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Outline
1. Brief Introduction to 2D Quantum Hall Physics

2. Introduction to 4D Quantum Hall Physics 

3. How can we explore 4D Quantum Hall with quantum 
simulation? 

• (Topological Pumping) 
• Connectivity 
• Synthetic Dimensions



Topological Invariants

No holes: genus=0 1 hole: genus=1

e.g. topology of surfaces

• Global property 

•  Integer-valued  

•  Robust under smooth deformations

The Berry curvature in a lattice system
Consider a particle moving on a two-dimensional lattice:

The eigenfunctions are Bloch waves

The eigenenergies are Bloch bands

The Berry curvature of the    th band: 

Topological band theory

Each single-particle band labelled 
by topological invariants



Topology from geometry

g = 0 g = 1

Z

Stot

dS = 4⇡(1� g)

Gauss-Bonnet theorem for closed surfaces:

For energy bands: 

 n,k(r) = eik·run,k(r)

Ĥkun,k = En(k)un,k

The Berry curvature in a lattice system
Consider a particle moving on a two-dimensional lattice:

The eigenfunctions are Bloch waves

The eigenenergies are Bloch bands

The Berry curvature of the    th band: 

Geometrical properties: Berry curvature
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Figure	Credit:	Nathan	Goldman



Topology from geometry
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An energy band in the Brillouin Zone is a closed surface

https://tex.stackexchange.com/questions/469051/topology-diagrams-labelled-edges

https://tex.stackexchange.com/questions/469051/topology-diagrams-labelled-edges


Topology from geometry

g = 0 g = 1

Z

Stot

dS = 4⇡(1� g)

Gauss-Bonnet theorem for closed surfaces:

Analogously for energy bands: 

 n,k(r) = eik·run,k(r)

Ĥkun,k = En(k)un,k

The Berry curvature in a lattice system
Consider a particle moving on a two-dimensional lattice:

The eigenfunctions are Bloch waves

The eigenenergies are Bloch bands

The Berry curvature of the    th band: 

Geometrical properties: Berry curvature
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Analogy with Magnetic Fields

An(k) = ihun,k|
@

@k
|un,ki

⌦n(k) = r⇥An(k) B(r) = r⇥A(r)

A(r)

� =

Z

S
dS ·B(r)�n =

I

C
dk · An(k) =

Z

S
dS · ⌦n(k)

⌫n1 =
1

2⇡

Z

BZ
d2k · ⌦n(k) N =

1

�0
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Stot

dS ·B(r)

Berry connection Magnetic vector potential

Berry curvature Magnetic field

Berry phase Magnetic Flux

Chern number No/ magnetic monopoles



Connection to Homotopy

H(k) = "(k)Î + d(k) · �

Minimal two-band model, e.g. spinless atoms on 
lattice with two-site unit cell:

E± = "(k)±
p
d(k) · d(k)

Pauli matrices

↵

�

n̂

“x”

“y”

“z”

Normalized 3D “pseudo-spin” vector

d̂(k) =
1q

d2x + d2y + d2z

0

@
dx
dy
dz

1

Awhich is a 3D vector field over the 
Brillouin zone

d̂(k) =
1pP
i d

2
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0
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Example: 2-Band Lattice Chern Insulator Model

e.g. for more about this model, see for example “Topological Insulators and Superconductors” by Bernevig and Hughes

Projection 
along “z”

H = sin(kx)�x + sin(ky)�y + (2 +M � cos(kx)� cos(ky))�z

d̂(k) =
1pP
i d

2
i

0

@
d1
d2
d3

1

A



Figures:	By	Markus	Hoffmann,	Bernd	Zimmermann,	Gideon	P.	Müller,	Daniel	Schürhoff,	Nikolai	S.	Kiselev,	Christof	Melcher	&	Stefan	Blügel	-	hHps://
www.nature.com/arLcles/s41467-017-00313-0/figures/1,	CC	BY-SA	4.0,	hHps://commons.wikimedia.org/w/index.php?curid=74555701

Vector field over a 2D plane
Pseudo-spin space

How many times does the vector field (associated with the Hamiltonian) 
wrap over the psuedo-spin sphere? 

Skyrmions

“Skyrmion” ⇡2(S2) = Z
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d2k✏abcd̂a@kx d̂b@ky d̂c



Example: 2-Band Lattice Chern Insulator Model

e.g. for more about this model, see for example “Topological Insulators and Superconductors” by Bernevig and Hughes

“Pseudo-spin” 
space

Projection 
along “z”

M

H = sin(kx)�x + sin(ky)�y + (2 +M � cos(kx)� cos(ky))�z

trivial trivialskyrmion skyrmion

-4 -2 0
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d2k✏abcd̂a@kx d̂b@ky d̂c



Summary: First Chern Number

• A 2D Topological Invariant (of a vector bundle) 

• e.g. integral of Berry curvature over 2D BZ 

• Counts Number of “Magnetic” Monopoles Enclosed 

• For 2-band models, gives “skyrmion” (winding) number



Example Models

• 2-Band Lattice Chern Insulator 

•Landau levels 

•Harper-Hofstadter Model 

•Haldane model (tight-binding honeycomb lattice with 
TRS-breaking)…..

H = J
X

m,n

(â†m+1,nâm,n + ei2⇡�mâ†m,n+1âm,n) + h.c.

H = sin(kx)�x + sin(ky)�y + (2 +M � cos(kx)� cos(ky))�z



Physical Consequences:

N

Klaus von 
Klitzing

VH = RHI

RH =
h

Ne2

Ey

jx
jx =

Ne2

h
Ey

N.B. Alternatively: j = �E

2D electron gas in a perpendicular magnetic field

N =
X

n2occ.

⌫n1 topological first Chern numbers

2D Quantum Hall Effect



One-Way Topological Edge States
Figure from 

C. L. Kane & E. J. Mele, 
Science  314, 5806, 

1692 (2006)

Bulk-boundary 
correspondence

Bands have 
non-zero Chern 

numbers

Bands are 
topologically

-trivial

Polaritons: Klembt et al. Nature 562, 552(2018)

Physical Consequences:

Engineering Chern bands in cold atoms/photonics:

• Cold atoms review: Cooper et al., Rev. Mod. Phys. 91, 015005 (2019) 

• Photonics review: T. Ozawa, et al., Rev. Mod. Phys. 91, 015006 (2019)



Outline
1. Review of 2D Quantum Hall Physics 

2. Introduction to 4D Quantum Hall Physics

3. How can we explore 4D Quantum Hall with quantum 
simulation? 

• (Topological Pumping) 
• Connectivity 
• Synthetic Dimensions



Analogy with Magnetic Fields
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⌦n(k) = r⇥An(k) B(r) = r⇥A(r)
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2D 3D BB

Classical Particle in a magnetic field

! =
q|B|
m

Cyclotron frequency

B = r⇥A

F = qv ⇥B
x

Bxy, Bxz, Byz ! Bx0z0Bxz
x = cos(!t), z = sin(!t) x0 = cos(!t), z0 = sin(!t)

B⌫µ = @⌫Aµ � @µA⌫

Fµ = qv⌫Bµ⌫



Bxy, Bxz, Bxw, Byz, Byw, Bzw4D
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Classical Particle in a magnetic field

Byw = 2Bxz Byw =
p
2Bxz

! =
qBxz

m
, !0 =

qByw

m
Bxz, Byw 6= 0

Not always possible to rotate axes so that only one component is non-zero 

e.g.
x = cos(!t), z = sin(!t),

y = cos(!0t), w = sin(!0t)



2D

Quantum Hall Effects
2D system in a 
perpendicular 
magnetic field

Bxz
⌫zx1 =

1

2⇡

Z

2DBZ
⌦zxdkzdkx

Topological first 
Chern number

Bxz, Byw 6= 0

3D
3D system with

Bxy, Bxz, Byz ! Bx0z0

Triad of 3D first 
Chern numbers

⌫xy1 , ⌫zx1 , ⌫yz1 ! ⌫x
0z0

1

⌫2 =
1

4⇡2

Z

4DBZ
⌦zx⌦ywd4k = ⌫zx1 ⌫yw1⌫2 =

1

4⇡2

Z

4DBZ
⌦zx⌦ywd4k = ⌫zx1 ⌫yw1

(Simple example of) topological 
second Chern number

Minimal 4D system with

Bxz, Byw 6= 04D
⌫zx1 , ⌫yw1

(more generally, up to 6 planes)



Second Chern Number

And then the third Chern number in 6D…  for 6DQH see Petrides, HMP, Zilberberg Phys. Rev. B 98, 125431 (2018)

 and references there-in

⌫2 =
1

8⇡2

Z

4DBZ
⌦ ^ ⌦ 2 Z

=
1

4⇡2

Z

4DBZ
[⌦xy⌦zw + ⌦wx⌦zy + ⌦zx⌦yw] d4k

Zhang et al, Science 294, 823 (2001),  
Qi et al, Phys. Rev. B  78, 195424 (2008).….  

Sugawa et al, Science, 360, 1429 (2018)

c.f. ⌫1 =
1

2⇡

Z

T2

⌦

jµ =
q3

2h2
"µ��⌫E⌫B��⌫2

jx / Ey⌫1

c.f.

Topological Nonlinear Quantum Hall Response

Zhang et al, Science 294, 823 (2001)…. 
HMP, Zilberberg, Ozawa, Carusotto & Goldman, PRL 115, 195303 (2015) 
HMP, Zilberberg, Ozawa, Carusotto & Goldman, PRB 93, 245113 (2016) 

Generalize to degenerate bands by tracing over



Connection to Homotopy

H(k) = "(k)�0 + d(k) · �

2

operators as:
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1p
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X

k

ake
�i[mk·R1+nk·R2+jk·R3+lk·R4]

bm,n,j,l =
1p
N
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where N is the number of cells and where the sum runs over all momenta in the BZ, we find:
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Introducing the Dirac matrices:
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0 0 1 0
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CCA ,�2 =
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0 0 �i 0
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i 0 0 0
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the above expressions can be combined and written compactly as:

H =
X

k

�
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†
k b

†
k c

†
k d

†
k

�
H(k)

0
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1
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H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2 + (2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (S4)

as stated in the main text.
To engineer a topological phase transition, we also need to add longer-range hoppings that can separate out the

Dirac points of the two types. In the main text, we give the example of a hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0). In terms of the tight-binding real-space model, this would correspond

Minimal four-band model:

Normalized 5D “pseudo-spin” vector
d̂(k) =

1pP
i d

2
i

0

BBBB@

d1
d2
d3
d4
d5

1

CCCCA

How many times do we 
wrap over the 4-sphere in 

the 4D BZ?

⌫�2 =
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8⇡2

Z

BZ
tr(⌦� ^ ⌦�),

=
3

8⇡2

Z

BZ
d4k✏abcded̂a@kx d̂b@ky d̂c@kz d̂d@kw d̂e

Qi et al, Phys. Rev. B  78, 195424 (2008).….  



Summary: Second Chern Number

• A 4D Topological Invariant  

• e.g. integral of trace of wedge product of Berry curvature 
over 4D BZ 

• Can Count Number of “Yang” Monopoles Enclosed 

• For 4-band models, gives 4D “skyrmion” (winding) number

c.f. Sugawa et al, Second Chern number of a quantum-simulated non-Abelian Yang monopole, 
Science, 360, 1429, (2018)



Example Models

•4D Landau levels  

•4D Harper-Hofstadter Model  

•Qi/ Zhang/ Hughes Model  

• 4D Modified Brickwall Model
3

(a)

(b) (c)

FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.

Importantly, in 4D, preserving TRS for spinless sys-
tems does not imply equal numbers of the two types of
Dirac points. This is because when spinless or bosonic
TRS is present, d1(k) = d1(�k), d3(k) = d3(�k) and
d5(k) = d5(�k) are even, while d2(k) = �d2(�k) and
d4(k) =�d4(�k) are odd. Then, a Dirac point at K is
again paired with another Dirac point at �K, but now
these Dirac points are of the same type, as both d2 and
d4 flip sign. As a result, each TRS pair of Dirac points
will change the 2CN by ±2 across a transition.

Unlike 2D, it is therefore possible to have spinless 4D
QH models with TRS, where the 2CNs take only even
integer values, 2Z [6]. This is a key di↵erence from
previously-studied 4D systems in Class A (with broken

TRS) and Class AII (with fermionic TRS), where the
2CN takes any integer values, Z. For a four-band Class
AII model, for example, the di↵erent TRS constraints al-
low unpaired Dirac points at TRS-invariant momenta, so
that the 2CN can change by ±1 [55]. Physically, the lat-
ter may describe a lattice of particles in spatially-varying,
spin-dependent gauge fields, which is challenging to re-
alise with current technology. Instead, as we now illus-
trate, a suitable four-band model in Class AI could be
engineered for spinless particles by exploiting lattice con-
nectivity.
Proposal for 4D Model– Inspired by the 2D Hal-

dane model, our 4D proposal extends the honey-
comb/brickwall lattice into 4D. As introduced above,
these lattices are topologically-equivalent, having two
sites per unit cell and a single pair of Dirac points in the
BZ. Hereafter, we focus on the brickwall geometry, which
is most natural for synthetic dimensions, but note that
similar arguments apply to the honeycomb geometry.
To realise a four-band model like Eq. 3, we construct a

4D lattice [see Fig. S1(a)], with a four-site unit cell and
the connectivity of a 2D brickwall lattice in both x�y

and z�w planes. The Hamiltonian is [56]:

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2

+(2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (5)

where J is the hopping amplitude, the lattice spacing
a = 1, and m is an energy o↵set between the A,B and
C,D sites. Note that the real-space hoppings between
B and D sites need to have an opposite sign compared
to other hoppings, as indicated in Fig. S1(a), in order to
realise the required � matrix structure [56].
When m = 0, this model has four 4D Dirac points

in the BZ, as shown in Fig. S1(b). The points at
K1,2 = (⌥2⇡/3, 0,⌥2⇡/3, 0) are a time-reversal pair of
the first type, while those at K3,4 = (±2⇡/3, 0,⌥2⇡/3, 0)
are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.

As in the 2D Haldane model, another ingredient is
needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to �5, which distinguishes
between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the

Qi et al, Phys. Rev. B  78, 195424 (2008).….  

HMP Phys. Rev. B 101, 205141 (2020) 



2D Insulating Bulk

1D Conducting Edge

2D 
Conducting 

Surface

3D 
Insulating 

Bulk

2D 3D

4D
3D 

Conducting 
Surface 
Volume

4D Insulating Bulk

3D Cuts Along the 4th Dimension 

Bulk-Boundary Correspondence



“Periodic table” of gapped phases of quadratic fermionic Hamiltonians without extra symmetries

Aside: Symmetries… 

Kitaev, arXiv:0901.2686
Ryu et al., New J. Phys. 12, 065010 (2010)

Chiu, et al., RMP 88, 035005, (2016)

0 : always trivial 
   :  an integer 
    : 0,1 
Z
Z2

Possible values of 
topological invariant:

Time-
reversal

Particle-
hole Chiral

Dimensionality
Class

SSH Model

Quantum Hall

Topological 
Insulators/ 

quantum spin 
Hall

Topological 
Superconductors

Result of squaring the 
symmetry operator  

(0=symmetry is broken)



Outline
1. Review of 2D Quantum Hall Physics 

2. Introduction to 4D Quantum Hall Physics 

3. How can we explore 4D Quantum Hall Systems with 
quantum simulation?

• (Topological Pumping) 
• Connectivity 
• Synthetic Dimensions



Approach 1: 2D Topological Pumping

Extension of Thouless pumping (D. J. Thouless, Phys. Rev. B 27, 6083 (1983))

Proposal: Y. E. Kraus et al., Phys. Rev. Lett. 111, 226401 (2013)


Expt with cold atoms: Lohse, Schweizer, HMP, Zilberberg, Bloch, Nature 553, 55–58 (2018)
Expt with photons: O. Zilberberg et al., Nature 553, 59 (2018)


4D Quantum Hall Model

Ĥ4D =
X

kz,kw

Ĥ(x, y, kz, kw)

2D Topological Pump Ĥ2D(x, y,'x,'y)

Fourier Transform 
wrt 2 coordinates

Replace with 
periodic  

parameters

Ĥ(x, y, z, w)

Mathematical Mapping



Approach 2: Circuit Connectivity
2D Lattice

2D Lattice Embedded into 1D Chain

2

that maps to certain combinations of capacitances and
inductances. Using impedance measurements that are
equivalent to finding the local density of states (LDOS),
we show that the 4DQH phase hosts surface states on
the 3D surface, while the conventional insulator phase
has only bulk states. Varying the driving frequency, we
show that the topological surface states span a frequency
range corresponding to a bulk bandgap, as predicted by
theory. Our experimental results also agree well with cir-
cuit simulations. This work demonstrates that electric
circuits are a flexible and practical way to realise higher-
dimensional lattices, paving the way for the exploration
of other previously-inaccessible topological phases.

4DQH model and circuit realization.— The 4D lattice
model is shown schematically in Fig. 1(a). The spatial co-
ordinates are denoted x, y, z, and w. The lattice contains
four sublattices labelled A, B, C and D, with sites con-
nected by real nearest neighbour hoppings ±J . The four
bands host two pairs of Dirac points in the Brillouin zone;
each pair is the time-reversed counterpart of the other.
To control the pairs separately, long-range hoppings with
amplitudes ±J

0 and ±J
00 are added within the x-z plane

[these long-range hoppings are omitted from Fig. 1(a) for
clarity, but are shown in Fig. 1(c)]. Upon adding mass
+m to the A and B sites, and �m to the C and D sites,
the Dirac masses for the di↵erent Dirac point pairs close
at m=J

0�2J 00 and m=J
00�2J 0. These gap closings are

topological transitions, such that, for J 00=�J
0, the sec-

ond Chern number of the lower bands is -2 (nontrivial)
if |m|<3|J 0|. Since T is unbroken, the first Chern num-
ber is always zero, so the model exhibits QH behaviour
stemming purely from the second Chern number [32].

For the experiment, we set J = 1 and J
0 = �J

00 = 2, so
that the topological transition of the bulk lattice occurs
at m = ±6. We take a finite 4D lattice with three unit
cells (6 sites) in the x and z directions, and one unit cell
(2 sites) in y and w. Periodic boundary conditions are
applied along y and w to mitigate finite-size e↵ects, and
are implemented using nearest neighbor type connections
between opposite ends of the lattice. The lattice has a
total of 144 sites, of which we consider 16 to be bulk sites
(defined as being more than 2 sites away from a surface)
and 128 to be surface sites. The fact that the surface
sites greatly outnumber the bulk sites is characteristic of
high dimensional systems.

Circuit realization.— The finite 4D lattice is imple-
mented with a set of connected printed circuit boards,
shown in Fig. 1(b). Each site i of the tight-binding model
maps to a node on the circuit, and the mass term maps to
a circuit component of conductance �Dii connecting the
node to ground. Each hopping Jij between sites i and
j maps to a circuit element of conductance Dij connect-
ing the nodes. We add extra grounding components with
conductance D0

ii in parallel with �Dii. If an external AC
current Ii flows into each node i at frequency f , and Vi

is the complex AC voltage on that node, Kirchho↵’s law
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FIG. 1: Model of the 4D Quantum Hall lattice and its circuit
implementation. (a) Schematic of the 4D tight-binding model.
Each unit cell consists of four sites labelled A-D. Hollow and
filled circles respectively denote positive (m) and negative
(�m) on-site masses, while yellow solid lines and blue dashes
respectively denote positive (J) and negative (�J) hoppings.
Long-range hoppings of the tight-binding lattice are indicated
in (c). (b) Photograph of the circuit. (c) Schematic of the cir-
cuit; positive (negative) masses are realised by capacitors (in-
ductors) connecting the sites to ground, and hoppings are re-
alised using capacitors or inductors connecting di↵erent sites.
For clarity, the hoppings corresponding to the periodic bound-
ary conditions are omitted.
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Ii = (�Dii +D
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ii)Vi +
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Dij(Vi � Vj). (1)

We define

Dij(f) = i↵Hij(f), (2)

where ↵ is a positive real constant. Then capacitances
(inductances) correspond to positive (negative) real Hij .
We require that at a reference working frequency f = f0,
the values of Hij(f0) match the desired tight-binding lat-
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logical pumps have the drawback of being inherently lim-
ited to probing specific quasi-static solutions of the high-
dimensional system, without realising a genuine high-
dimensional lattice. Moreover, in those experiments the
second Chern number in 4D is not truly independent of
the first Chern numbers in 2D (which are nonzero).

Our 4D lattice is implemented using electric circuits
with carefully chosen capacitive and inductive connec-
tions. The lattice model has two topologically distinct
phases: a 4DQH phase and a conventional insulator,
with the choice of phase governed by a parameter m

that maps to certain combinations of capacitances and
inductances. Using impedance measurements that are
equivalent to finding the local density of states (LDOS),
we show that the 4DQH phase hosts surface states on
the 3D surface, while the conventional insulator phase
has only bulk states. Varying the driving frequency, we
show that the topological surface states span a frequency
range corresponding to a bulk bandgap, as predicted by
theory. Our experimental results also agree well with cir-
cuit simulations. This work demonstrates that electric
circuits are a flexible and practical way to realise higher-
dimensional lattices, paving the way for the exploration
of other previously-inaccessible topological phases.

4DQH model and circuit realization.— The 4D lattice
model is shown schematically in Fig. 1(a). The spatial co-
ordinates are denoted x, y, z, and w. The lattice contains
four sublattices labelled A, B, C and D, with sites con-
nected by real nearest neighbour hoppings ±J . The four
bands host two pairs of Dirac points in the Brillouin zone;
each pair is the time-reversed counterpart of the other.
To control the pairs separately, long-range hoppings with
amplitudes ±J

0 and ±J
00 are added within the x-z plane

[these long-range hoppings are omitted from Fig. 1(a) for
clarity, but are shown in Fig. 1(c)]. Upon adding mass
+m to the A and B sites, and �m to the C and D sites,
the Dirac masses for the di↵erent Dirac point pairs close
at m=J

0�2J 00 and m=J
00�2J 0. These gap closings are

topological transitions, such that, for J 00=�J
0, the sec-

ond Chern number of the lower bands is -2 (nontrivial)
if |m|<3|J 0|. Since T is unbroken, the first Chern num-
ber is always zero, so the model exhibits QH behaviour
stemming purely from the second Chern number [37].

For the experiment, we set J = 1 and J
0 = �J

00 = 2, so
that the topological transition of the bulk lattice occurs
at m = ±6. We take a finite 4D lattice with three unit
cells (6 sites) in the x and z directions, and one unit cell
(2 sites) in y and w. Periodic boundary conditions are
applied along y and w to mitigate finite-size e↵ects, and
are implemented using nearest neighbor type connections
between opposite ends of the lattice. The lattice has a
total of 144 sites, of which we consider 16 to be bulk sites
(defined as being more than 2 sites away from a surface)
and 128 to be surface sites. The fact that the surface
sites greatly outnumber the bulk sites is characteristic of
high dimensional systems.
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FIG. 1: Model of the 4D Quantum Hall lattice and its circuit
implementation. (a) Schematic of the 4D tight-binding model.
Each unit cell consists of four sites labelled A-D. Hollow and
filled circles respectively denote positive (m) and negative
(�m) on-site masses, while yellow solid lines and blue dashes
respectively denote positive (J) and negative (�J) hoppings.
(c) Long-range hoppings of the tight-binding lattice. (b) Pho-
tographs of the circuit. (c) Schematic of the circuit; positive
(negative) masses are realised by capacitors (inductors) con-
necting the sites to ground, and hoppings are realised using
capacitors or inductors connecting di↵erent sites.

Circuit realization.— The finite 4D lattice is imple-
mented with a set of connected printed circuit boards,
shown in Fig. 1(b). Each site i of the tight-binding model
maps to a node on the circuit, and the mass term maps to
a circuit component of conductance �Dii connecting the
node to ground. Each hopping Jij between sites i and
j maps to a circuit element of conductance Dij connect-
ing the nodes. We add extra grounding components with
conductance D0

ii in parallel with �Dii. If an external AC
current Ii flows into each node i at frequency f , and Vi

is the complex AC voltage on that node, Kirchho↵’s law

4D Lattice 
Embedded into 

3D Stack of 
Circuit Boards

144 sites (6x2x6x2 with some PBCs)

 Y. Wang, HMP, B. Zhang and Y. Chong, Nature Communications 11, 2356 (2020) 
Yu et al. National Science Review, 7(8),1288-1295 (2020)…
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states that

Ii = (�Dii +D
0
ii)Vi +

X
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Dij(Vi � Vj). (1)

We define

Dij(f) = i↵Hij(f), (2)

where ↵ is a positive real constant. Then capacitances
(inductances) correspond to positive (negative) real Hij .
We require that at a reference working frequency f = f0,
the values of Hij(f0) match the desired tight-binding lat-
tice Hamiltonian. We map the positive nearest neigh-
bor hopping J = 1 to capacitance C0 = 1nF by taking
↵ = 2⇡f0C0. The long-range hopping J

0 then maps to
capacitance C 0 = 2nF. By setting f0 = 1/(2⇡

p
L0C0 ) ⇡

113 kHz, the negative nearest neighbor hopping maps to
inductance L0 = 2mH, and the negative long-range hop-
ping J

00 = �2 maps to inductance L
0 = 1mH.

The grounding conductance of node i is parameterised
as �Dii +D

0
ii. We tune D

0
ii so that for f = f0 and Dii

obeying Eq. (2),D0
ii+

P
j 6=i Dij = i↵E for a target energy

E. The required D
0
ii is dependent on the m parameter.

Eq. (1) now becomes [55]

Ii(f) ⌘
X

j

LijVj = �i↵

X

j

h
Hij(f)� E �ij

i
Vj(f). (3)

Here, Lij are the components of the circuit Laplacian L.
In our experiments, we measure the impedance be-

tween a given node r and the common ground by applying
a 1V sine wave of frequency f0 on that node, and mea-
suring the voltage Vr and the current Ir. The impedance
between node r and the ground is the rth diagonal term
of the inverse of the circuit Laplacian L:

Vr =
X

j

(L�1)rjIj = ZrIr. (4)

Using Eq. (3), one can show that [20]

Zr =
i

↵
lim
✏!0

X

n

| n(r)|2

En � E + i✏
, (5)

where  n(r) is the n-th energy eigenstate’s amplitude on
site r, and En is the corresponding eigenenergy. There-
fore Re[Zr] = (1/⇡↵)

P
n �(E � En) | n(r)|2 is, up to a

scale factor, the LDOS of the target lattice at energy E

when measured at f = f0.
Experimental results.— Fig. 2(a) shows the band dia-

gram of the infinite bulk tight-binding model as a func-
tion of the mass detuning parameter m. For |m| < 6, the
system is in a 4DQH phase, with a topologically nontriv-
ial bandgap centered at E = 0, which hosts topological
surface states. The band diagram for the 144-site tight-
binding model is shown in Fig. 2(b). The colors of the
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FIG. 2: (a) Calculated band diagram for the infinite 4D lat-
tice. The bulk bands are shown in gray. For |m| < 6, there is
a bandgap associated with nontrivial second Chern number,
accompanied by topological surface states (shaded green). For
|m| > 6, the bandgap is trivial. (b) Calculated band diagram
for 144-site lattice with periodic boundary conditions along
y and w. Colors indicate the degree of surface concentration
of the energy states, as defined in the main text. Due to
finite-size e↵ects, surface states occur at |m| . 2 and the gap
closing is shifted to |m| ⇡ 4. The parameters correspond-
ing to subplots (c)–(f) are indicated with pink dots. (c)–(f)
Experimentally obtained LDOS maps for di↵erent m and E,
measured at working frequency f = f0. Surface states are ob-
served in (c) and (d), consistent with theoretical predictions.

curves indicate the degree to which each eigenstate is
concentrated on the surface, as defined by

ln [ h| (r)|isurf. / h| (r)|ibulk ] , (6)

where  (r) denotes the energy eigenfunction, whose mag-
nitudes are averaged over either surface or bulk sites.
Due to the finite lattice size, both the bulk and surface
spectrum is split into sub-bands. The closing of the bulk
gap is shifted to |m| ⇡ 4, and the surface states occur
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FIG. 2: (a) Calculated band diagram for the infinite 4D lat-
tice. The bulk bands are shown in gray. For |m| < 6, there is
a bandgap associated with nontrivial second Chern number,
accompanied by topological surface states (shaded green). For
|m| > 6, the bandgap is trivial. (b) Calculated band diagram
for 144-site lattice with periodic boundary conditions along
y and w. Colors indicate the degree of surface concentration
of the energy states, as defined in the main text. Due to
finite-size e↵ects, surface states occur at |m| . 2 and the gap
closing is shifted to |m| ⇡ 4. The parameters correspond-
ing to subplots (c)–(f) are indicated with pink dots. (c)–(f)
Experimentally obtained LDOS maps for di↵erent m and E,
measured at working frequency f = f0. Surface states are ob-
served in (c) and (d), consistent with theoretical predictions.

curves indicate the degree to which each eigenstate is
concentrated on the surface, as defined by

ln [ h| (r)|isurf. / h| (r)|ibulk ] , (6)

where  (r) denotes the energy eigenfunction, whose mag-
nitudes are averaged over either surface or bulk sites.
Due to the finite lattice size, both the bulk and surface
spectrum is split into sub-bands. The closing of the bulk
gap is shifted to |m| ⇡ 4, and the surface states occur
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Grounding impedance is related to 
LDOS, so can probe properties of states

Tuning parameter

2

logical pumps have the drawback of being inherently lim-
ited to probing specific quasi-static solutions of the high-
dimensional system, without realising a genuine high-
dimensional lattice. Moreover, in those experiments the
second Chern number in 4D is not truly independent of
the first Chern numbers in 2D (which are nonzero).

Our 4D lattice is implemented using electric circuits
with carefully chosen capacitive and inductive connec-
tions. The lattice model has two topologically distinct
phases: a 4DQH phase and a conventional insulator,
with the choice of phase governed by a parameter m

that maps to certain combinations of capacitances and
inductances. Using impedance measurements that are
equivalent to finding the local density of states (LDOS),
we show that the 4DQH phase hosts surface states on
the 3D surface, while the conventional insulator phase
has only bulk states. Varying the driving frequency, we
show that the topological surface states span a frequency
range corresponding to a bulk bandgap, as predicted by
theory. Our experimental results also agree well with cir-
cuit simulations. This work demonstrates that electric
circuits are a flexible and practical way to realise higher-
dimensional lattices, paving the way for the exploration
of other previously-inaccessible topological phases.

4DQH model and circuit realization.— The 4D lattice
model is shown schematically in Fig. 1(a). The spatial co-
ordinates are denoted x, y, z, and w. The lattice contains
four sublattices labelled A, B, C and D, with sites con-
nected by real nearest neighbour hoppings ±J . The four
bands host two pairs of Dirac points in the Brillouin zone;
each pair is the time-reversed counterpart of the other.
To control the pairs separately, long-range hoppings with
amplitudes ±J

0 and ±J
00 are added within the x-z plane

[these long-range hoppings are omitted from Fig. 1(a) for
clarity, but are shown in Fig. 1(c)]. Upon adding mass
+m to the A and B sites, and �m to the C and D sites,
the Dirac masses for the di↵erent Dirac point pairs close
at m=J

0�2J 00 and m=J
00�2J 0. These gap closings are

topological transitions, such that, for J 00=�J
0, the sec-

ond Chern number of the lower bands is -2 (nontrivial)
if |m|<3|J 0|. Since T is unbroken, the first Chern num-
ber is always zero, so the model exhibits QH behaviour
stemming purely from the second Chern number [37].

For the experiment, we set J = 1 and J
0 = �J

00 = 2, so
that the topological transition of the bulk lattice occurs
at m = ±6. We take a finite 4D lattice with three unit
cells (6 sites) in the x and z directions, and one unit cell
(2 sites) in y and w. Periodic boundary conditions are
applied along y and w to mitigate finite-size e↵ects, and
are implemented using nearest neighbor type connections
between opposite ends of the lattice. The lattice has a
total of 144 sites, of which we consider 16 to be bulk sites
(defined as being more than 2 sites away from a surface)
and 128 to be surface sites. The fact that the surface
sites greatly outnumber the bulk sites is characteristic of
high dimensional systems.

b

FIG. 1: Model of the 4D Quantum Hall lattice and its circuit
implementation. (a) Schematic of the 4D tight-binding model.
Each unit cell consists of four sites labelled A-D. Hollow and
filled circles respectively denote positive (m) and negative
(�m) on-site masses, while yellow solid lines and blue dashes
respectively denote positive (J) and negative (�J) hoppings.
(c) Long-range hoppings of the tight-binding lattice. (b) Pho-
tographs of the circuit. (c) Schematic of the circuit; positive
(negative) masses are realised by capacitors (inductors) con-
necting the sites to ground, and hoppings are realised using
capacitors or inductors connecting di↵erent sites.

Circuit realization.— The finite 4D lattice is imple-
mented with a set of connected printed circuit boards,
shown in Fig. 1(b). Each site i of the tight-binding model
maps to a node on the circuit, and the mass term maps to
a circuit component of conductance �Dii connecting the
node to ground. Each hopping Jij between sites i and
j maps to a circuit element of conductance Dij connect-
ing the nodes. We add extra grounding components with
conductance D0

ii in parallel with �Dii. If an external AC
current Ii flows into each node i at frequency f , and Vi

is the complex AC voltage on that node, Kirchho↵’s law

4D Topological 
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1. Identify a set of states and reinterpret as sites in a synthetic dimension 
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Boada et al., PRL, 108, 133001 (2012),  

Celi et al., PRL, 112, 043001 (2014)

2. Couple these modes to simulate a tight-binding “hopping”  
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Simulates a particle on a 1D lattice
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Approach 3: Synthetic dimensions



3. Add a second (real or synthetic) 
spatial dimension 
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Approach 3: Synthetic dimensions
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For example: give a phase to the 
synthetic “hopping” that depends on the 
other co-ordinate
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Boada et al., PRL, 108, 133001 (2012),  

Celi et al., PRL, 112, 043001 (2014)

Simulates a magnetic field: 
Harper-Hofstadter model 

H = J
X

m,n

(â†m+1,nâm,n + ei2⇡�mâ†m,n+1âm,n) + h.c.



Ingredients: 
1. Reinterpret states as sites in synthetic dimension  ->  Internal atomic states
2. Couple states to simulate a “hopping” term            ->  Raman beams

Synthetic dimension with internal atomic states

Florence: Mancini et al, Science, 349, 1510 (2015),  
Livi et al, Phys. Rev. Lett. 117, 220401 (2016) 
Maryland: Stuhl et al. Science, 349, 1514 (2015)
Boulder: Kolkowitz et al, Nature,  542, 66 (2017) 

Phase depends on 
position in lattice

quantum number 
of internal state

They observed skipping orbits in (1 real + 1 synthetic)-D…


Experiments

Paris: Chalopin et al, Nature Phys,  16, 1017 (2020) 



Atomic states: Celi et al., PRL, 112, 043001 (2014), Mancini et al, Science, 349, 1510 (2015), 
Stuhl et al. Science, 349, 1514 (2015)…
Momentum states of atoms: An, Meier, Galway, Sci. Adv. e1602685 (2017),  
Viebahn et al, PRL 122 (11), 110404 (2019)….

Optomechanics: Schmidt et al, Optica 2, 7, 635 (2015) 

Photons in Optical cavities: Luo et al, Nature Comm. 6, 7704, (2015) 

Frequency modes: Ozawa, HMP, Goldman, Zilberberg, & Carusotto, PRA 93, 043827 (2016), 
Yuan, et al, Optics Letters 41, 4,  741 (2016)….. 
… Yuan et al, Photon. Res. 8(9), B8-B14 (2020), Tusnin et al, PRA, 102, 023518 (2020)  
Dutt et al. Nature Communications 10, 3122 (2019), Dutt et al Science 367, 59 (2020) 

Angular co-ordinate of ring resonator: Ozawa & Carusotto, PRL, 118, 013601 (2017) 

Arrival time of pulses Schreiber, A. et al. Phys. Rev. Lett. 104, 050502 (2010). 
Wimmer, HMP, Carusotto & Peschel, Nat. Phys. 13, 545  (2017),  
Chen, C. et al. Phys. Rev. Lett. 121, 100502 (2018)…. 

Spatial modes of waveguide array: Lustig et al., Nature, 567, 356 (2019) 

Harmonic trap states of atoms: HMP et al., PRA 95, 023607 (2017),  
Salerno, HMP et al, Phys. Rev. X 9, 041001 (2019) 

Floquet states: Martin, Refael, & Halperin, PRX 7, 041008 (2017)… 

Review: T. Ozawa & HMP, 
Nature Reviews Physics 

1, 349 (2019) A lot of recent progress

Mesoscopic Nanomagnet-Ring system: HMP, Ozawa & Schomerus, PRR, 2, 032017(R) (2020) 
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Rotational States of ultracold molecules: Sundar, Gadway & Hazzard, Sci. Rep. 8, 3422 (2018)  
Sundar et al, PRA, 99, 013624 (2019) 



Future Experiments? Synthetic Dimensions?

4D Quantum Hall effect with synthetic dimensions: 
HMP, Zilberberg, Ozawa, Carusotto & Goldman, Phys. Rev. Lett. 115, 195303 (2015) 
T. Ozawa, HMP, N. Goldman, O. Zilberberg, and I. Carusotto, Phys. Rev. A 93, 043827 (2016) 



Topological 
Pumping

Synthetic 
Dimensions

• Experiments not yet 
up to 4D 

• Each implementation 
quite different 

• Topology in current 
response   

• Can be truly quantum 

• Interactions!? 

jx / Ey⌫1

Circuit 
connectivity

•  Experiments in 1D 
(mapped from 2D) and 2D 
(mapped from 4D)  

• External parameters 

• Topology after a pump 
cycle 

• Limited dynamics 

x(T ) / ⌫1

• Experiment in “4D”! 

• Easy to scale, and 
very accessible 

• Probing of surface 
states 

• Classical circuits 



Aside: a few other recent projects…
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FIG. 3. (a) Spatio-temporal plot of the measured intensity in
the short loop for a trapped nonlinear fluid of light (�I ⇡ 0.5
in the center of the trap) excited by a sinusoidally-moving de-
fect at various speeds s, applied to the optical field fromm = 0
to m = 200. Defect and trap parameters are as given in the
main text. (b) Late-time average of the potential energy (S8)
for experiments in the linear and nonlinear regime (nonlinear
regime: power levels as in (a), linear regime: power levels 1/5
of (a)). In the linear regime, we observe that the potential
energy increases steadily with the defect speeds, while in the
nonlinear regime, it remains approximately constant for low
s and shows a marked upward kink at s ⇡ 0.07.

density made it di�cult to extract conclusive information
from the observations (see Supplemental Material [38]).

To overcome this di�culty, a conceptually di↵erent
scheme was adopted, so as to exploit the peculiarities
of our platform. Instead of looking at the instantaneous
density perturbation, our observable is the total energy
that is deposited by the moving defect into the fluid dur-
ing the whole excitation sequence. Related calorimet-
ric schemes were used to detect superfluidity in atomic
gases [41–43] but were never implemented in fluids of
light, mostly because of the intrinsic dissipation of mi-
crocavity systems.

More specifically, we adopted a configuration in which
the optical field is excited with a defect over many time-
steps and the fluid is kept in place by a confining poten-
tial. For technical reasons, the trap and defect are only
applied in the short loop, i.e. �m

n = 0. The phase-shift
of the short loop is the sum 'm

n = �d + �t of the de-
fect contribution �d given in Eq. S7 and the trap one,

�t = 't

⇣
1 � e�(n�nt)

2/�2
t

⌘
. Values 't = ⇡/10, �t = 8

and nt = 14 of, respectively, the height, o↵set and half-
width of the trap are chosen in order to minimize resid-
ual motion of the trapped beam, which is initialized with
the Gaussian profile detailed above. The defect is kept in
the central trapped region and is moved in space along
the sinusoidal trajectory defined by nd(m) = 4 sin(sm),
and has �n = 1 and 'd = �⇡/10. Rather than slowly
switching on and o↵, the defect is applied with a con-
stant amplitude from m = 0 until m = 200 so to excite
the fluid of light in a more significant way.

Excitation of the optical field by the defect is inves-
tigated looking at the spatio-temporal intensity distri-
bution shown in Fig.3. For all velocities, light has to

adapt to the constantly changing defect potential and
some light ejection can be clearly observed as light bursts
propagating away from the central trapped region. But,
most importantly for our superfluidity purposes, for low
values of the peak defect velocity (s = 0.01 and s = 0.05)
the field quickly returns to an almost quiet state once the
defect has disappeared. Only a faster moving defect can
e�ciently transfer energy to the fluid and thus perma-
nently change its state. This heating e↵ect is visible for
s = 0.1 as persistent oscillations and is a clear evidence
that the defect speed was large enough for superfluidity
to break down.

To make this analysis more quantitative and highlight
the crucial role of superfluidity over other emission pro-
cesses due to the non-inertial motion of the defect [44], we
estimated the deposited energy by measuring the average
potential energy at late times:

hEpoti =
1

j + 1

mmaxX

m=mmax�j

P
n |um

n |
2�tP

n |um
n |2

. (5)

where j corresponds to the number of time-steps after
the defect is switched o↵; here j = 100. This quantity is
plotted in Fig. 3(b) for experiments in the two cases of
the linear and the nonlinear regime. In the linear case, we
observe that the potential energy steadily increases with
the defect speed. In the nonlinear regime, we see that the
potential energy starts at a higher level, caused by the
repelling nonlinear interaction that pushes the field up
the walls of the trap and remains approximately constant
for low defect speeds. A sudden threshold is visible for
speeds around s = 0.07, after which the potential energy
begins to significantly increase. This behaviour can be
reproduced numerically [38], and confirms the presence
of an e↵ective threshold speed, above which superfluidity
breaks down and friction becomes important.
Conclusions – In this Letter we have reported an ex-

perimental study of superfluid light in a one-dimensional
optical mesh lattice where the arrival time of pulses plays
the role of a synthetic spatial dimension. The unique
spatio-temporal access to the field dynamics o↵ered by
our experimental set-up was instrumental to perform the
first direct measurement of the speed of sound in a fluid
of light. The conservative dynamics of our fluid of light
then allowed for a quantitative measurement of the fric-
tion force felt by a moving defect and of the consequent
heating e↵ect, providing unambiguous signature of su-
perfluidity. Taking advantage of the flexibility of the
set-up in designing di↵erent geometries, on-going work
is extending the investigation to fluids of light in lattices
with non-trivial geometrical [45] and topological prop-
erties [28, 29] in two [19] or even higher d > 3 dimen-
sions [13, 46]. In the longer run, upgraded experimental
set-ups where losses are mastered and amplifiers are no
longer needed may open exciting new avenues to the use
of optical mesh lattices as quantum simulators of complex
many-body phenomena [47, 48].

defect speed

Schreiber, A. et al. 
Phys. Rev. Lett. 104, 
050502 (2010).
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Hydrodynamic phenomena can be observed with light thanks to the analogy between quantum
gases and nonlinear optics. In this Letter, we report an experimental study of the superfluid-like
properties of light in a (1+1)-dimensional nonlinear optical mesh lattice, where the arrival time of
optical pulses plays the role of a synthetic spatial dimension. A spatially narrow defect at rest is
used to excite sound waves in the fluid of light and measure the sound speed. The critical velocity
for superfluidity is probed by looking at the threshold in the deposited energy by a moving defect,
above which the apparent superfluid behaviour breaks down. Our observations establish optical
mesh lattices as a promising platform for fluids of light.

The last decades have witnessed an impressive devel-
opment of new conceptual links between the apparently
disconnected fields of nonlinear optics and many-body
physics of quantum gases [1]. The formal analogy be-
tween the paraxial light propagation in nonlinear media
and the Gross-Pitaevskii equation of dilute Bose-Einstein
condensates was first noticed in the 1970s and immedi-
ately suggested the transfer of concepts such as super-
fluidity and quantized vortices to optical systems [2–6].
This connection was further revived with the experimen-
tal observation of Bose-Einstein condensation in exciton-
polariton gases in semiconductor microcavities [7], which
triggered a strong interest from both the theoretical and
experimental sides to address basic features of conden-
sates such as superfluidity, hydrodynamics and topolog-
ical excitations [8–10] in the new context of quantum
fluids of light. Recently, a growing e↵ort has been de-
voted to systems displaying strong inter-particle interac-
tions [1, 11, 12], in the presence of a synthetic magnetic
field for light [13] and/or in cavity-less propagating ge-
ometries [14–17].

In this work, we introduce a new platform for study-
ing fluids of light by using classical light in a so-called
optical mesh lattice. The idea is to encode one (or even
more [18, 19]) discrete synthetic spatial dimensions in
the arrival time of optical pulses that propagate along
coupled optical fiber loops [20–22]. This allows for the
application of arbitrary dynamical potentials to the fluid
of light and for the measurement of its evolution in real
time with key advantages over traditional systems. In
contrast to semiconductor microcavities [1], our system
provides great flexibility in the design of di↵erent lattice
geometries with no fabrication e↵ort and naturally o↵ers
site-resolved access to the temporal dynamics of the fluid
without the need for sophisticated ultrafast optics tools.
In contrast to bulk nonlinear systems [15–17], the nonlin-
earity stems from the power dependent propagation con-
stant of optical fibers and is thus fully controllable with
standard opto-electronic tools. Although the potential of

(c) (d) (e)

FIG. 1. (a) Optical pulses propagating in two nonlinear, cou-
pled fiber loops of slightly di↵erent lengths, are used to ex-
plore nonlinear light evolution in the (1 + 1)D lattice, shown
schematically in (b). In this mapping, the light intensity
is a function of the discrete position in the lattice, n, and
evolves with respect to the discrete time-step, m. Complet-
ing a round-trip in the short (long) loop in the real system
in (a) corresponds to travelling from northeast (northwest) to
southwest (southeast) in the e↵ective lattice in (b). Acousto-
optical modulators (AOM) and erbium doped fiber amplifiers
(EDFA) are used to compensate for losses. A phase modula-
tor (PM) in each loop allows us to induce arbitrarily designed
space- and time-dependent potentials. (c) The corresponding
photonic bands in the linear (� = 0) regime. (d)&(e) The
Bogoliubov dispersions (2) on top of a condensate located at
Q = 0 in the lower band [circle in (c)] for (d) linear and (e)
nonlinear (�I0 = 0.2) systems. The slope of the straight blue
dashed line indicates the speed of sound (3). The red/black
color of each curve indicates the positive/negative value of the
band’s Bogoliubov norm.

such optical mesh lattices for studies of linear and non-
linear optics has been demonstrated in many works on,

ar
X

iv
:2

00
8.

04
66

3v
1 

 [p
hy

si
cs

.o
pt

ic
s]

  1
1 

A
ug

 2
02

0



Summary

Topological pumping, connectivity 
and synthetic dimensions for cold 
atoms and photonics 

2

logical pumps have the drawback of being inherently lim-
ited to probing specific quasi-static solutions of the high-
dimensional system, without realising a genuine high-
dimensional lattice. Moreover, in those experiments the
second Chern number in 4D is not truly independent of
the first Chern numbers in 2D (which are nonzero).

Our 4D lattice is implemented using electric circuits
with carefully chosen capacitive and inductive connec-
tions. The lattice model has two topologically distinct
phases: a 4DQH phase and a conventional insulator,
with the choice of phase governed by a parameter m

that maps to certain combinations of capacitances and
inductances. Using impedance measurements that are
equivalent to finding the local density of states (LDOS),
we show that the 4DQH phase hosts surface states on
the 3D surface, while the conventional insulator phase
has only bulk states. Varying the driving frequency, we
show that the topological surface states span a frequency
range corresponding to a bulk bandgap, as predicted by
theory. Our experimental results also agree well with cir-
cuit simulations. This work demonstrates that electric
circuits are a flexible and practical way to realise higher-
dimensional lattices, paving the way for the exploration
of other previously-inaccessible topological phases.

4DQH model and circuit realization.— The 4D lattice
model is shown schematically in Fig. 1(a). The spatial co-
ordinates are denoted x, y, z, and w. The lattice contains
four sublattices labelled A, B, C and D, with sites con-
nected by real nearest neighbour hoppings ±J . The four
bands host two pairs of Dirac points in the Brillouin zone;
each pair is the time-reversed counterpart of the other.
To control the pairs separately, long-range hoppings with
amplitudes ±J

0 and ±J
00 are added within the x-z plane

[these long-range hoppings are omitted from Fig. 1(a) for
clarity, but are shown in Fig. 1(c)]. Upon adding mass
+m to the A and B sites, and �m to the C and D sites,
the Dirac masses for the di↵erent Dirac point pairs close
at m=J

0�2J 00 and m=J
00�2J 0. These gap closings are

topological transitions, such that, for J 00=�J
0, the sec-

ond Chern number of the lower bands is -2 (nontrivial)
if |m|<3|J 0|. Since T is unbroken, the first Chern num-
ber is always zero, so the model exhibits QH behaviour
stemming purely from the second Chern number [37].

For the experiment, we set J = 1 and J
0 = �J

00 = 2, so
that the topological transition of the bulk lattice occurs
at m = ±6. We take a finite 4D lattice with three unit
cells (6 sites) in the x and z directions, and one unit cell
(2 sites) in y and w. Periodic boundary conditions are
applied along y and w to mitigate finite-size e↵ects, and
are implemented using nearest neighbor type connections
between opposite ends of the lattice. The lattice has a
total of 144 sites, of which we consider 16 to be bulk sites
(defined as being more than 2 sites away from a surface)
and 128 to be surface sites. The fact that the surface
sites greatly outnumber the bulk sites is characteristic of
high dimensional systems.

b

FIG. 1: Model of the 4D Quantum Hall lattice and its circuit
implementation. (a) Schematic of the 4D tight-binding model.
Each unit cell consists of four sites labelled A-D. Hollow and
filled circles respectively denote positive (m) and negative
(�m) on-site masses, while yellow solid lines and blue dashes
respectively denote positive (J) and negative (�J) hoppings.
(c) Long-range hoppings of the tight-binding lattice. (b) Pho-
tographs of the circuit. (c) Schematic of the circuit; positive
(negative) masses are realised by capacitors (inductors) con-
necting the sites to ground, and hoppings are realised using
capacitors or inductors connecting di↵erent sites.

Circuit realization.— The finite 4D lattice is imple-
mented with a set of connected printed circuit boards,
shown in Fig. 1(b). Each site i of the tight-binding model
maps to a node on the circuit, and the mass term maps to
a circuit component of conductance �Dii connecting the
node to ground. Each hopping Jij between sites i and
j maps to a circuit element of conductance Dij connect-
ing the nodes. We add extra grounding components with
conductance D0

ii in parallel with �Dii. If an external AC
current Ii flows into each node i at frequency f , and Vi

is the complex AC voltage on that node, Kirchho↵’s law

Future Prospects: 
Quantum Simulation of 4D Lattices? Interactions? 
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