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In this talk, | consider a
resummation problem of a two-
parameter expansion

F(ga Q) — Z fn,dgnQd

d,n=1
This kind of expansions typically
appears in string theory or In
gauge theories

See e.g. Couso-Santamaria’s talk
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F(ga Q) — Z fn,dgnQd

d,n=1
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Z F.(Q)g" Z Fa(9)Q*

n—=—1 d=1
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Different Results
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® This Is of course because these two
INfinite sums are non-commutative, In
general

® | show It In a few examples

® |t turns out that interesting
“nonperturbative” corrections appear

® T hese “nonperturbative” corrections
look different from those appearing In
usual transseries expansions



Plan of the Talk

1. A Simple Example: the Faddeev
Quantum Dilogarithm

2. Exact Quantization Conditions
for the Relativistic Toda Lattice

Apology: In my talk, no resurgent analysis
appears, but such an analysis would be important

for deeper understanding in the future
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1. A Simple Example:

the Faddeev Quantum Dilogarithm



Faddeev Quantum Dilogarithm

® Definition Faddeev '94

By (2) / ds g 2182
z) 1= ex
Tk P| Jisic s 4sinh(bs)sinh(b—1s)

® This function often appears in theoretical
physics (2d CFTs, supersymmetric gauge
theories, topological string theory, etc)

e |t has two parameters b and z

e There is an obvious symmetry under b — b1
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“Semiclassical” Expansion

® In the limit b — 0, the quantum dilog has the
following expansion

i log By (2) = —722 _; (b2 + b—2)

> (—1)"Ban(1/2) |

(Zn)' le_zn(_e—Zﬂ'bz)(zwb2)2n—1

® In the following, | slightly change the
notation by

h = 27Tb2, Q = et = g27bz
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2 2
F(hQ) = —ilog By(2) = — + — (h e )+f(h,cz)

2h 24
fF(hQ) =) (_1)72232;(1/ ) Lia_an(~Qyn2n?

® |In the classical limit, 1t reduces to the
standard dilogarithm

® One-parameter deformation of the
dilogarithm — Quantum dilogarithm

® In this notation, the symmetry structure
IS translated Into

(h,t) — (5 T) = (

472 27t
h 'k
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e After expanding the polylogarithm, we
finally obtain the two-parameter expansion

— 1)n-l-de
n=0

_1 — — ( n(]‘/z) 2n—2r2n d ‘
f(h, Q) = thdS:jl 2! d*"2R2"Q |

e In the following, | want to discuss two
resummations in this expansion

® | assume h > 0and t > 0, for simplicity
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Resummation in hbar

® | et us first consider the resummation of
the semiclassical expansion

— (=1)"B2,(1/2) _.

f(hQ)= ) Gy Liz—an (—Q)EFT

n=0

® This sum turns out to be a divergent series

2(2n)!
(27)2n

Ban (1/2) ~ (2172 — 1)(—1)"H!

1 1

Liz_2n(—Q) ~ (2n — 2)! (t + wi)2n—1 : (t — mwi)2n—1
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Borel Sum

® [he standard way to resum a factorially
divergent series iIs the Borel sum

® | et us review It briefly

® Consider the following formal divergent
series

h(z) = Z h,z", h, ~ n!
n=0
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® Borel transform

O

hy .
Blh](¢) = » WC Convergent series!

n=0

® Borel sum

O

S[h](z) = / d¢ e~ S Bh](C2)

0

® The Borel sum gives a meaning to formal
divergent series

® | do not discuss Borel summability here
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® Roughly, this can be viewed as

O hn
h(z) = Z n! . —'z'"’
— n!

n! = /Ooo d¢e (™

® [ his idea of resummations can be used for
more complicated situations
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® In our case, It Is not easy to compute the
Borel transform analytically

® There is a smart way to do an exact
resummation

® Here we use an integral representation of
the Bernoulli polynomial

oo mZn—l

B>,(1/2) = (—1)™ 4n/ dx (n > 1)

0 6271':1: 1 —

® Plug this representation into the asymptotic
expansion, and exchange the sum and the
Integral
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Results

® The fianl result takes a simple form

1+ Qe "
1+ Qe"®

1 oo 1
f (h, Q) = p Li> (—Q) —I—/O d:zzezm3 1 log (

® [ he result recovers the S-dual Invariance!
This Invariance 1s not manifest in the above
representation

fresum(h, Q) _ fresum (%, é)

~ 471'2 ~
h=—, Q —=c¢e

h

—27t/h
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e It turns out that this resummation
reproduces the original exact answer (but |
have no proofs)

tz 1 47T2 resuin
| (hl h>+f (s Q)

./ ds e—2ist
= —i
Riie S 4sinh(27s) sinh(As)
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Another Resummation

® One can first do the sum 1n hbar

f(h, Q)

|
]38
0
e
=
f
QO
o}

® This result is, however, problematic
because each coefficient diverges at some
particular values of hbar
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What 1s happening in this way?
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Resolution

® There is an additional contribution

dS e—2ist

F(h, Q) = —i/

R+ie S 4sinh(27ws) sinh(hs)

/.. -

Two kinds of poles

l

t? 472
2h h .. e

~ -
......
-------

> ( 1)d >, (=1)¢ 2rd
Z 2d e _I_ Z . 2m2d € " t
i sln - 2 =1 2d sin -
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Remarks

® This result iIs manifestly invariant under
the S-dual transform

Q)= ) - th+2 =) —Q°

d—1 2dSln —1 ZdSIIl 2

N

symmetric

® [he naive sum In hbar leads to only the
former part

® [he latter must be added to reproduce the
exact result
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® [ he latter contribution Is nonperturbative

IN hbar
—~ 27t

Q=eF
® The coefficients in the nonperturbative

part admit expansions in 1/hbar rather than
In hbar unlike transseries

® [he poles Iin the perturbative part are

precisely cancelled by those In the
nonperturbative part
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Summary So Far

f(h, Q) = % > >

© (=1)"Byn(1/2) _ . - = (-1*
2 (2n)! Liz—2n(=Q)R d;l 2d sin & ¢

n=0
¢
2

" Lia( Q)+/ood L o [LEQT)
h 12 0 we27'ra:_|_]_ 05 ]__l_tha:

’ - dh
\ R d—1 2dsin =

Exact Result
23




Summary So Far

The latter resummation Is
Insufficient to reproduce the
exact result, but this kind of

resums often appears in

(topological) string theory
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2. Exact Quantization Conditions

for the Relativistic Toda Lattice



Relativistic Toda Lattice

Ruijsenaars '90

® A generalization of the Toda lattice
e It iIs still integrable

® |In the “non-relativistic” limit, 1t reduces to
the standard Toda lattice
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Hamiltonian

N
H, — Z (1 4 q—1/2R2emn—a3n_|_1> 7
n—=—1

[wnv pm] — ihénm q = eiRh

LN+1 — L1

R—0
Toda lattice

N
n=1

N 2

_I_RZZ (pn | ewn—wn_|_1> —|—O(R3)

2

n=1
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Commuting Hamiltonians
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Eigenvalue Problem

® T he eigenvalue problem
Hk\Ij(ajlv I wN) — Ek\Ij(wlv I wN)

® In the non-relativistic case, this eigenvalue
problem was solved by Gutzwiller in 1980

® Nekrasov and Shatashvili proposed another
solution in the gauge theory language

® [ hese two results turned out to be
completely equivalent Kozlowski & Teschner '10
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Here | want to show that
topological string theory can
be used to solve the
eigenvalue problem for the
relativistic Toda lattice
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The Simplest Case

® For simplicity, | show the result for N=2

® In the center of mass frame, the (first)
Hamiltonian is reduced to

H =eltP 4 =P 4 R*(e® 4+ e ™) @, p| = ih

® Then, the eigenvalue problem leads to the
following difference equation

| ¢(x +iRh) + 9 (x — iR) + R*(e” + e *)y(z) = Eyp(x) |

31



Remarks

® In the non-relativistic limit, this difference
egquation reduces to the Schrodinger
equation with cosh potential

® By requiring the square integrability, the
Hamiltonian has an infinite number of
discrete eigenvalues

® Our goal iIs to find out an equation to
determine these eigenvalues exactly
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BS Quantization Condition

® [he standard way to get approximated
eigenvalues iIs the Bohr-Sommerfeld

gquantization condition | _—-—

72 dz p(z) = 27 (n n %)

eRp _I_e—Rp 4 RZ(em _I_e—a;) — B 4L J

® This is a good approximation for h — 0 or

n — oo
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Relation to Calabi-Yau Geometry

® [he spectral curve of the relativistic Toda
lattice Is viewed as an algebraic curve that
describes certain (mirror) Calabi-Yau
threefold

e’ L e P L R*(e® + e *)=E

/

Mirror curve corresponding to
local Hirzebruch surface Iy
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® One can rewrite the BS quantization
condition by the topological string free
energy (I set R=1 below)

t:jl{ dx p(x) ~—, — a4
A B
(’9F0 t : Kahler modulus
- = wp(w) | .

Fo : Prepotential

® The latter is nothing but the LHS In the BS
condition

® [he former relates t to E
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Quantum Corrections

® The BS quantization condition is the first
approximation in the semiclassical limit

® Dunham proposed a systematic way to
compute the quantum correction to the BS
condition Dunham "32

P () = exp %/ dm'P(m';h)_

P(x;h) = Po(x) + hPi(x) + - --

7{ dx P(x;h) = 2whn
B
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NS Quantization Condition

® Nekrasov and Shatashvili proposed a smart

way to resum the quantum correction
Nekrasov & Shatashvili ’09

O F; 1

ot

® The NS free energy Is a one-parameter
deformation of the prepotential (or the
genus zero free energy)
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NS Free Energy

® The NS free energy Is obtained by the
special limit of the refined topological string
free energy
Fns(t; h) == Qim €1€2Frer(l; €1, €2)|e,=n
® This is explicitly given by

t3 (h 27

37 = )t+F&“§t<t; h)

Fivs (85 7)) = 6 ' 3h

- h . e h .
Z iqu’C.iz sin 7’“’(231, + 1) sin Tw(2]R -+ 1)e—w(d1-|—d2)t
w2 JLIR + 3 hw

FinSt t.h —
s = e

JL,JrR w,di,d2 \ 2
Integers
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Problem

® As In the quantum dilog, this expression is

problematic
ins At “sin —(ZJL + 1) sin ¥ (23R _|_ 1) \ o (dtd
FNSt(t h) — Z Z JL J 5w - , (d1+d2)t

/

This factor has an infinite number of poles

® Therefore we cannot use the NS
guantization condition for some particular
values of hbar even though the eigenvalue
problem itself is well-defined for any hbar
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Resolution

® [he resolution to this problem is almost
same as the case of the quantum dilog

® [here is a “nonperturbative” correction to
the NS free enerqgy

® [ his was first remarked by Kallen and
Marino, and then a prescription to compute
the complete correction was conjectured
by Grassi, Marino and myself

Kallen & Marino ’13; Grassi, YH & Marino '14
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Exact Quantization Condition

® [he final result iIs remarkably beautiful
Grassi, YH & Marino '14; Wang, Zhang & Huang '15

¢ _1 (h' 4“2> | é)1!7‘i“*°’t(t h)
6  m ) et NS V7

0 1
—|— Fll\TnSSt(t h) — 27 (n -+ >

- 27t ~ 4702
t=—, h=—
h h

ae(h)
Eze

t—% dx P(x; )—ZlogE—I—Z
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Remarks

® [he exact quantization condition Is
symmetric in (t, h) and (t, h)

® By the S-transform, the perturbative part
and the nonperturbative part are exchanged

® [hese properties are completely the same
as those In the Faddeev qguantum
dilogarithm

® [hough we have no rigorous proof for the
exact quantization condition, we have a lot

of numerical evidence
42



More on S-duality

® The S-dual transform implicitly relates the
spectra for h and 5

~

— o~ o~ 2 ~
HE, ) = %t(E, i) —> E = E(E,h)

® In fact, there are simple algebraic relations
If g Is a root of unity YH, Katsura & Tachikawa '16

Relation between /i = 27/n and i = 27n
E=E?—4
E = E(E? —6)

E = (E%? +2E — 2)(E% — 2E — 2)

E = E(E* — 10E?  35-0v5)
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® Recently, the branch cut structure of the
guantum Kahler modulus t was identified
with Hofstadter’s butterfly, well-known In a

2d electron system with a uniform magnetic
flux YH, Katsura & Tachikawa ’16
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Generalization

® Marino and | generalized this result to the

relativistic Toda with arbitrary N
YH & Marino '15

® The corresponding Calabi-Yau geometry iIs

much more complicated (but known)
Igbal & Kashani-Poor '03; Taki '07

® The exact guantization conditions take the
universal form

® This result was further generalized to the
Goncharov-Kenyon integrable systems (or

cluster integrable systems)
Franco, YH & Marino '15
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Summary

® In 2-parameter expansions, resummation
problems have a rich structure

® | reviewed some conseqgquences of the
different resummations

® Sometimes, “S-dual nonperturbative”
corrections appear

® Some guantum integrable systems are
solved by using Calabi-Yau geometries
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Interesting Directions

® Rigorous derivation of the exact
guantization conditions

® Complexify the parameters X, E or hbar

® Construct the eigenfunctions — open string
sector Marino & Zakany '16

® A nice appraoch for these purposes iIs the
exact WKB analysis

See Takerl’'s and Kashani-Poor’s talks

® [he resurgent analysis iIs also important
See Couso-Santamaria’s talk
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Thank you



