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In this talk, I consider a 
resummation problem of a two-

parameter expansion
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This kind of expansions typically 
appears in string theory or in 

gauge theories

F (g,Q) =
1X

d,n=1

fn,d gnQd

See e.g. Couso-Santamaria’s talk



3

F (g,Q) =
1X

d,n=1

fn,d gnQd

Different Results

Main Massage

1X

d=1

eFd(g)Q
d

1X

n=1

Fn(Q)gn



• This is of course because these two 
infinite sums are non-commutative, in 
general

• I show it in a few examples

• It turns out that interesting 
“nonperturbative” corrections appear

• These “nonperturbative” corrections 
look different from those appearing in 
usual transseries expansions
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1. A Simple Example: the Faddeev 
Quantum Dilogarithm

2. Exact Quantization Conditions 
for the Relativistic Toda Lattice

Plan of the Talk
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Apology: In my talk, no resurgent analysis 
appears, but such an analysis would be important 
for deeper understanding in the future



1. A Simple Example:
   the Faddeev Quantum Dilogarithm 



• Definition

• This function often appears in theoretical 
physics (2d CFTs, supersymmetric gauge 
theories, topological string theory, etc)

• It has two parameters    and

• There is an obvious symmetry under

Faddeev Quantum Dilogarithm

7

�b(z) := exp

Z

R+i✏

ds

s

e

�2isz

4 sinh(bs) sinh(b�1s)

�

b ! b�1

b z

Faddeev ’94



• In the limit          , the quantum dilog has the 
following expansion

• In the following, I slightly change the 
notation by

“Semiclassical” Expansion
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b ! 0

i log�b(z) = �⇡z2 �
⇡

12

(b2 + b�2
)

�
1X

n=0

(�1)nB2n(1/2)

(2n)!
Li2�2n(�e�2⇡bz)(2⇡b2)2n�1

~ = 2⇡b2, Q = e�t = e�2⇡bz



• In the classical limit, it reduces to the 
standard dilogarithm

• One-parameter deformation of the 
dilogarithm → Quantum dilogarithm

• In this notation, the symmetry structure 
is translated into
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(~, t) 7! (e~, et) =

✓
4⇡2

~
,
2⇡t

~

◆

F (~, Q) = �i log�b(z) =

t2

2~
+

1

24

✓
~ +

4⇡2

~

◆
+ f(~, Q)

f(~, Q) =
1X

n=0

(�1)nB2n(1/2)

(2n)!
Li2�2n(�Q)~2n�1

S-dual transform
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• After expanding the polylogarithm, we 
finally obtain the two-parameter expansion

• In the following, I want to discuss two 
resummations in this expansion

• I assume          and         , for simplicity 

f(~, Q) =
1

~

1X

n=0

1X

d=1

(�1)n+dB2n(1/2)

(2n)!
d2n�2~2nQd

~ > 0 t > 0



Resummation in hbar
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• Let us first consider the resummation of 
the semiclassical expansion

• This sum turns out to be a divergent series

f(~, Q) =
1X

n=0

(�1)nB2n(1/2)

(2n)!
Li2�2n(�Q)~2n�1

B2n (1/2) ⇠ (21�2n � 1)(�1)n+1 2(2n)!

(2⇡)2n

Li2�2n(�Q) ⇠ (2n � 2)!


1

(t + ⇡i)2n�1
+

1

(t � ⇡i)2n�1

�



• The standard way to resum a factorially 
divergent series is the Borel sum

• Let us review it briefly

• Consider the following formal divergent 
series

Borel Sum
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h(z) =
1X

n=0

hnz
n, hn ⇠ n!



• Borel transform

• Borel sum

• The Borel sum gives a meaning to formal  
divergent series

• I do not discuss Borel summability here 
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B[h](⇣) =
1X

n=0

hn

n!
⇣n Convergent series!

S[h](z) =

Z 1

0
d⇣ e�⇣B[h](⇣z)



• Roughly, this can be viewed as

• This idea of resummations can be used for 
more complicated situations
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h(z) =
1X

n=0

n! ·
hn

n!
zn

n! =

Z 1

0
d⇣ e�⇣⇣n



• In our case, it is not easy to compute the 
Borel transform analytically

• There is a smart way to do an exact 
resummation

• Here we use an integral representation of 
the Bernoulli polynomial

• Plug this representation into the asymptotic 
expansion, and exchange the sum and the 
integral
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B2n(1/2) = (�1)n 4n

Z 1

0
dx

x

2n�1

e2⇡x + 1
(n � 1)



• The fianl result takes a simple form

• The result recovers the S-dual invariance! 
This invariance is not manifest in the above 
representation
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f

resum
(~, Q) =

1

~
Li2(�Q) +

Z 1

0
dx

1

e

2⇡x

+ 1

log

 
1 + Qe

�~x

1 + Qe

~x

!

Results

fresum(~, Q) = fresum(e~, eQ)

e~ =
4⇡2

~
, eQ = e�2⇡t/~



• It turns out that this resummation 
reproduces the original exact answer (but I 
have no proofs)
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t2

2~
+

1

24

✓
~ +

4⇡2

~

◆
+ fresum(~, Q)

= �i

Z

R+i✏

ds

s

e�2ist

4 sinh(2⇡s) sinh(~s)



Another Resummation
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• One can first do the sum in hbar

• This result is, however, problematic 
because each coefficient diverges at some 
particular values of hbar

f(~, Q) =
1

~

1X

n=0

1X

d=1

(�1)n+dB2n(1/2)

(2n)!
d2n�2~2nQd

=
1X

d=1

(�1)d

2d sin d~
2

Qd



What is happening in this way?
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Resolution
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• There is an additional contribution

F (~, Q) = �i

Z

R+i✏

ds

s

e�2ist

4 sinh(2⇡s) sinh(~s)

Two kinds of poles

=
t2

2~
+

1

24

✓
~ +

4⇡2

~

◆

+
1X

d=1

(�1)d

2d sin 2⇡2d
~

e�
2⇡dt

~+
1X

d=1

(�1)d

2d sin d~
2

e�dt



Remarks
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• This result is manifestly invariant under 
the S-dual transform

• The naive sum in hbar leads to only the 
former part

• The latter must be added to reproduce the 
exact result

f(~, Q) =
1X

d=1

(�1)d

2d sin d~
2

Qd +
1X

d=1

(�1)d

2d sin de~
2

eQd

symmetric
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• The latter contribution is nonperturbative 
in hbar

• The coefficients in the nonperturbative 
part admit expansions in 1/hbar rather than 
in hbar unlike transseries

• The poles in the perturbative part are 
precisely cancelled by those in the 
nonperturbative part 

eQ = e�
2⇡t
~



Summary So Far
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f(~, Q) =
1

~

1X

n=0

1X

d=1

(�1)n+dB2n(1/2)

(2n)!
d2n�2~2nQd

1X

n=0

(�1)nB2n(1/2)

(2n)!
Li2�2n(�Q)~2n�1

1X

d=1

(�1)d

2d sin d~
2

Qd

1

~
Li2(�Q) +

Z 1

0
dx

1

e

2⇡x

+ 1

log

 
1 + Qe

�~x

1 + Qe

~x

!

Exact Result

+
1X

d=1

(�1)d

2d sin de~
2

eQd



Summary So Far
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The latter resummation is 
insufficient to reproduce the 
exact result, but this kind of 

resums often appears in 
(topological) string theory



2. Exact Quantization Conditions
   for the Relativistic Toda Lattice



• A generalization of the Toda lattice

• It is still integrable

• In the “non-relativistic” limit, it reduces to 
the standard Toda lattice

Relativistic Toda Lattice
Ruijsenaars ’90

26



Hamiltonian
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H1 = N + R
NX

n=1

pn

+R2
NX

n=1

✓
p2
n

2
+ exn�xn+1

◆
+ O(R3)

H1 =
NX

n=1

⇣
1 + q�1/2R2exn�xn+1

⌘
eRpn

[xn, pm] = i~�nm q = eiR~

Toda lattice
R ! 0

xN+1 = x1



Commuting Hamiltonians

HN = exp

 
NX

n=1

pn

!

...
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[Hn,Hm] = 0

H1 =
NX

n=1

⇣
1 + q�1/2R2exn�xn+1

⌘
eRpn

H
N�1 =

NX

n=1

⇣
1 + q�1/2R2exn�1�xn

⌘
e�Rpn



• The eigenvalue problem

• In the non-relativistic case, this eigenvalue 
problem was solved by Gutzwiller in 1980

• Nekrasov and Shatashvili proposed another 
solution in the gauge theory language

• These two results turned out to be 
completely equivalent

Eigenvalue Problem
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Hk (x1, . . . , xN) = Ek (x1, . . . , xN)

Kozlowski & Teschner ’10



Here I want to show that 
topological string theory can 

be used to solve the 
eigenvalue problem for the 

relativistic Toda lattice

30



The Simplest Case
• For simplicity, I show the result for N=2

• In the center of mass frame, the (first) 
Hamiltonian is reduced to

• Then, the eigenvalue problem leads to the 
following difference equation
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H = eRp + e�Rp + R2(ex + e�x) [x, p] = i~

 (x + iR~) +  (x � iR~) + R

2(ex + e�x) (x) = E (x)



Remarks
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• In the non-relativistic limit, this difference 
equation reduces to the Schrödinger 
equation with cosh potential

• By requiring the square integrability, the 
Hamiltonian has an infinite number of 
discrete eigenvalues

• Our goal is to find out an equation to 
determine these eigenvalues exactly



• The standard way to get approximated 
eigenvalues is the Bohr-Sommerfeld 
quantization condition

• This is a good approximation for           or

BS Quantization Condition
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I

B
dx p(x) = 2⇡~

✓
n +

1

2

◆

-4 -2 0 2 4

-4

-2

0

2

4

~ ! 0

n ! 1

eRp + e�Rp + R2(ex + e�x) = E



• The spectral curve of the relativistic Toda 
lattice is viewed as an algebraic curve that 
describes certain (mirror) Calabi-Yau 
threefold

Relation to Calabi-Yau Geometry
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eRp + e�Rp + R2(ex + e�x) = E

Mirror curve corresponding to 
local Hirzebruch surface F0



• One can rewrite the BS quantization 
condition by the topological string free 
energy (I set R=1 below)

• The latter is nothing but the LHS in the BS 
condition

• The former relates t to E
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@F0

@t

=

I

B
dx p(x)

t =

I

A
dx p(x)
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t : Kähler modulus



• The BS quantization condition is the first 
approximation in the semiclassical limit

• Dunham proposed a systematic way to 
compute the quantum correction to the BS 
condition

Quantum Corrections

36

 (x) = exp


i

~

Z
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• Nekrasov and Shatashvili proposed a smart 
way to resum the quantum correction

• The NS free energy is a one-parameter 
deformation of the prepotential (or the 
genus zero free energy)

NS Quantization Condition
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• The NS free energy is obtained by the 
special limit of the refined topological string 
free energy

• This is explicitly given by 

NS Free Energy
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• As in the quantum dilog, this expression is 
problematic

• Therefore we cannot use the NS 
quantization condition for some particular 
values of hbar even though the eigenvalue 
problem itself is well-defined for any hbar

Problem
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• The resolution to this problem is almost 
same as the case of the quantum dilog

• There is a “nonperturbative” correction to 
the NS free energy

• This was first remarked by Kallen and 
Marino, and then a prescription to compute 
the complete correction was conjectured 
by Grassi, Marino and myself 

Resolution
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• The final result is remarkably beautiful

Exact Quantization Condition

41

t2

~
�

1

6

✓
~ +

4⇡2

~

◆
+

@

@t
F inst
NS (t; ~)

+
@

@et
F inst
NS (et; e~) = 2⇡

✓
n +

1

2

◆

et =
2⇡t

~
, e~ =

4⇡2

~

t =

I

A
dxP (x; ~) = 2 logE +

1X

`=1

a`(~)
E

2`

Grassi, YH & Marino ’14; Wang, Zhang & Huang ’15



• The exact quantization condition is 
symmetric in         and 

• By the S-transform, the perturbative part 
and the nonperturbative part are exchanged

• These properties are completely the same 
as those in the Faddeev quantum 
dilogarithm

• Though we have no rigorous proof for the 
exact quantization condition, we have a lot 
of numerical evidence

Remarks
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• The S-dual transform implicitly relates the 
spectra for    and

• In fact, there are simple algebraic relations 
if q is a root of unity  

More on S-duality
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~ e~

et( eE, e~) =
2⇡

~
t(E, ~) eE = eE(E, ~)

Table 1. The exact relations of the eigenvalues for ~ = 2⇡/n and e~ = 2⇡n in the N = 2 relativistic
Toda. We set R = 1.

n Relation

1 eE = E
2 eE = E2 � 4

3 eE = E(E2 � 6)

4 eE = (E2 + 2E � 2)(E2 � 2E � 2)

5 eE = E(E4 � 10E2 + 35�5
p
5

2 )

6 eE = (E3 + 2E2 � 4E � 2)(E3 � 2E2 � 4E + 2)

Table 2. The exact relations of the eigenvalues for ~ = 2⇡/n and e~ = 2⇡n in the N = 2 relativistic
Toda. We set R = 1.

n Relation between ~ = 2⇡/n and e~ = 2⇡n

2 eE = E2 � 4

3 eE = E(E2 � 6)

4 eE = (E2 + 2E � 2)(E2 � 2E � 2)

5 eE = E(E4 � 10E2 + 35�5
p
5

2 )

In general, the relation for the spectrum is much more complicated, compared to the

relation for the flat coordinate.

If ~ takes the form 2⇡m/n, where m and n (0 < m < n) are coprime intergers, then

one can represent Q(µ + 2⇡mi) + Q(µ � 2⇡mi) in two di↵erent ways, and these lead to a

relation between E and eE . Let us consider (m,n) = (2, 3) (~ = 4⇡/3) for example. In this

case, we can represent Q(µ + 4⇡i) + Q(µ � 4⇡i) by using two Baxter equations, and the

consistency condition leads to

eE2 � 2� 2R6 = E(E2 � 3� 3R4), ~ =
4⇡

3
, e~ = 3⇡. (1.34)

In the similar way, one can find various relations. For ~ = 2⇡/n (1  n  6) with R = 1,

we summarize the relations in Table 2. These relations should be checked by the direct

diagonalization of the Hamiltonian (1.11).

It turns out that the relations here are closely related to the computation appearing in

[5]. I found that if ~ = 2⇡m/n with coprime m and n (and R = 1), the algebraic relation

is simply given by

P
n/m

(eE) = P
m/n

(E), (1.35)

where P
m/n

(E) is a polynomial with degree n. It is explicitly given by

P
m/n

(E) := Tr[A
n

(m/n)A
n�1(m/n) · · ·A1(m/n)] + 2. (1.36)

– 5 –

YH, Katsura & Tachikawa ’16



• Recently, the branch cut structure of the 
quantum Kähler modulus t was identified 
with Hofstadter’s butterfly, well-known in a 
2d electron system with a uniform magnetic 
flux

~

YH, Katsura & Tachikawa ’16

0 π
2

π 3π
2

2π
-4

-2

0

2

4

Flux

En
er
gy

E
ne

rg
y



• Marino and I generalized this result to the 
relativistic Toda with arbitrary N

• The corresponding Calabi-Yau geometry is 
much more complicated (but known)

• The exact quantization conditions take the 
universal form

• This result was further generalized to the 
Goncharov-Kenyon integrable systems (or 
cluster integrable systems)

Generalization

45

YH & Marino ’15

Franco, YH & Marino ’15

Iqbal & Kashani-Poor ’03; Taki ’07



• In 2-parameter expansions, resummation 
problems have a rich structure

• I reviewed some consequences of the 
different resummations

• Sometimes, “S-dual nonperturbative” 
corrections appear

• Some quantum integrable systems are 
solved by using Calabi-Yau geometries 

Summary

46



• Rigorous derivation of the exact 
quantization conditions

• Complexify the parameters x, E or hbar

• Construct the eigenfunctions → open string 
sector

• A nice appraoch for these purposes is the 
exact WKB analysis

• The resurgent analysis is also important

Interesting Directions

47

Marino & Zakany ’16

See Takei’s and Kashani-Poor’s talks

See Couso-Santamaria’s talk



Thank you


