵ m



Implication of  NC ≤ 𝒪(mNQ/ϵ)

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

• The Quantum ML setting requires coherent accesses to  + large 
quantum memory. 

• The Classical ML setting only use fixed measurement after each  
+ large classical memory. 

• Quantum ML setting may likely only be available far in the future. 

• Classical ML setting is just as powerful after getting moderately 
more data. And is readily available.

ℰ

ℰ



Non-Implication of  NC ≤ 𝒪(mNQ/ϵ)

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

• ML models trained on classical computers are computationally as powerful 
as those running on quantum computers? 

• No! We only consider query complexity, not computational complexity. 

• We can consider quantum computers running in the classical ML setting 
(learning only from measurement data stored in classical memory). 

• Quantum computers can optimize/compute faster than classical 
computers! E.g., see [2] for discussion on computational complexity.

[2] Power of data in quantum machine learning, arXiv:2011.01938.



Non-Implication of  NC ≤ 𝒪(mNQ/ϵ)

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

• ML models trained on classical computers are computationally as powerful 
as those running on quantum computers? 

• No! We only consider query complexity, not computational complexity. 

• We can consider quantum computers running in the classical ML setting 
(learning only from measurement data stored in classical memory). 

• Quantum computers can optimize/compute faster than classical 
computers! E.g., see [2] for discussion on computational complexity.

[2] Power of data in quantum machine learning, arXiv:2011.01938.

Complexity class of classical ML 
algorithms trained on data is strictly 

bigger than BPP



Implication of  NC ≤ 𝒪(mNQ/ϵ)

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

• Classical ML setting is just as powerful as quantum ML setting 
after getting moderately more data. 

• Quantum computers can optimize/compute ML models faster 
than classical computers. 

• => Near-term quantum devices + classical computers may be able 
to address challenging quantum problems in physics/chemistry.



Exponential advantage

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

• The theorem holds only for average-case prediction error. 

• Other measures of prediction error (e.g., worst-case) 
admits provable exponential advantage. 
 
     instead of  max

x
h(x) − fℰ(x)

2
𝔼x∼𝒟 h(x) − fℰ(x)

2



Exponential advantage
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• We give an example where the CPTP map takes no input.

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.



Exponential advantage

• The physical experiment prepares an unknown quantum system and we 
want to predict expectation values of Pauli observables on the 
unknown quantum system. 

• The input  describes which Pauli observable we would like to predict. 

• The output   is the expectation of the Pauli observable on the 
unknown quantum system. 

• Goal: Learn a model  such that .

x

fℰ(x)

h(x) h(x) ≈ fℰ(x)

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.



Exponential advantage

We can always achieve an average prediction error 
  

with a classical ML that uses a number of experiments similar to 
the optimal quantum ML.

𝔼x∼𝒟 hC(x) − fℰ(x)
2

≤ 𝒪(ϵ)

What we know so far:

Can we achieve a worst-case prediction error 
  

with a classical ML that uses a number of experiments similar to 
the optimal quantum ML?

max
x

hC(x) − fℰ(x)
2

≤ 𝒪(ϵ)

But what about:

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.



Exponential advantage

Classical ML setting 

• It can perform arbitrary POVM 
measurement on the physical 

system (adaptively). 

• Then analyze classical 

measurement data. 

Entangled

Entangled

Classical
Machine Learning

Quantum
Machine Learning

Classical processing

Classical processing

…
Classical processing

Physical 
experiments
(CPTP map)

Physical 
experiments
(CPTP map)

Measurement

Measurement

Quantum processing

Quantum processing

…

Quantum processing

Physical 
experiments
(CPTP map)

Physical 
experiments
(CPTP map)

Coherent quantum 
state output

Coherent quantum 
state input

Classical output

Classical input

Prediction model stored in
classical memory

Prediction model stored in
quantum memory
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Exponential advantage

Quantum ML setting 

• It can store quantum information 

from each physical experiment  
coherently in quantum memory. 

• Then perform quantum data 

analysis on the quantum data.

Entangled

Entangled

Classical
Machine Learning

Quantum
Machine Learning

Classical processing

Classical processing

…

Classical processing

Physical 
experiments
(CPTP map)

Physical 
experiments
(CPTP map)

Measurement

Measurement

Quantum processing

Quantum processing

…
Quantum processing

Physical 
experiments
(CPTP map)

Physical 
experiments
(CPTP map)

Coherent quantum 
state output

Coherent quantum 
state input

Classical output

Classical input

Prediction model stored in
classical memory

Prediction model stored in
quantum memory

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.



Exponential advantage
Where could quantum advantage come from? 

Classical ML suffers from uncertainty principle, especially when 

many observables are highly incompatible. 

Quantum ML can store data in quantum memory and access 

higher-order function of the physical world, e.g., . 

Quantum memory enables the ability to reduce the effect of 

uncertainty principle [*, **]. 

ρ⊗k

[*] Shadow tomography of quantum states.

[**] The uncertainty principle in the presence of quantum memory.

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.



Exponential advantage

• The input  describes which Pauli observable we would like to predict. 

• The output   is the expectation of the Pauli observable on the 
unknown quantum system. 

• Lower bound:  is necessary to predict all Pauli observables for 
classical ML (or any conventional experiments). 

• Upper bound:  is sufficient to predict all Pauli observables for 
quantum ML (based on a simple quantum algorithm).

x

fℰ(x)

Ω(2n)

𝒪(n)



Classical lower bound
• Lower bound:  is necessary to predict all Pauli observables for the 

classical ML setting (i.e., adaptive single-copy measurement protocols). 

• Consider a subset of states of the form , where  is a tensor product of 
Pauli-X/Y/Z observable. 

• If we can predict all Pauli observables, then we can discriminate completely 
mixed state vs one of the above states. 

• The informationally maximal POVM is . A complicated information-
theoretic proof shows that because 

                    , (a signature of high incompatibility) 

we need at least  measurements.

Ω (2n/3)

(I + P)/2n P

{wi|ψi⟩⟨ψi|}

1
4n ∑

P

⟨ψ|P|ψ⟩2 =
1
2n

Ω (2n/3)



Classical lower bound
• Lower bound:  is necessary to predict all Pauli observables for the 

classical ML setting (i.e., adaptive single-copy measurement protocols). 

• The informationally maximal POVM is . A complicated 
information-theoretic proof shows that because  

                    , (a signature of high incompatibility)  

we need at least  measurements. 

• The same proof can be extended to any set of traceless observables,  

                    , (a signature of high incompatibility)  

 implies at least  measurements to predict the set of observables.

Ω (2n/3)

{wi|ψi⟩⟨ψi|}

1
4n ∑

P

⟨ψ|P|ψ⟩2 =
1
2n

Ω (2n/3)

1
NO ∑

O

⟨ψ|O|ψ⟩2 = δ

Ω(δ−1/3)



Quantum upper bound
• Upper bound:  is sufficient to predict all Pauli observables for 

quantum ML (based on a simple quantum algorithm). 

• Two level protocol: 

• Estimate  —  commutes for all pair of , so we can 
simultaneously measure  on . And note that

. 

• Estimate  — Only consider  with . Perform 
coherent majority vote on  copies of . This will not disturb the state 
much because the outcome happens with very high probability.

𝒪(n)

|Tr(Pρ) |2 P ⊗ P P
(P ⊗ P) ρ ⊗ ρ

Tr((P ⊗ P)(ρ ⊗ ρ)) = Tr(Pρ)2

sign(Tr(Pρ)) P |Tr(Pρ) | > ϵ/2
n ρ



Worst-case prediction error

• Numerical experiments that achieve exponential advantage.

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.



Conclusion

• A fundamental limit on quantum advantage in data 
efficiency for achieving average-case prediction error. 

• An exponential separation between classical and quantum 
ML setting for achieving worst-case prediction error.


