Causality and Autoencoders in the Light of Drug Repurposing for COVID-19

Caroline Uhler (MIT)

IST Lisbon
Drug development against COVID-19

- Given the urgency, most viable approach is drug repurposing
- Many drugs are inhibitors (bind to a protein so that it cannot perform its downstream role)
- Want to identify a drug that pushes the system back to normal state
- Available data: Drug signatures (screens with ~1000 FDA approved drugs) and their targets, disease signatures, Protein-protein interaction networks (20,000 nodes, 200,000 edges)
- How to determine drug candidates for repurposing against a particular disease?

→ Learn causal graph!
Overview - causal transport problems

Predicting the effect of an intervention:

1. Genomic interventions such as knockout experiments (few mostly known targets)

 ⇒ Theoretical and algorithmic framework for learning causal networks from observational and interventional data

2. Transport drug intervention (many unknown targets) to new cell type

 ⇒ Use inductive bias of autoencoders for synthetic interventions
Framework: Structural equation models

- Introduced by Sewell Wright in the 1920s
- Major contributions by Judea Pearl, Jamie Robins, Don Rubin, Peter Spirtes since 1970s
- Represent causal relationships by a directed acyclic graph (DAG)
- Each node is associated with a random variable; stochasticity is introduced by independent noise variables ϵ_i

\[
\begin{align*}
X_1 &\leftarrow f_1(X_3, \epsilon_1) \\
X_2 &\leftarrow f_2(X_1, \epsilon_2) \\
X_3 &\leftarrow f_3(\epsilon_3) \\
X_4 &\leftarrow f_4(X_2, X_3, \epsilon_4)
\end{align*}
\]
Framework: Structural equation models

- Introduced by Sewell Wright in the 1920s
- Major contributions by Judea Pearl, Jamie Robins, Don Rubin, Peter Spirtes since 1970s
- Represent causal relationships by a directed acyclic graph (DAG)
- Each node is associated with a random variable; stochasticity is introduced by independent noise variables ϵ_i

$$
\begin{align*}
X_1 &\leftarrow f_1(X_3, \epsilon_1) \\
X_2 &\leftarrow f_2(X_1, \epsilon_2) \\
X_3 &\leftarrow f_3(\epsilon_3) \\
X_4 &\leftarrow f_4(X_2, X_3, \epsilon_4)
\end{align*}
$$

- Structural equation model also defines *interventional distribution*:
 - **Intervention** on X_2: $\text{do}(X_2 = c)$
 - $p(X_3 \mid \text{do}(X_4 = c)) = p(x_3) \neq p(x_3 \mid x_4)$, but $p(X_4 \mid \text{do}(X_3 = c)) = p(x_4 \mid x_3) \neq p(x_4)$
From causal graphs to independence relations

- Missing edge \((i, j)\) encodes \textit{conditional independence (CI) relation}:

\[
X_i \perp X_j \mid X_{\text{ancestors}(i,j) \setminus \{i,j\}}
\]

- \textbf{Markov equivalence}: different causal graphs can encode same CI relations and are generally indistinguishable from observational data

\(\xRightarrow{\text{Skeleton and immoralities (i\rightarrow j\leftarrow k) are identifiable}}\)

Verma & Pearl, 1992

\(\xRightarrow{\text{Interventional Markov equivalence classes have been characterized}}\)

Hauser & Buehlmann, JMLR 2012
Yang, Katcoff & Uhler, ICML 2018
Permutation-based search

GES: Greedy search over Markov equivalence classes: [Chickering, 2012]

- Large search space
- No consistency guarantees in the presence of interventional data
Permutation-based search

GES: Greedy search over Markov equivalence classes: [Chickering, 2012]

- Large search space
- No consistency guarantees in the presence of interventional data

Idea: DAG defined by ordering of vertices (permutation) and skeleton

- For \(p = 10 \) search space is of size \(10! = 3,628,800 \) versus \(10^{18} \)
- For each permutation \(\pi \) construct a DAG \(G_{\pi} = (V, E_{\pi}) \) by

\[
(i, j) \in E_{\pi} \iff X_i \not\perp\!\!\!\perp X_j \mid X_{\text{ancestors}_{\pi}(i,j) \setminus \{i,j\}}
\]

Theorem (Uhler \& Raskutti, Stat 2018)

Under weak conditions any sparsest DAG \(G_{\pi} \) is Markov equivalent to the true DAG (as sample size \(n \to \infty \)).
Greedy sparsest permutation (GSP) algorithm

edges in polytope of permutations (i.e., permutohedron) connect neighboring transpositions, e.g.
\((3, 1, 4, 2) \rightarrow (3, 4, 1, 2)\)

Theorem (Solus, Wang & U., 2018)

Greedy sparsest permutation (GSP) algorithm is consistent (as sample size \(n \rightarrow \infty\)), i.e., every local minimum is a global minimum.
 Greedy sparsest permutation (GSP) algorithm

- Our Python package https://github.com/uhlerlab/causaldag has code for all methods, pre-processed perturb-seq data, etc.

![Graph showing expected neighborhood size vs. proportion of simulations for various methods.

![Graph showing computation time (secs) vs. number of variables.

[Solus, Wang & Uhler, 2018]

Learning from interventions and with latent variables

- **GIES**: perfect intervention adaptation of greedy search on space of Markov equivalence classes
 - In general not consistent
 - [Hauser & Bühlmann, 2012]

- **IGSP**: interventional adaptation of GSP: provably consistent algorithm that can deal with interventional data
 - for hard interventions
 - [Wang-Solus-Yang-Uhler, NIPS 2017]
 - for soft interventions
 - [Yang-Katcoff-Uhler, ICML 2018]
 - for unknown intervention targets
 - [Squires-Wang-Uhler, UAI 2020]

- **GSPo**: greedy search over posets to deal with latent confounders
 - sparsest poset is consistent
 - [Bernstein-Saeed-Squires-Uhler, AISTATS 2020]
 - no consistency proof of greedy search yet
Predicting the effect of an intervention:

1. Genomic interventions such as knockout experiments (few mostly known targets)

 ⇒ Theoretical and algorithmic framework for learning causal networks from observational and interventional data

2. Transport drug intervention (many unknown targets) to new cell type

 ⇒ Use inductive bias of autoencoders for synthetic interventions
Style transfer and transporting causal effects

Latent space arithmetics for style transfer using autoencoders / GANs:

Lotfollahi, Wolf & Theis, Nature Methods 2020

Is this a general phenomenon? How does this fit in with work by Bareinboim, Pearl and co-authors on necessary and sufficient conditions for causal transportability?
Predicting the effect of a drug on a different cell type

- CMap: 1.2mio samples (1000-dim expression vectors), 1000s of perturbations (knockouts, overexpression, small molecules including ~800 FDA-approved drugs)
Overparameterized autoencoders align drug signatures

Correlation between drug signatures of A549 and MCF7 cells

Reconstruction accuracy

Under-parameterized autoencoder

Over-parameterized autoencoder

Ok reconstruction

Good reconstruction

Bad reconstruction

Inductive bias of over-parameterized autoencoders

- Given training examples $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^k$, $n < k$, autoencoders are typically trained using gradient descent initialized ≈ 0 to solve
 \[
 \arg \min_{\psi \in \Psi} \sum_{i=1}^{n} \|\psi(x^{(i)}) - x^{(i)}\|_2^2
 \]

- Over-parameterized linear setting: solutions range from the identity map to the projection onto $\text{span}(x^{(1)}, \ldots, x^{(n)})$
Given training examples $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^k$, $n < k$, autoencoders are typically trained using gradient descent initialized ≈ 0 to solve

$$\arg \min_{\psi \in \Psi} \sum_{i=1}^{n} \|\psi(x^{(i)}) - x^{(i)}\|^2_2$$

Over-parameterized linear setting: solutions range from the identity map to the projection onto $\text{span}(x^{(1)}, \ldots, x^{(n)})$

In the extreme case of $n=1$ the training example is memorized
Inductive bias of over-parameterized autoencoders

- Over-parameterized autoencoders have many ways to interpolate training data

- View autoencoder as discrete dynamical system: \(x_{t+1} = f(x_t) \)

- We proved that standard over-parameterized autoencoders (without additional regularizers) are self-regularizing: they learn maps, where training examples are attractive fixed points!

[Radhakrishnan, Belkin & Uhler, PNAS 2020]
Correlating disease and drug signatures

Correlate disease and drug signatures to obtain list of drug candidates

RNA-seq data from: Blanco-Melo et al., Cell, 2020
Validating drug targets using a causal analysis

- RIPK1 has most downstream differentially expressed genes based on inferred (from single-cell RNA-seq data) causal graph in A549 cells and also in AT2 cells.
- While role of other targets is similar, RIPK1 becomes peripheral in causal graph without taking ageing into account.
Role of RIPK1 linking SARS-CoV-2 replication & ageing?

Activation of NF-κB, immune response, & survival pathways

Apoptosis, necroptosis; fibrosis & blood clotting

Conclusions

- **Transporting between interventions:** Developed a theoretical and algorithmic framework for integrating observational and interventional data for causal inference.

- **Transporting intervention effects between populations:** Over-parameterized autoencoders show implicit bias that may be of great interest for causal transportability.

- **A principled causal framework is critical for drug discovery**

 Belyaeva, Cammarata, Radhakrishnan, Squires, Yang, Shivashankar & Uhler, Nature Communications (in press)
Acknowledgments

PhD students:
• Raj Agrawal
• Anastasiya Belyaeva
• Louis Cammarata
• Saachi Jain
• Adityanarayanan Radhakrishnan
• Chandler Squires
• Karren Yang
• Jiaqi Zhang

MSc/undergraduate students
• Josh Amaniampong
• Sathwik Karnik
• Eshaan Nichani
• Neha Prasad
• George Stefanakis
• Annie Yun

Postdocs:
• Daniel Bernstein
• Jan-Christian Huetter
• Neriman Tokcan

Collaborators:
• Mikhail Belkin
• G.V. Shivashankar

Funding: