Skein Lasagna Modules for 2-handlebodies

Ikshu Neithalath
UCLA
March 12, 2021

Joint with C. Manolescu

MWW Invariant

MWW Invariant

Morrison-Walker-Wedrich invariant of a framed link L in the boundary of a smooth, oriented 4-manifold W.

MWW Invariant

Morrison-Walker-Wedrich invariant of a framed link L in the boundary of a smooth, oriented 4-manifold W.
$\mathcal{S}_{*, i, j}^{N}(W ; L)$, triply graded abelian group

MWW Invariant

Morrison-Walker-Wedrich invariant of a framed link L in the boundary of a smooth, oriented 4-manifold W.
$\mathcal{S}_{*, i, j}^{N}(W ; L)$, triply graded abelian group
Generalization of Khovanov-Rozansky $\mathfrak{g l}_{N}$ link homology

MWW Invariant

Morrison-Walker-Wedrich invariant of a framed link L in the boundary of a smooth, oriented 4-manifold W.
$\mathcal{S}_{*, i, j}^{N}(W ; L)$, triply graded abelian group
Generalization of Khovanov-Rozansky $\mathfrak{g l}_{N}$ link homology

* $=$ blob degree

MWW Invariant

Morrison-Walker-Wedrich invariant of a framed link L in the boundary of a smooth, oriented 4-manifold W.
$\mathcal{S}_{*, i, j}^{N}(W ; L)$, triply graded abelian group
Generalization of Khovanov-Rozansky $\mathfrak{g l}_{N}$ link homology

* $=$ blob degree, $i=$ homological degree

MWW Invariant

Morrison-Walker-Wedrich invariant of a framed link L in the boundary of a smooth, oriented 4-manifold W.
$\mathcal{S}_{*, i, j}^{N}(W ; L)$, triply graded abelian group
Generalization of Khovanov-Rozansky $\mathfrak{g l}_{N}$ link homology

* $=$ blob degree, $i=$ homological degree, $j=$ quantum degree

MWW Invariant

Morrison-Walker-Wedrich invariant of a framed link L in the boundary of a smooth, oriented 4-manifold W.
$\mathcal{S}_{*, i, j}^{N}(W ; L)$, triply graded abelian group
Generalization of Khovanov-Rozansky $\mathfrak{g l}_{N}$ link homology

* $=$ blob degree, $i=$ homological degree, $j=$ quantum degree
$\mathcal{S}_{*, i, j}^{N}\left(B^{4} ; L\right)=\operatorname{KhR}_{N}^{i, j}(L)$, supported in $*=0$

Main Objects

Main Objects

The skein lasagna module, $\mathcal{S}_{0}^{N}(W ; L)$.

Main Objects

The skein lasagna module, $\mathcal{S}_{0}^{N}(W ; L)$.
"Free abelian group generated by embedded surfaces in W, modulo local relations coming from cobordism maps in Khovanov-Rozansky homology."

Main Objects

The skein lasagna module, $\mathcal{S}_{0}^{N}(W ; L)$.
"Free abelian group generated by embedded surfaces in W, modulo local relations coming from cobordism maps in Khovanov-Rozansky homology."

The cabled Khovanov-Rozansky homology of a framed link $K \subset S^{3}$, $\mathrm{KhR}_{N}(K)$.

Main Objects

The skein lasagna module, $\mathcal{S}_{0}^{N}(W ; L)$.
"Free abelian group generated by embedded surfaces in W, modulo local relations coming from cobordism maps in Khovanov-Rozansky homology."

The cabled Khovanov-Rozansky homology of a framed link $K \subset S^{3}$, $\mathrm{KhR}_{N}(K)$.
"Direct sum of the Khovanov-Rozansky homology groups of an infinite family of cables of K, modulo relations coming from cobordism maps between these cables."

Main Theorem

Main Theorem

$K \subset S^{3}$ a framed, n-component link,

Main Theorem

$K \subset S^{3}$ a framed, n-component link, the associated 2-handlebody is $W=B^{4} \cup_{K}\{n$ 2-handles $\}$.

Main Theorem

$K \subset S^{3}$ a framed, n-component link, the associated 2-handlebody is $W=B^{4} \cup_{K}\{n$ 2-handles $\}$.
$\mathcal{S}_{0}^{N}(W ; L)=\underset{\alpha \in H_{2}(W ; \partial W)}{\bigoplus_{0}(W ; L, \alpha), ~} \mathcal{S}_{0}^{N}(W)$

Main Theorem

$K \subset S^{3}$ a framed, n-component link, the associated 2-handlebody is $W=B^{4} \cup_{K}\{n$ 2-handles $\}$.
$\mathcal{S}_{0}^{N}(W ; L)=\underset{\alpha \in H_{2}(W ; \partial W)}{\bigoplus_{0}(W ; L, \alpha), ~} \mathcal{S}_{0}^{N}(W)$

Theorem

Let W be the 2-handlebody associated to K. Then we have an isomorphism,

Main Theorem

$K \subset S^{3}$ a framed, n-component link, the associated 2-handlebody is $W=B^{4} \cup_{K}\{n$ 2-handles $\}$.
$\mathcal{S}_{0}^{N}(W ; L)=\underset{\alpha \in H_{2}(W ; \partial W)}{\bigoplus_{0}(W ; L, \alpha), ~} \mathcal{S}_{0}^{N}(W)$

Theorem

Let W be the 2-handlebody associated to K. Then we have an isomorphism, $\Phi: \underline{K h R}_{N, \alpha}(K) \cong \mathcal{S}_{0}^{N}(W ; \emptyset, \alpha)$

Main Theorem

$K \subset S^{3}$ a framed, n-component link, the associated 2-handlebody is $W=B^{4} \cup_{K}\{n$ 2-handles $\}$.
$\mathcal{S}_{0}^{N}(W ; L)=\underset{\alpha \in H_{2}(W ; \partial W)}{\bigoplus_{0}(W ; L, \alpha), ~} \mathcal{S}_{0}^{N}(W)$

Theorem

Let W be the 2-handlebody associated to K. Then we have an isomorphism, $\Phi: \underline{K h R}_{N, \alpha}(K) \cong \mathcal{S}_{0}^{N}(W ; \emptyset, \alpha)$
where $\underline{\mathrm{KhR}}_{N, \alpha}(K)$ is the cabled Khovanov-Rozansky homology of K.

Calculations

Calculations

When K is the 0-framed unknot, so $W=S^{2} \times D^{2}$, the invariant is supported in homological degree 0 and is given by:

Calculations

When K is the 0 -framed unknot, so $W=S^{2} \times D^{2}$, the invariant is supported in homological degree 0 and is given by:
$\sum_{j=0}^{\infty} r k \mathcal{S}_{0,0,-j}^{N}\left(S^{2} \times D^{2} ; \emptyset, \alpha\right) x^{j}=\prod_{k=1}^{N-1} \frac{1}{1-x^{2 k}}$

Calculations

When K is the 0 -framed unknot, so $W=S^{2} \times D^{2}$, the invariant is supported in homological degree 0 and is given by:
$\sum_{j=0}^{\infty} r k \mathcal{S}_{0,0,-j}^{N}\left(S^{2} \times D^{2} ; \emptyset, \alpha\right) x^{j}=\prod_{k=1}^{N-1} \frac{1}{1-x^{2 k}}$
When K is the p-framed unknot, so W is a D^{2} bundle over S^{2} with Euler number p.

Calculations

When K is the 0-framed unknot, so $W=S^{2} \times D^{2}$, the invariant is supported in homological degree 0 and is given by:
$\sum_{j=0}^{\infty} r k \mathcal{S}_{0,0,-j}^{N}\left(S^{2} \times D^{2} ; \emptyset, \alpha\right) x^{j}=\prod_{k=1}^{N-1} \frac{1}{1-x^{2 k}}$
When K is the p-framed unknot, so W is a D^{2} bundle over S^{2} with Euler number p. For $N=2, \alpha=0$, and homological degree 0 :

Calculations

When K is the 0-framed unknot, so $W=S^{2} \times D^{2}$, the invariant is supported in homological degree 0 and is given by:
$\sum_{j=0}^{\infty} r k \mathcal{S}_{0,0,-j}^{N}\left(S^{2} \times D^{2} ; \emptyset, \alpha\right) x^{j}=\prod_{k=1}^{N-1} \frac{1}{1-x^{2 k}}$
When K is the p-framed unknot, so W is a D^{2} bundle over S^{2} with Euler number p. For $N=2, \alpha=0$, and homological degree 0 :
$p>0: \mathcal{S}_{0,0, j}^{2}(W ; \emptyset, 0)=0$, for all j

Calculations

When K is the 0-framed unknot, so $W=S^{2} \times D^{2}$, the invariant is supported in homological degree 0 and is given by:
$\sum_{j=0}^{\infty} \operatorname{rk} \mathcal{S}_{0,0,-j}^{N}\left(S^{2} \times D^{2} ; \emptyset, \alpha\right) x^{j}=\prod_{k=1}^{N-1} \frac{1}{1-x^{2 k}}$
When K is the p-framed unknot, so W is a D^{2} bundle over S^{2} with Euler number p. For $N=2, \alpha=0$, and homological degree 0 :
$p>0: \mathcal{S}_{0,0, j}^{2}(W ; \emptyset, 0)=0$, for all j
$p<0: \mathcal{S}_{0,0,0}^{2}(W ; \emptyset, 0) \cong \mathbb{Z}$,

Calculations

When K is the 0-framed unknot, so $W=S^{2} \times D^{2}$, the invariant is supported in homological degree 0 and is given by:
$\sum_{j=0}^{\infty} r k \mathcal{S}_{0,0,-j}^{N}\left(S^{2} \times D^{2} ; \emptyset, \alpha\right) x^{j}=\prod_{k=1}^{N-1} \frac{1}{1-x^{2 k}}$
When K is the p-framed unknot, so W is a D^{2} bundle over S^{2} with Euler number p. For $N=2, \alpha=0$, and homological degree 0 :
$p>0: \mathcal{S}_{0,0, j}^{2}(W ; \emptyset, 0)=0$, for all j
$p<0: \mathcal{S}_{0,0,0}^{2}(W ; \emptyset, 0) \cong \mathbb{Z}, 0$ in other quantum degrees.

Other Theorems

Other Theorems

- Connected sum formula:

$$
\mathcal{S}_{0}^{N}\left(W_{1} \downharpoonright W_{2} ; L_{1} \cup L_{2} ; \mathbb{k}\right) \cong \mathcal{S}_{0}^{N}\left(W_{1} ; L_{1} ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathcal{S}_{0}^{N}\left(W_{2} ; L_{2} ; \mathbb{k}\right)
$$

Other Theorems

- Connected sum formula:

$$
\mathcal{S}_{0}^{N}\left(W_{1} \emptyset W_{2} ; L_{1} \cup L_{2} ; \mathbb{k}\right) \cong \mathcal{S}_{0}^{N}\left(W_{1} ; L_{1} ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathcal{S}_{0}^{N}\left(W_{2} ; L_{2} ; \mathbb{k}\right)
$$

- Putting non-empty links in the boundary:

$$
\mathcal{S}_{0}^{N}(W ; L ; \mathbb{k}) \cong \mathcal{S}_{0}^{N}(W ; \emptyset ; \mathbb{k}) \otimes_{\mathbb{k}} \operatorname{KhR}_{N}(L ; \mathbb{k}) \text { for } L \subset B^{3} \subset \partial W
$$

Other Theorems

■ Connected sum formula: $\mathcal{S}_{0}^{N}\left(W_{1} \downharpoonright W_{2} ; L_{1} \cup L_{2} ; \mathbb{k}\right) \cong \mathcal{S}_{0}^{N}\left(W_{1} ; L_{1} ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathcal{S}_{0}^{N}\left(W_{2} ; L_{2} ; \mathbb{k}\right)$

- Putting non-empty links in the boundary: $\mathcal{S}_{0}^{N}(W ; L ; \mathbb{k}) \cong \mathcal{S}_{0}^{N}(W ; \emptyset ; \mathbb{k}) \otimes_{\mathbb{k}} \operatorname{KhR}_{N}(L ; \mathbb{k})$ for $L \subset B^{3} \subset \partial W$
- Adding a 4-handle to get a closed 4-manifold: $\mathcal{S}_{0}^{N}(W ; \emptyset) \cong \mathcal{S}_{0}^{N}\left(W \backslash B^{4} ; \emptyset\right)$ for W closed

Other Theorems

■ Connected sum formula:
$\mathcal{S}_{0}^{N}\left(W_{1} \downharpoonright W_{2} ; L_{1} \cup L_{2} ; \mathbb{k}\right) \cong \mathcal{S}_{0}^{N}\left(W_{1} ; L_{1} ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathcal{S}_{0}^{N}\left(W_{2} ; L_{2} ; \mathbb{k}\right)$

- Putting non-empty links in the boundary: $\mathcal{S}_{0}^{N}(W ; L ; \mathbb{k}) \cong \mathcal{S}_{0}^{N}(W ; \emptyset ; \mathbb{k}) \otimes_{\mathbb{k}} \operatorname{KhR}_{N}(L ; \mathbb{k})$ for $L \subset B^{3} \subset \partial W$
- Adding a 4-handle to get a closed 4-manifold: $\mathcal{S}_{0}^{N}(W ; \emptyset) \cong \mathcal{S}_{0}^{N}\left(W \backslash B^{4} ; \emptyset\right)$ for W closed

$$
\mathcal{S}_{0,0,0}^{2}\left(\mathbb{C P}^{2} ; \emptyset, 0\right)=0
$$

Other Theorems

- Connected sum formula:
$\mathcal{S}_{0}^{N}\left(W_{1} \downharpoonright W_{2} ; L_{1} \cup L_{2} ; \mathbb{k}\right) \cong \mathcal{S}_{0}^{N}\left(W_{1} ; L_{1} ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathcal{S}_{0}^{N}\left(W_{2} ; L_{2} ; \mathbb{k}\right)$
- Putting non-empty links in the boundary: $\mathcal{S}_{0}^{N}(W ; L ; \mathbb{k}) \cong \mathcal{S}_{0}^{N}(W ; \emptyset ; \mathbb{k}) \otimes_{\mathbb{k}} \operatorname{KhR}_{N}(L ; \mathbb{k})$ for $L \subset B^{3} \subset \partial W$
- Adding a 4-handle to get a closed 4-manifold: $\mathcal{S}_{0}^{N}(W ; \emptyset) \cong \mathcal{S}_{0}^{N}\left(W \backslash B^{4} ; \emptyset\right)$ for W closed

$$
\begin{aligned}
& \mathcal{S}_{0,0,0}^{2}\left(\mathbb{C P}^{2} ; \emptyset, 0\right)=0 \\
& \mathcal{S}_{0,0,0}^{2}\left(\overline{\mathbb{C P}}^{2} ; \emptyset, 0\right) \cong \mathbb{Z}
\end{aligned}
$$

Lasagna Fillings

Definition

Lasagna Fillings

Definition

Lasagna Fillings

Definition

A lasagna filling F of $(W ; L)$ is $F=\left(\Sigma,\left\{B_{i}, L_{i}, v_{i}\right\}\right)$,

Lasagna Fillings

Definition

A lasagna filling F of $(W ; L)$ is $F=\left(\Sigma,\left\{B_{i}, L_{i}, v_{i}\right\}\right)$,

- a finite set of disjoint input balls $B_{i} \subset \operatorname{int}(W)$

Lasagna Fillings

Definition

A lasagna filling F of $(W ; L)$ is $F=\left(\Sigma,\left\{B_{i}, L_{i}, v_{i}\right\}\right)$,

- a finite set of disjoint input balls $B_{i} \subset \operatorname{int}(W)$
- a framed, oriented surface Σ embedded in $W \backslash \cup \operatorname{int}\left(B_{i}\right)$ with $\partial \Sigma=L \cup_{i} L_{i}, L_{i}$ a link in ∂B_{i}

Lasagna Fillings

Definition

A lasagna filling F of $(W ; L)$ is $F=\left(\Sigma,\left\{B_{i}, L_{i}, v_{i}\right\}\right)$,

- a finite set of disjoint input balls $B_{i} \subset \operatorname{int}(W)$
- a framed, oriented surface Σ embedded in $W \backslash \cup \operatorname{int}\left(B_{i}\right)$ with $\partial \Sigma=L \cup_{i} L_{i}, L_{i}$ a link in ∂B_{i}
- v_{i} a homogeneous element in $\operatorname{KhR}_{N}\left(L_{i}\right)$

Lasagna Fillings

Definition

A lasagna filling F of $(W ; L)$ is $F=\left(\Sigma,\left\{B_{i}, L_{i}, v_{i}\right\}\right)$,

- a finite set of disjoint input balls $B_{i} \subset \operatorname{int}(W)$
- a framed, oriented surface Σ embedded in $W \backslash \cup \operatorname{int}\left(B_{i}\right)$ with $\partial \Sigma=L \cup_{i} L_{i}, L_{i}$ a link in ∂B_{i}
- v_{i} a homogeneous element in $\operatorname{KhR}_{N}\left(L_{i}\right)$

If $W=B^{4}$, can define map $\operatorname{KhR}_{N}(\Sigma): \otimes \operatorname{KhR}_{N}\left(L_{i}\right) \rightarrow \operatorname{KhR}_{N}(L)$ and an evaluation $\operatorname{KhR}_{N}(F)=\operatorname{KhR}_{N}(\Sigma)\left(\otimes v_{i}\right) \in \operatorname{KhR}_{N}(L)$

Skein Lasagna Modules

Skein Lasagna Modules

$\mathcal{S}_{0}^{N}(W ; L)=\mathbb{Z}\{$ lasagna fillings of $(W ; L)\} / \sim$

Skein Lasagna Modules

$\mathcal{S}_{0}^{N}(W ; L)=\mathbb{Z}\{$ lasagna fillings of $(W ; L)\} / \sim$
\sim is generated by:

Skein Lasagna Modules

$\mathcal{S}_{0}^{N}(W ; L)=\mathbb{Z}\{$ lasagna fillings of $(W ; L)\} / \sim$
\sim is generated by:
■ multilinearity in input labels v_{i}

Skein Lasagna Modules

$\mathcal{S}_{0}^{N}(W ; L)=\mathbb{Z}\{$ lasagna fillings of $(W ; L)\} / \sim$
\sim is generated by:

- multilinearity in input labels v_{i}
- isotopies

Skein Lasagna Modules

$\mathcal{S}_{0}^{N}(W ; L)=\mathbb{Z}\{$ lasagna fillings of $(W ; L)\} / \sim$
\sim is generated by：
■ multilinearity in input labels v_{i}
－isotopes
－$F_{\alpha} \sim F_{\beta}$ if F_{β} is obtained from F_{α} by inserting a filling F_{γ} of $\left(B^{4} ; L_{1}\right)$ into an input ball B_{1} in F_{α} and $\operatorname{KhR}_{N}\left(F_{\gamma}\right)=v_{1}$

F_{α}

$$
\begin{aligned}
& F_{\beta} \quad \operatorname{KLR}_{N}\left(F_{\gamma}\right)=v_{1} \\
& k h R_{N}^{2}\left(L_{1}^{\prime}\right)\left(\Sigma_{0}, v_{4}\right)=v_{1}
\end{aligned}
$$

Cabled Khovanov-Rozansky Homology - Cobordism Maps

Skein Lasagna Modules for 2-handlebodies	$9 / 15$

Cabled Khovanov-Rozansky Homology - Cobordism Maps

$K \subset S^{3} p$-framed, oriented knot.

Cabled Khovanov-Rozansky Homology - Cobordism Maps

$K \subset S^{3} p$-framed, oriented knot. For $\ell^{-}, \ell^{+} \geq 0$, let $K\left(\ell^{-}, \ell^{+}\right)$be ℓ^{-}and ℓ^{+}negatively/positively oriented strands parallel to K.

Cabled Khovanov-Rozansky Homology - Cobordism Maps

$K \subset S^{3} p$-framed, oriented knot. For $\ell^{-}, \ell^{+} \geq 0$, let $K\left(\ell^{-}, \ell^{+}\right)$be ℓ^{-}and ℓ^{+}negatively/positively oriented strands parallel to K. $\left(p\left(\ell^{-}+\ell^{+}\right), \ell^{-}+\ell^{+}\right)$-cable of K.

Cabled Khovanov-Rozansky Homology - Cobordism Maps

$K \subset S^{3} p$-framed, oriented knot. For $\ell^{-}, \ell^{+} \geq 0$, let $K\left(\ell^{-}, \ell^{+}\right)$be ℓ^{-}and ℓ^{+}negatively/positively oriented strands parallel to K. $\left(p\left(\ell^{-}+\ell^{+}\right), \ell^{-}+\ell^{+}\right)$-cable of K. $K(1,1)=\partial R$

Cabled Khovanov-Rozansky Homology - Cobordism Maps

$K \subset S^{3} p$-framed, oriented knot. For $\ell^{-}, \ell^{+} \geq 0$, let $K\left(\ell^{-}, \ell^{+}\right)$be ℓ^{-}and ℓ^{+}negatively/positively oriented strands parallel to K. $\left(p\left(\ell^{-}+\ell^{+}\right), \ell^{-}+\ell^{+}\right)$-cable of K.
$K(1,1)=\partial R$
$Z=R \cup \operatorname{cylinder}\left(K\left(\ell^{-}, \ell^{+}\right)\right)$is a cobordism
 $K\left(\ell^{-}, \ell^{+}\right) \rightarrow K\left(\ell^{-}+1, \ell^{+}+1\right)$.

Cabled Khovanov-Rozansky Homology - Cobordism Maps

$K \subset S^{3} p$-framed, oriented knot. For $\ell^{-}, \ell^{+} \geq 0$, let $K\left(\ell^{-}, \ell^{+}\right)$be ℓ^{-}and ℓ^{+}negatively/positively oriented strands parallel to K. $\left(p\left(\ell^{-}+\ell^{+}\right), \ell^{-}+\ell^{+}\right)$-cable of K.
$K(1,1)=\partial R$
$Z=R \cup \operatorname{cylinder}\left(K\left(\ell^{-}, \ell^{+}\right)\right)$is a cobordism
 $K\left(\ell^{-}, \ell^{+}\right) \rightarrow K\left(\ell^{-}+1, \ell^{+}+1\right)$. Also have \dot{Z}, the same cobordism decorated by a dot.

Cabled Khovanov-Rozansky Homology - Braid group action

Cabled Khovanov-Rozansky Homology - Braid group action

Let $B_{\ell^{-}, \ell^{+}}$be the subgroup of the braid group on $\ell^{-}+\ell^{+}$strands that permutes the first ℓ^{-}and last ℓ^{+}among themselves.

Cabled Khovanov-Rozansky Homology - Braid group action

Let $B_{\ell^{-}, \ell^{+}}$be the subgroup of the braid group on $\ell^{-}+\ell^{+}$strands that permutes the first ℓ^{-}and last ℓ^{+}among themselves. This group acts by symmetries on $K\left(\ell^{-}, \ell^{+}\right)$.

Cabled Khovanov-Rozansky Homology - Braid group action

Let $B_{\ell^{-}, \ell^{+}}$be the subgroup of the braid group on $\ell^{-}+\ell^{+}$strands that permutes the first ℓ^{-}and last ℓ^{+}among themselves. This group acts by symmetries on $K\left(\ell^{-}, \ell^{+}\right)$.
$\beta: B_{\ell^{-}, \ell^{+}} \rightarrow \operatorname{Aut}\left(\operatorname{KhR}_{N}\left(K\left(\ell^{-}, \ell^{+}\right)\right)\right)$

Cabled Khovanov-Rozansky Homology - Definition

Cabled Khovanov-Rozansky Homology - Definition

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is

Cabled Khovanov-Rozansky Homology - Definition

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is $\underline{K h}_{2, \alpha}(K):=\bigoplus_{r \geq 0} \operatorname{Kh}\left(K\left(r-\alpha^{-}, r+\alpha^{+}\right)\right)\{-(2 r+|\alpha|)\} / \sim$

Cabled Khovanov-Rozansky Homology - Definition

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is $\underline{K h}_{2, \alpha}(K):=\bigoplus_{r \geq 0} \operatorname{Kh}\left(K\left(r-\alpha^{-}, r+\alpha^{+}\right)\right)\{-(2 r+|\alpha|)\} / \sim$ where $\alpha^{ \pm}$are the negative/postive parts of α,

Cabled Khovanov-Rozansky Homology - Definition

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is $\underline{K h}_{2, \alpha}(K):=\bigoplus_{r \geq 0} \operatorname{Kh}\left(K\left(r-\alpha^{-}, r+\alpha^{+}\right)\right)\{-(2 r+|\alpha|)\} / \sim$
where $\alpha^{ \pm}$are the negative/postive parts of $\alpha,\{-\}$ denotes a quantum degree shift

Cabled Khovanov-Rozansky Homology - Definition

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is $\underline{K h}_{2, \alpha}(K):=\bigoplus_{r \geq 0} \operatorname{Kh}\left(K\left(r-\alpha^{-}, r+\alpha^{+}\right)\right)\{-(2 r+|\alpha|)\} / \sim$ where $\alpha^{ \pm}$are the negative/postive parts of $\alpha,\{-\}$ denotes a quantum degree shift and \sim is generated by:

Cabled Khovanov-Rozansky Homology - Definition

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is
$\underline{K h}_{2, \alpha}(K):=\bigoplus_{r \geq 0} \operatorname{Kh}\left(K\left(r-\alpha^{-}, r+\alpha^{+}\right)\right)\{-(2 r+|\alpha|)\} / \sim$
where $\alpha^{ \pm}$are the negative/postive parts of $\alpha,\{-\}$ denotes a quantum degree shift and \sim is generated by:

- $\beta(b) v \sim v$

Cabled Khovanov-Rozansky Homology - Definition

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is
$\underline{K h}_{2, \alpha}(K):=\bigoplus_{r \geq 0} \operatorname{Kh}\left(K\left(r-\alpha^{-}, r+\alpha^{+}\right)\right)\{-(2 r+|\alpha|)\} / \sim$
where $\alpha^{ \pm}$are the negative/postive parts of $\alpha,\{-\}$ denotes a quantum degree shift and \sim is generated by:

- $\beta(b) v \sim v$

■ $\operatorname{Kh}(Z) v \sim 0$

Cabled Khovanov-Rozansky Homology - Definition

The cabled Khovanov homology at level $\alpha \in \mathbb{Z}$ is
$\underline{K h}_{2, \alpha}(K):=\bigoplus_{r \geq 0} \operatorname{Kh}\left(K\left(r-\alpha^{-}, r+\alpha^{+}\right)\right)\{-(2 r+|\alpha|)\} / \sim$
where $\alpha^{ \pm}$are the negative/postive parts of $\alpha,\{-\}$ denotes a quantum degree shift and \sim is generated by:

- $\beta(b) v \sim v$
- $\operatorname{Kh}(Z) v \sim 0$

■ $\mathrm{Kh}(\dot{Z}) v \sim v$

Proof of Main Theorem: Part I

TheoremLet W be the 2-handlebody associated to K. Then we have anisomorphism,

$$
\Phi: \underline{\mathrm{KhR}}_{N, \alpha}(K) \cong \mathcal{S}_{0}^{N}(W ; \emptyset, \alpha)
$$

Proof of Main Theorem: Part I

Take $|K|=1, N=2, \alpha=0$ for simplicity.

Proof of Main Theorem: Part I

Take $|K|=1, N=2, \alpha=0$ for simplicity.Define $\widetilde{\Phi}: \bigoplus_{r \geq 0} \operatorname{Kh}(K(r, r))\{-\} \rightarrow \mathcal{S}_{0}^{2}(W ; \emptyset, 0):$

Proof of Main Theorem: Part I

Take $|K|=1, N=2, \alpha=0$ for simplicity.Define $\widetilde{\Phi}: \bigoplus_{r \geq 0} \operatorname{Kh}(K(r, r))\{-\} \rightarrow \mathcal{S}_{0}^{2}(W ; \emptyset, 0)$: For $v \in \operatorname{Kh}(K(r, r))$, filling F_{v} with:

Proof of Main Theorem: Part I

Take $|K|=1, N=2, \alpha=0$ for simplicity.Define $\widetilde{\Phi}: \bigoplus_{r \geq 0} \operatorname{Kh}(K(r, r))\{-\} \rightarrow \mathcal{S}_{0}^{2}(W ; \emptyset, 0)$: For $v \in \operatorname{Kh}(K(r, r))$, filling F_{v} with:

- input ball the 0-handle B

Proof of Main Theorem: Part I

Take $|K|=1, N=2, \alpha=0$ for simplicity.Define $\widetilde{\Phi}: \bigoplus_{r \geq 0} \operatorname{Kh}(K(r, r))\{-\} \rightarrow \mathcal{S}_{0}^{2}(W ; \emptyset, 0)$: For $v \in \operatorname{Kh}(K(r, r))$, filling F_{v} with:

- input ball the 0-handle B
- decorated with $K(r, r)$, labelled with v

Proof of Main Theorem: Part I

Take $|K|=1, N=2, \alpha=0$ for simplicity.Define $\widetilde{\Phi}: \bigoplus_{r \geq 0} \operatorname{Kh}(K(r, r))\{-\} \rightarrow \mathcal{S}_{0}^{2}(W ; \emptyset, 0)$: For $v \in \operatorname{Kh}(K(r, r))$, filling F_{v} with:

- input ball the 0-handle B
- decorated with $K(r, r)$, labelled with v
- surface $=$ core-parallel discs $C_{j}^{ \pm}, 1 \leq j \leq r$

Proof of Main Theorem: Part I

Take $|K|=1, N=2, \alpha=0$ for simplicity.Define $\widetilde{\Phi}: \bigoplus_{r \geq 0} \operatorname{Kh}(K(r, r))\{-\} \rightarrow \mathcal{S}_{0}^{2}(W ; \emptyset, 0)$: For $v \in \operatorname{Kh}(K(r, r))$, filling F_{v} with:

- input ball the 0-handle B
- decorated with $K(r, r)$, labelled with v
- surface $=$ core-parallel discs $C_{j}^{ \pm}, 1 \leq j \leq r$ Set $\widetilde{\Phi}(v)=\left[F_{v}\right]$

Proof of Main Theorem: Part II

Proof of Main Theorem: Part II

Claim: $\widetilde{\Phi}$ factors through $\underline{K h}_{2,0}(K)$.

Skein Lasagna Modules for 2-handlebodies	$13 / 15$

Proof of Main Theorem: Part II

Claim: $\widetilde{\Phi}$ factors through $\underline{K h}_{2,0}(K)$. Braid group action permutes the discs, giving isotopic fillings.

Proof of Main Theorem: Part II
Claim: $\widetilde{\Phi}$ factors through $\underline{K h}_{2,0}(K)$.
Braid group action permutes the discs, giving isotopic fillings.

Proof of Main Theorem: Part II

Claim: $\widetilde{\Phi}$ factors through $\underline{K h}_{2,0}(K)$. Braid group action permutes the discs, giving isotopic fillings.

$E_{v} \sim F_{\mathrm{Kh}(\mathrm{Z})(\mathrm{v})}$

Proof of Main Theorem: Part II

Claim: $\widetilde{\Phi}$ factors through $\underline{K h}_{2,0}(K)$. Braid group action permutes the discs, giving isotopic fillings.

$$
\begin{aligned}
& E_{v} \sim F_{\mathrm{Kh}(\mathrm{Z})(\mathrm{v})} \\
& \dot{E}_{\mathrm{v}} \sim F_{\mathrm{Kh}(\dot{\mathrm{Z}})(\mathrm{v})}
\end{aligned}
$$

Proof of Main Theorem: Part II

Claim: $\widetilde{\Phi}$ factors through $\underline{K h}_{2,0}(K)$. Braid group action permutes the discs, giving isotopic fillings.

$$
\begin{aligned}
& E_{v} \sim F_{\mathrm{Kh}(\mathrm{Z})(\mathrm{v})} \\
& \dot{E}_{v} \sim F_{\mathrm{Kh}(\dot{\mathrm{Z}})(\mathrm{v})}
\end{aligned}
$$

Proof of Main Theorem: Part II

Claim: $\widetilde{\Phi}$ factors through $\underline{K h}_{2,0}(K)$. Braid group action permutes the discs, giving isotopic fillings.

$$
\begin{aligned}
& E_{v} \sim F_{K h(Z)(v)} \sim 0 \text { because } S^{2} \sim 0 \\
& \dot{E}_{v} \sim F_{\mathrm{Kh}(\dot{Z})(\mathrm{v})}
\end{aligned}
$$

Proof of Main Theorem: Part II

Claim: $\widetilde{\Phi}$ factors through $\underline{K h}_{2,0}(K)$. Braid group action permutes the discs, giving isotopic fillings.

$E_{v} \sim F_{\mathrm{Kh}(\mathrm{Z})(\mathrm{v})} \sim 0$ because $S^{2} \sim 0$
$\dot{E}_{v} \sim F_{\mathrm{Kh}(\mathrm{Z})(\mathrm{v})} \sim F_{v}$ because dotted $S^{2} \sim 1$

Proof of Main Theorem: Part III

Proof of Main Theorem: Part III

Claim: $\Phi^{-1}: \mathcal{S}_{0}^{2}(W ; \emptyset, 0) \rightarrow \underline{K h}_{2,0}(K)$ is well-defined

Proof of Main Theorem: Part III

Claim: $\Phi^{-1}: \mathcal{S}_{0}^{2}(W ; \emptyset, 0) \rightarrow \underline{K h}_{2,0}(K)$ is well-defined Exhibit $[F]=\widetilde{\Phi}(v)$ by an isotopy and evaluation. Set $\Phi^{-1}([F])=[v]$

Proof of Main Theorem: Part III

Claim: $\Phi^{-1}: \mathcal{S}_{0}^{2}(W ; \emptyset, 0) \rightarrow \underline{K h}_{2,0}(K)$ is well-defined Exhibit $[F]=\widetilde{\Phi}(v)$ by an isotopy and evaluation. Set $\Phi^{-1}([F])=[v]$ Consider different choices of isotopies.

Proof of Main Theorem: Part III

Claim: $\Phi^{-1}: \mathcal{S}_{0}^{2}(W ; \emptyset, 0) \rightarrow \underline{K h}_{2,0}(K)$ is well-defined Exhibit $[F]=\widetilde{\Phi}(v)$ by an isotopy and evaluation. Set $\Phi^{-1}([F])=[v]$
Consider different choices of isotopies. While the number of intersection points of Σ with the cocore remains constant, the motion of these points is described by a braid group element.

Proof of Main Theorem: Part III

Claim: $\Phi^{-1}: \mathcal{S}_{0}^{2}(W ; \emptyset, 0) \rightarrow \underline{K h}_{2,0}(K)$ is well-defined Exhibit $[F]=\widetilde{\Phi}(v)$ by an isotopy and evaluation. Set $\Phi^{-1}([F])=[v]$
Consider different choices of isotopies. While the number of intersection points of Σ with the cocore remains constant, the motion of these points is described by a braid group element. When we introduce/cancel two intersection points, we are pushing a disc through the cocore, corresponding to the cobordism Z.

Thank you!

