Skein Lasagna Modules for 2-handlebodies

Ikshu Neithalath

UCLA

March 12, 2021

Joint with C. Manolescu

Ikshu	Veitha	lath

Skein Lasagna Modules for 2-handlebodies

æ

イロト イポト イヨト イヨト

MWW Invariant

	ч Ц Р		1 -	2.1	 -	4) Q (4
Ikshu Neithalath						UCLA
Skein Lasagna Modules for 2-handlebodies						2 / 15

 $\mathcal{S}_{*,i,i}^{N}(W; L)$, triply graded abelian group

2

UCLA

2/15

 $S_{*,i,i}^{N}(W; L)$, triply graded abelian group

Generalization of Khovanov-Rozansky \mathfrak{gl}_N link homology

 $S_{*,i,i}^{N}(W; L)$, triply graded abelian group

Generalization of Khovanov-Rozansky \mathfrak{gl}_N link homology

 $* = \mathsf{blob} \mathsf{ degree}$

2

イロト イヨト イヨト イヨト

 $S_{*,i,i}^{N}(W; L)$, triply graded abelian group

Generalization of Khovanov-Rozansky \mathfrak{gl}_N link homology

* = blob degree, i = homological degree

3

イロン イロン イヨン イヨン

 $S_{*,i,i}^{N}(W; L)$, triply graded abelian group

Generalization of Khovanov-Rozansky \mathfrak{gl}_N link homology

* = blob degree, i = homological degree, j = quantum degree

 $\mathcal{S}_{*,i,i}^{N}(W;L)$, triply graded abelian group

Generalization of Khovanov-Rozansky \mathfrak{gl}_N link homology

* = blob degree, i = homological degree, j = quantum degree $S_{*,i,i}^{N}(B^{4}; L) = KhR_{N}^{i,j}(L)$, supported in * = 0

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main Objects

	= *) < (*
lkshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	3 / 15

Ikshu Neith Skein Lasag

The skein lasagna module, $S_0^N(W; L)$.

	-	2.40
nalath	ι	JCLA
gna Modules for 2-handlebodies		3 / 15

• • • • • • • • • • • •

1

SOG

The skein lasagna module, $S_0^N(W; L)$.

"Free abelian group generated by embedded surfaces in W, modulo local relations coming from cobordism maps in Khovanov-Rozansky homology."

The skein lasagna module, $S_0^N(W; L)$.

"Free abelian group generated by embedded surfaces in W, modulo local relations coming from cobordism maps in Khovanov-Rozansky homology."

The cabled Khovanov-Rozansky homology of a framed link $K \subset S^3$, $\underline{KhR}_N(K)$.

lksh Skei

The skein lasagna module, $S_0^N(W; L)$.

"Free abelian group generated by embedded surfaces in W, modulo local relations coming from cobordism maps in Khovanov-Rozansky homology."

The cabled Khovanov-Rozansky homology of a framed link $K \subset S^3$, <u>KhR</u>_N(K).

"Direct sum of the Khovanov-Rozansky homology groups of an infinite family of cables of K, modulo relations coming from cobordism maps between these cables."

	а Ш. И.	ч 🗆 Р	1.1	÷ .	1 -	1.1	Ξ.	*)4(*
u Neithalath								UCLA
in Lasagna Modules for 2-handlebodies								3 / 15

) Q (
Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	4 / 15

Ikshu Neithalath

Skein Lasagna Mo

 $K \subset S^3$ a framed, *n*-component link,

	= 2.40
	UCLA
dules for 2-handlebodies	4 / 15

• • • • • • • • • • • •

Ikshu Neithalath

 $K \subset S^3$ a framed, *n*-component link, the associated 2-handlebody is $W = B^4 \cup_K \{n \text{ 2-handles }\}.$

 $K \subset S^3$ a framed, *n*-component link, the associated 2-handlebody is $W = B^4 \cup_K \{n \text{ 2-handles }\}.$

$$\mathcal{S}_0^N(W;L) = \bigoplus_{\alpha \in H_2(W;\partial W)} \mathcal{S}_0^N(W;L,\alpha)$$

 $K \subset S^3$ a framed, *n*-component link, the associated 2-handlebody is $W = B^4 \cup_K \{n \text{ 2-handles }\}.$

$$\mathcal{S}_0^N(W;L) = \bigoplus_{\alpha \in H_2(W;\partial W)} \mathcal{S}_0^N(W;L,\alpha)$$

Theorem

Let W be the 2-handlebody associated to K. Then we have an isomorphism,

	= +) ((+)
Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	4 / 15

 $K \subset S^3$ a framed, *n*-component link, the associated 2-handlebody is $W = B^4 \cup_K \{n \text{ 2-handles }\}.$

$$\mathcal{S}_0^N(W;L) = \bigoplus_{\alpha \in H_2(W;\partial W)} \mathcal{S}_0^N(W;L,\alpha)$$

Theorem

Let W be the 2-handlebody associated to K. Then we have an isomorphism,

$$\Phi: \underline{\mathsf{KhR}}_{N,\alpha}(K) \cong \mathcal{S}_0^N(W; \emptyset, \alpha)$$

lkshu	Ν	lei	ŧİ	hal	lat	h

Skein Lasagna Modules for 2-handlebodies

 $K \subset S^3$ a framed, *n*-component link, the associated 2-handlebody is $W = B^4 \cup_K \{n \text{ 2-handles }\}.$

$$\mathcal{S}_0^N(W;L) = \bigoplus_{\alpha \in H_2(W;\partial W)} \mathcal{S}_0^N(W;L,\alpha)$$

Theorem

Let W be the 2-handlebody associated to K. Then we have an isomorphism,

 $\Phi: \underline{\mathsf{KhR}}_{N,\alpha}(K) \cong \mathcal{S}_0^N(W; \emptyset, \alpha)$

where $\underline{KhR}_{N,\alpha}(K)$ is the cabled Khovanov-Rozansky homology of K.

	- 200
lkshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	4 / 15

イロマ スポス インドマ イロマード

	e +) 4 (+
Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	5 / 15

When K is the 0-framed unknot, so $W = S^2 \times D^2$, the invariant is supported in homological degree 0 and is given by:

イロト イポト イヨト イヨト

When K is the 0-framed unknot, so $W = S^2 \times D^2$, the invariant is supported in homological degree 0 and is given by:

$$\sum_{j=0}^{\infty} \mathsf{rk}\,\mathcal{S}^{\mathsf{N}}_{0,0,-j}(\mathcal{S}^2 \times D^2; \emptyset, \alpha) x^j = \prod_{k=1}^{\mathsf{N}-1} \tfrac{1}{1-x^{2k}}$$

Ikshu Neithalath

Skein Lasagna Modules for 2-handlebodies

Ikshu Neithalath

When K is the 0-framed unknot, so $W = S^2 \times D^2$, the invariant is supported in homological degree 0 and is given by:

$$\sum_{j=0}^{\infty} \mathsf{rk}\,\mathcal{S}^{N}_{0,0,-j}(\mathcal{S}^{2} \times D^{2}; \emptyset, \alpha) x^{j} = \prod_{k=1}^{N-1} \tfrac{1}{1-x^{2k}}$$

When K is the p-framed unknot, so W is a D^2 bundle over S^2 with Euler number p.

When K is the 0-framed unknot, so $W = S^2 \times D^2$, the invariant is supported in homological degree 0 and is given by:

$$\sum_{j=0}^{\infty} \mathsf{rk}\,\mathcal{S}^{N}_{0,0,-j}(\mathcal{S}^{2} \times D^{2}; \emptyset, \alpha) x^{j} = \prod_{k=1}^{N-1} \frac{1}{1-x^{2k}}$$

When K is the p-framed unknot, so W is a D^2 bundle over S^2 with Euler number p. For N = 2, $\alpha = 0$, and homological degree 0:

When K is the 0-framed unknot, so $W = S^2 \times D^2$, the invariant is supported in homological degree 0 and is given by:

$$\sum_{j=0}^{\infty} \mathsf{rk}\,\mathcal{S}^{N}_{0,0,-j}(\mathcal{S}^{2} \times D^{2}; \emptyset, \alpha) x^{j} = \prod_{k=1}^{N-1} \frac{1}{1-x^{2k}}$$

When K is the p-framed unknot, so W is a D^2 bundle over S^2 with Euler number p. For N = 2, $\alpha = 0$, and homological degree 0:

p > 0 : $\mathcal{S}^2_{0,0,j}(W; \emptyset, 0) = 0$, for all j

3

イロト 不得 トイヨト イヨト

When K is the 0-framed unknot, so $W = S^2 \times D^2$, the invariant is supported in homological degree 0 and is given by:

$$\sum_{j=0}^{\infty} \mathsf{rk}\,\mathcal{S}^{\mathsf{N}}_{0,0,-j}(\mathcal{S}^2 \times D^2; \emptyset, \alpha) x^j = \prod_{k=1}^{\mathsf{N}-1} \frac{1}{1-x^{2k}}$$

When K is the p-framed unknot, so W is a D^2 bundle over S^2 with Euler number p. For N = 2, $\alpha = 0$, and homological degree 0:

$$egin{aligned} &p>0:\mathcal{S}^2_{0,0,j}(W;\emptyset,0)=0, ext{ for all } j\ &p<0:\mathcal{S}^2_{0,0,0}(W;\emptyset,0)\cong\mathbb{Z}, \end{aligned}$$

イロト イボト イヨト イヨト

Ikshı Skeir

When K is the 0-framed unknot, so $W = S^2 \times D^2$, the invariant is supported in homological degree 0 and is given by:

$$\sum_{j=0}^{\infty} \mathsf{rk}\,\mathcal{S}^{N}_{0,0,-j}(\mathcal{S}^{2} \times D^{2}; \emptyset, \alpha) x^{j} = \prod_{k=1}^{N-1} \tfrac{1}{1-x^{2k}}$$

When K is the p-framed unknot, so W is a D^2 bundle over S^2 with Euler number p. For N = 2, $\alpha = 0$, and homological degree 0:

$$p > 0 : S_{0,0,j}^2(W; \emptyset, 0) = 0$$
, for all j
 $p < 0 : S_{0,0,0}^2(W; \emptyset, 0) \cong \mathbb{Z}$, 0 in other quantum degrees.

	2.46
ı Neithalath	UCLA
n Lasagna Modules for 2-handlebodies	5 / 15

A D N A D N A D N A D N B D

	= +) ((+
Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	6 / 15

• Connected sum formula: $\mathcal{S}_0^N(W_1
arrow W_2; L_1 \cup L_2; \barkstyle) \cong \mathcal{S}_0^N(W_1; L_1; \barkstyle) \otimes_{\barkstyle } \mathcal{S}_0^N(W_2; L_2; \barkstyle)$

- Connected sum formula: $\mathcal{S}_0^N(W_1
 arrow W_2; L_1 \cup L_2; \barkappa) \cong \mathcal{S}_0^N(W_1; L_1; \barkappa) \otimes_{\barkappa} \mathcal{S}_0^N(W_2; L_2; \barkappa)$
- Putting non-empty links in the boundary: $\mathcal{S}_0^N(W; L; \Bbbk) \cong \mathcal{S}_0^N(W; \emptyset; \Bbbk) \otimes_{\Bbbk} \operatorname{KhR}_N(L; \Bbbk)$ for $L \subset B^3 \subset \partial W$

イロト イポト イヨト イヨト

- Connected sum formula: $\mathcal{S}_0^N(W_1
 arrow W_2; L_1 \cup L_2; \barkappa) \cong \mathcal{S}_0^N(W_1; L_1; \barkappa) \otimes_{\barkappa} \mathcal{S}_0^N(W_2; L_2; \barkappa)$
- Putting non-empty links in the boundary: $\mathcal{S}_0^N(W; L; \Bbbk) \cong \mathcal{S}_0^N(W; \emptyset; \Bbbk) \otimes_{\Bbbk} \operatorname{KhR}_N(L; \Bbbk)$ for $L \subset B^3 \subset \partial W$

< ロ > < 同 > < 三 > < 三 >

LICI A

6/15

Adding a 4-handle to get a closed 4-manifold: $\mathcal{S}_0^N(W; \emptyset) \cong \mathcal{S}_0^N(W \setminus B^4; \emptyset)$ for W closed

- Connected sum formula: $\mathcal{S}_0^N(W_1
 arrow W_2; L_1 \cup L_2; \barkappa) \cong \mathcal{S}_0^N(W_1; L_1; \barkappa) \otimes_{\barkappa} \mathcal{S}_0^N(W_2; L_2; \barkappa)$
- Putting non-empty links in the boundary: $\mathcal{S}_0^N(W; L; \Bbbk) \cong \mathcal{S}_0^N(W; \emptyset; \Bbbk) \otimes_{\Bbbk} \operatorname{KhR}_N(L; \Bbbk)$ for $L \subset B^3 \subset \partial W$
- Adding a 4-handle to get a closed 4-manifold: $\mathcal{S}_0^N(W; \emptyset) \cong \mathcal{S}_0^N(W \setminus B^4; \emptyset)$ for W closed

 $\mathcal{S}^2_{0,0,0}(\mathbb{CP}^2; \emptyset, 0) = 0$

< ロ > < 同 > < 三 > < 三 >

Ikshu Nei Skein Las

- Connected sum formula: $\mathcal{S}_0^N(W_1
 arrow W_2; L_1 \cup L_2; \barkappa) \cong \mathcal{S}_0^N(W_1; L_1; \barkappa) \otimes_{\barkappa} \mathcal{S}_0^N(W_2; L_2; \barkappa)$
- Putting non-empty links in the boundary: $\mathcal{S}_0^N(W; L; \Bbbk) \cong \mathcal{S}_0^N(W; \emptyset; \Bbbk) \otimes_{\Bbbk} \operatorname{KhR}_N(L; \Bbbk)$ for $L \subset B^3 \subset \partial W$
- Adding a 4-handle to get a closed 4-manifold: $\mathcal{S}_0^N(W; \emptyset) \cong \mathcal{S}_0^N(W \setminus B^4; \emptyset)$ for W closed

$$\mathcal{S}^2_{0,0,0}(\mathbb{CP}^2; \emptyset, 0) = 0$$

 $\mathcal{S}^2_{0,0,0}(\overline{\mathbb{CP}}^2; \emptyset, 0) \cong \mathbb{Z}$

	= 2.40
aithalath	UCLA
sagna Modules for 2-handlebodies	6 / 15

イロト イヨト イモトマ

Lasagna Fillings

Definition

 Ikshu Neithalath
 UCLA

 Skein Lasagna Modules for 2-handlebodies
 7/15

Definition

Ikshu Skein

	=
Neithalath	UCLA
Lasagna Modules for 2-handlebodies	7 / 15

4 JUL 1

Definition

Ikshu Skein

A lasagna filling F of (W; L) is $F = (\Sigma, \{B_i, L_i, v_i\})$,

	2.40
ı Neithalath	UCLA
n Lasagna Modules for 2-handlebodies	7 / 15

A D N A D N A D N A

SOG

H N

Definition

- A lasagna filling F of (W; L) is $F = (\Sigma, \{B_i, L_i, v_i\})$,
 - a finite set of disjoint input balls $B_i \subset int(W)$

Ikshu Neithalath

Skein Lasagna Modules for 2-handlebodies

Definition

- A lasagna filling F of (W; L) is $F = (\Sigma, \{B_i, L_i, v_i\})$,
 - a finite set of disjoint input balls $B_i \subset int(W)$
 - a framed, oriented surface Σ embedded in $W \setminus \bigcup \operatorname{int}(B_i)$ with $\partial \Sigma = L \cup_i L_i$, L_i a link in ∂B_i

Ikshu Neithalath

Skein Lasagna Modules for 2-handlebodies

Definition

Ikshu Neithalath

- A lasagna filling F of (W; L) is $F = (\Sigma, \{B_i, L_i, v_i\}),$
 - a finite set of disjoint input balls $B_i \subset int(W)$
 - a framed, oriented surface Σ embedded in $W \setminus \bigcup$ int (B_i) with $\partial \Sigma = L \cup_i L_i, L_i$ a link in ∂B_i
 - v_i a homogeneous element in KhR_N(L_i)

Definition

- A lasagna filling F of (W; L) is $F = (\Sigma, \{B_i, L_i, v_i\}),$
 - a finite set of disjoint input balls $B_i \subset int(W)$
 - a framed, oriented surface Σ embedded in $W \setminus \bigcup \operatorname{int}(B_i)$ with $\partial \Sigma = L \cup_i L_i$, L_i a link in ∂B_i
 - v_i a homogeneous element in $KhR_N(L_i)$

If $W = B^4$, can define map $\operatorname{KhR}_N(\Sigma) : \otimes \operatorname{KhR}_N(L_i) \to \operatorname{KhR}_N(L)$ and an evaluation $\operatorname{KhR}_N(F) = \operatorname{KhR}_N(\Sigma)(\otimes v_i) \in \operatorname{KhR}_N(L)$.

Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	7 / 15

	= 1) K (1
Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	8 / 15

 $\mathcal{S}_0^N(W;L) = \mathbb{Z}\{ \text{ lasagna fillings of } (W;L) \}/ \sim$

Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	8 / 15

• • • • • • • • • • • •

-

 $\mathcal{S}_0^{\sf N}({\sf W};{\sf L})=\mathbb{Z}\{ ext{ lasagna fillings of }({\sf W};{\sf L})\}/\sim$

 \sim is generated by:

Ikshu Neitha

Skein Lasagr

	=
alath	UCL
na Modules for 2-handlebodies	8/1

_A

15

 $\mathcal{S}_0^N(W;L) = \mathbb{Z}\{ \text{ lasagna fillings of } (W;L) \}/ \sim$

 \sim is generated by:

lks Ski multilinearity in input labels v_i

	2.25
hu Neithalath	UCLA
ein Lasagna Modules for 2-handlebodies	8 / 15

A D N A D N A D N A

 $\mathcal{S}_0^N(W;L) = \mathbb{Z}\{ \text{ lasagna fillings of } (W;L) \}/ \sim$

 \sim is generated by:

- multilinearity in input labels v_i
- isotopies

 $\mathcal{S}_0^N(W;L) = \mathbb{Z}\{ \text{ lasagna fillings of } (W;L) \}/ \sim$

 \sim is generated by:

multilinearity in input labels v_i

isotopies

• $F_{\alpha} \sim F_{\beta}$ if F_{β} is obtained from F_{α} by inserting a filling F_{γ} of $(B^4; L_1)$ into an input ball B_1 in F_{α} and $KhR_N(F_{\gamma}) = v_1$

Ikshu Neithalath

Skein Lasagna Modules for 2-handlebodies

	= 1) K (1
Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	9 / 15

 $K \subset S^3$ *p*-framed, oriented knot.

lks Ske

	2.46
hu Neithalath	UCLA
ein Lasagna Modules for 2-handlebodies	9 / 15

オロト オポト オモトオ

-

 $K \subset S^3$ *p*-framed, oriented knot. For $\ell^-, \ell^+ \ge 0$, let $K(\ell^-, \ell^+)$ be ℓ^- and ℓ^+ negatively/positively oriented strands parallel to K.

 $K \subset S^3$ *p*-framed, oriented knot. For $\ell^-, \ell^+ \ge 0$, let $K(\ell^-, \ell^+)$ be ℓ^- and ℓ^+ negatively/positively oriented strands parallel to K. ($p(\ell^- + \ell^+), \ell^- + \ell^+$)-cable of K.

イロト イポト イヨト イヨト

 $K \subset S^3$ *p*-framed, oriented knot. For $\ell^-, \ell^+ \ge 0$, let $K(\ell^-, \ell^+)$ be ℓ^- and ℓ^+ negatively/positively oriented strands parallel to *K*. $(p(\ell^- + \ell^+), \ell^- + \ell^+)$ -cable of *K*. $K(1, 1) = \partial R$

イロト イポト イヨト イヨト

Ikshu Neithalath

Skein Lasagna Modules for 2-handlebodies

 $K \subset S^3$ *p*-framed, oriented knot. For $\ell^-, \ell^+ \ge 0$, let $K(\ell^-, \ell^+)$ be ℓ^- and ℓ^+ negatively/positively oriented strands parallel to *K*. $(p(\ell^- + \ell^+), \ell^- + \ell^+)$ -cable of *K*. $K(1, 1) = \partial R$

 $Z = R \cup \text{cylinder}(K(\ell^-, \ell^+)) \text{ is a cobordism}$ $K(\ell^-, \ell^+) \rightarrow K(\ell^- + 1, \ell^+ + 1).$

 $K \subset S^3$ p-framed, oriented knot. For $\ell^-, \ell^+ \ge 0$, let $K(\ell^-, \ell^+)$ be ℓ^- and ℓ^+ negatively/positively oriented strands parallel to K. $(p(\ell^- + \ell^+), \ell^- + \ell^+)$ -cable of K. $K(1, 1) = \partial R$

 $Z = R \cup \text{cylinder}(K(\ell^-, \ell^+))$ is a cobordism $K(\ell^-, \ell^+) \rightarrow K(\ell^- + 1, \ell^+ + 1)$. Also have \dot{Z} , the same cobordism decorated by a dot.

	=
Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	10 / 15

Let B_{ℓ^-,ℓ^+} be the subgroup of the braid group on $\ell^- + \ell^+$ strands that permutes the first ℓ^- and last ℓ^+ among themselves.

Let B_{ℓ^-,ℓ^+} be the subgroup of the braid group on $\ell^- + \ell^+$ strands that permutes the first ℓ^- and last ℓ^+ among themselves. This group acts by symmetries on $K(\ell^-,\ell^+)$.

		_	
nu Neithalath		1	UCLA
in Lasagna Modules for 2-handlebodies		1	0 / 15

lksh Ske イロト 不得 トイヨト イヨト

Let B_{ℓ^-,ℓ^+} be the subgroup of the braid group on $\ell^- + \ell^+$ strands that permutes the first ℓ^- and last ℓ^+ among themselves. This group acts by symmetries on $K(\ell^-,\ell^+)$.

 $\beta: \mathcal{B}_{\ell^-,\ell^+} \to \mathsf{Aut}(\mathsf{KhR}_N(\mathcal{K}(\ell^-,\ell^+)))$

Ikshu Neitha Skein Lasag

halath	UCLA
gna Modules for 2-handlebodies	10 / 15

イロト イヨト イヨト イ

	= 1) K (1
Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	11 / 15

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is

Iks Ske

	- 2.55
hu Neithalath	UCLA
ein Lasagna Modules for 2-handlebodies	11 / 15

オロト オタト オラトオ

= ~~~

10.0

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is $\underline{\mathsf{Kh}}_{2,\alpha}(\mathsf{K}) := \bigoplus_{r \ge 0} \mathsf{Kh} \left(\mathsf{K}(r - \alpha^{-}, r + \alpha^{+}) \right) \left\{ -(2r + |\alpha|) \right\} / \sim$

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is $\underline{\mathsf{Kh}}_{2,\alpha}(\mathcal{K}) := \bigoplus_{r \geq 0} \mathsf{Kh} \left(\mathcal{K}(r - \alpha^{-}, r + \alpha^{+}) \right) \left\{ -(2r + |\alpha|) \right\} / \sim$

where α^{\pm} are the negative/postive parts of α ,

Ikshu Neithalath Skein Lasagna N

	UCLA
Modules for 2-handlebodies	11 / 15

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is

$$\underline{\mathsf{Kh}}_{2,\alpha}(\mathsf{K}) := \bigoplus_{\mathsf{r} \ge \mathsf{0}} \mathsf{Kh}\left(\mathsf{K}(\mathsf{r} - \alpha^{-}, \mathsf{r} + \alpha^{+})\right)\left\{-(2\mathsf{r} + |\alpha|)\right\}/\sim$$

where α^{\pm} are the negative/postive parts of α , $\{-\}$ denotes a quantum degree shift

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is

$$\underline{\mathsf{Kh}}_{2,\alpha}(\mathsf{K}) := \bigoplus_{\mathsf{r} \ge \mathsf{0}} \mathsf{Kh}\left(\mathsf{K}(\mathsf{r} - \alpha^{-}, \mathsf{r} + \alpha^{+})\right)\left\{-(2\mathsf{r} + |\alpha|)\right\}/\sim$$

where α^{\pm} are the negative/postive parts of α , $\{-\}$ denotes a quantum degree shift and \sim is generated by:

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is

$$\underline{\mathsf{Kh}}_{2,\alpha}(\mathsf{K}) := \bigoplus_{\mathsf{r} \ge \mathsf{0}} \mathsf{Kh}\left(\mathsf{K}(\mathsf{r} - \alpha^{-}, \mathsf{r} + \alpha^{+})\right)\left\{-(2\mathsf{r} + |\alpha|)\right\}/\sim$$

where α^{\pm} are the negative/postive parts of α , $\{-\}$ denotes a quantum degree shift and \sim is generated by:

 $\beta(b)v \sim v$

Ikshu Neithalath

イロト イポト イヨト イヨト

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is

$$\underline{\mathsf{Kh}}_{2,\alpha}(\mathsf{K}) := \bigoplus_{r \ge 0} \mathsf{Kh}\left(\mathsf{K}(r - \alpha^{-}, r + \alpha^{+})\right)\left\{-(2r + |\alpha|)\right\}/\sim$$

where α^{\pm} are the negative/postive parts of α , $\{-\}$ denotes a quantum degree shift and \sim is generated by:

•
$$\beta(b)v \sim v$$

• $\operatorname{Kh}(Z)v \sim 0$

イロト イボト イヨト イヨト

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is

$$\underline{\mathsf{Kh}}_{2,\alpha}(\mathsf{K}) := \bigoplus_{\mathsf{r} \ge \mathsf{0}} \mathsf{Kh}\left(\mathsf{K}(\mathsf{r} - \alpha^{-}, \mathsf{r} + \alpha^{+})\right) \{-(2\mathsf{r} + |\alpha|)\} / \sim$$

where α^{\pm} are the negative/postive parts of α , $\{-\}$ denotes a quantum degree shift and \sim is generated by:

$$\beta(b)v \sim v Kh(Z)v \sim 0 Kh(\dot{Z})v \sim v$$

lkshi			

A (1) > A (2) > A

Theorem

Ikshu Nei Skein Las

Let W be the 2-handlebody associated to K. Then we have an isomorphism,

 $\Phi:\underline{\mathsf{KhR}}_{N,\alpha}(K)\cong\mathcal{S}_0^N(W;\emptyset,\alpha)$

	E 2.40
ithalath	UCLA
sagna Modules for 2-handlebodies	12 / 15

2.5

Take $|K| = 1, N = 2, \alpha = 0$ for simplicity.

	・ロト ・四ト ・日ト ・日ト	Ξ.	9 Q (P
kshu Neithalath			UCLA
Skein Lasagna Modules for 2-handlebodies			12 / 15

Take
$$|\mathcal{K}| = 1, \mathcal{N} = 2, \alpha = 0$$
 for simplicity.Define
 $\widetilde{\Phi} : \bigoplus_{r \ge 0} \operatorname{Kh}(\mathcal{K}(r, r))\{-\} \twoheadrightarrow S_0^2(\mathcal{W}; \emptyset, 0):$

◆□ > ◆□ > ◆臣 > ◆臣 > ―臣 - のへで

Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	12 / 15

Take
$$|K| = 1, N = 2, \alpha = 0$$
 for simplicity. Define
 $\widetilde{\Phi} : \bigoplus_{r \ge 0} \operatorname{Kh}(K(r, r))\{-\} \twoheadrightarrow S_0^2(W; \emptyset, 0)$: For $v \in \operatorname{Kh}(K(r, r))$, filling F_v
with:
 $C_{r \ge 0} \to C_{r

Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	12 / 15

Take
$$|K| = 1, N = 2, \alpha = 0$$
 for simplicity.Define
 $\widetilde{\Phi} : \bigoplus_{r \ge 0} \operatorname{Kh}(K(r, r))\{-\} \twoheadrightarrow S_0^2(W; \emptyset, 0)$: For $v \in \operatorname{Kh}(K(r, r))$, filling F_v
with:
• input ball the 0-handle B
 $B = 0 - h$ and e

Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	12 / 15

Take
$$|K| = 1, N = 2, \alpha = 0$$
 for simplicity. Define
 $\widetilde{\Phi} : \bigoplus_{r \ge 0} \operatorname{Kh}(K(r, r))\{-\} \twoheadrightarrow S_0^2(W; \emptyset, 0)$: For $v \in \operatorname{Kh}(K(r, r))$, filling F_v
with:
 \mathcal{I} -h and \mathcal{I} -

input ball the 0-handle B

lks Sk • decorated with K(r, r), labelled with v

	Ξ.	596
shu Neithalath		UCLA
ein Lasagna Modules for 2-handlebodies		12 / 15

Take
$$|K| = 1, N = 2, \alpha = 0$$
 for simplicity.Define
 $\widetilde{\Phi} : \bigoplus_{r \ge 0} \operatorname{Kh}(K(r, r))\{-\} \twoheadrightarrow S_0^2(W; \emptyset, 0)$: For $v \in \operatorname{Kh}(K(r, r))$, filling F_v
with:

- input ball the 0-handle B
- decorated with K(r, r), labelled with v
- surface = core-parallel discs C_j^{\pm} , $1 \le j \le r$

Take
$$|\mathcal{K}| = 1, \mathcal{N} = 2, \alpha = 0$$
 for simplicity.Define
 $\widetilde{\Phi} : \bigoplus_{r \ge 0} \operatorname{Kh}(\mathcal{K}(r, r))\{-\} \twoheadrightarrow S_0^2(\mathcal{W}; \emptyset, 0)$: For $v \in \operatorname{Kh}(\mathcal{K}(r, r))$, filling F_v
with:

- input ball the 0-handle B
- decorated with K(r, r), labelled with v
- surface = core-parallel discs C_i^{\pm} , $1 \le j \le r$

Set $\widetilde{\Phi}(v) = [F_v]$

-

	= -0.40
Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	13 / 15

Claim: $\widetilde{\Phi}$ factors through <u>Kh_{2,0}(K)</u>.

Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	13 / 15

Claim: $\widetilde{\Phi}$ factors through <u>Kh_{2,0}(K)</u>. Braid group action permutes the discs, giving isotopic fillings.

shu Neithalath	UCLA
kein Lasagna Modules for 2-handlebodies	13 / 15

イロト イヨト イモト イ

-

Ikshu Neithalath

Claim: $\widetilde{\Phi}$ factors through <u>Kh_{2.0}(K)</u>. Braid group action permutes the discs, giving isotopic fillings.

Claim: $\widetilde{\Phi}$ factors through <u>Kh_{2,0}(K)</u>. Braid group action permutes the discs, giving isotopic fillings.

 $E_v \sim F_{\mathrm{Kh}(\mathrm{Z})(\mathrm{v})}$

	-2	*) Q (*
shu Neithalath		UCLA
kein Lasagna Modules for 2-handlebodies		13 / 15

Claim: $\widetilde{\Phi}$ factors through <u>Kh_{2,0}(K)</u>. Braid group action permutes the discs, giving isotopic fillings.

$$\begin{split} E_v &\sim F_{\mathrm{Kh}(\mathrm{Z})(v)} \\ \dot{E}_v &\sim F_{\mathrm{Kh}(\dot{\mathrm{Z}})(v)} \end{split}$$

Ikshu

Skein

Neithalath	UCI
Lasagna Modules for 2-handlebodies	13/

不同 トレイモト

CLA

Claim: $\tilde{\Phi}$ factors through <u>Kh_{2,0}(K)</u>. Braid group action permutes the discs, giving isotopic fillings.

$$\begin{split} E_{v} &\sim F_{\mathrm{Kh}(\mathrm{Z})(v)} \\ \dot{E}_{v} &\sim F_{\mathrm{Kh}(\dot{\mathrm{Z}})(v)} \end{split}$$

Ikshu Neithalath Skein Lasagna Modules for 2-handlebodies

Image: A mathematical states and a mathem

UCLA

13/15

Claim: $\widetilde{\Phi}$ factors through <u>Kh_{2,0}(K)</u>. Braid group action permutes the discs, giving isotopic fillings.

$$egin{aligned} E_{
m v} &\sim F_{
m Kh(Z)(v)} &\sim 0 \ \mbox{because} \ S^2 &\sim 0 \ \dot{E}_{
m v} &\sim F_{
m Kh(\dot{Z})(v)} \end{aligned}$$

	 	 _	
kshu Neithalath			UCLA
Skein Lasagna Modules for 2-handlebodies		1	13 / 15

イロト イボト イヨト イヨト

Claim: $\widetilde{\Phi}$ factors through <u>Kh_{2,0}(K)</u>. Braid group action permutes the discs, giving isotopic fillings.

$$E_{v} \sim F_{Kh(Z)(v)} \sim 0$$
 because $S^{2} \sim 0$
 $\dot{E}_{v} \sim F_{Kh(\dot{Z})(v)} \sim F_{v}$ because dotted $S^{2} \sim 1$

	< · · · · · · · · · · · · · · · · · · ·	≣ *) Q (*
lkshu Neithalath		UCLA
Skein Lasagna Modules for 2-handlebodies		13 / 15

	= -) < (-
Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	14 / 15

 $\mathsf{Claim}: \ \Phi^{-1}: \mathcal{S}^2_0(W; \emptyset, 0) \to \underline{\mathsf{Kh}}_{2,0}(K) \text{ is well-defined}$

	2. 2.40
Ikshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	14 / 15

Ikshu Neit

Skein Lasa

Claim: $\Phi^{-1}: S_0^2(W; \emptyset, 0) \to \underline{Kh}_{2,0}(K)$ is well-defined

Exhibit $[F] = \widetilde{\Phi}(v)$ by an isotopy and evaluation. Set $\Phi^{-1}([F]) = [v]$

thalath	UCLA
agna Modules for 2-handlebodies	14 / 15

Claim: $\Phi^{-1}: \mathcal{S}^2_0(W; \emptyset, 0) \to \underline{\mathsf{Kh}}_{2,0}(K)$ is well-defined

Exhibit $[F] = \widetilde{\Phi}(v)$ by an isotopy and evaluation. Set $\Phi^{-1}([F]) = [v]$ Consider different choices of isotopies.

Claim: $\Phi^{-1} : S_0^2(W; \emptyset, 0) \to \underline{Kh}_{2,0}(K)$ is well-defined

Exhibit $[F] = \widetilde{\Phi}(v)$ by an isotopy and evaluation. Set $\Phi^{-1}([F]) = [v]$ Consider different choices of isotopies. While the number of intersection points of Σ with the cocore remains constant, the motion of these points is described by a braid group element.

Ikshu Neithalath

Claim: $\Phi^{-1}: S_0^2(W; \emptyset, 0) \to \underline{Kh}_{2,0}(K)$ is well-defined

Exhibit $[F] = \widetilde{\Phi}(v)$ by an isotopy and evaluation. Set $\Phi^{-1}([F]) = [v]$ Consider different choices of isotopies. While the number of intersection points of Σ with the cocore remains constant, the motion of these points is described by a braid group element. When we introduce/cancel two intersection points, we are pushing a disc through the cocore, corresponding to the cobordism Z.

lkshu Neithalath	UCLA
Skein Lasagna Modules for 2-handlebodies	14 / 15

Thank you!

	・ロ・・西・・田・・田・	Ξ.	9 Q (P
kshu Neithalath			UCLA
kein Lasagna Modules for 2-handlebodies			15 / 15

lk Sł