

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

Conclusion

Predator-prey reaction-diffusion systems with application to population dynamics

Renata Gomes Amado

Winter School in Mathematics 2021

Instituto Superior Técnico February 26, 2021

The model Existence of solution

Result

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

Conclusion

1 Predator-prey interaction The model

Existence of solution

2 Results

The influence of the competition Simulations in 2D: possible shapes of territories Influence of the consumption rate Type II functional response

The model Existence of solution

Result

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II function response

Conclusion

1 Predator-prey interaction The model Existence of solution

Results

The influence of the competition Simulations in 2D: possible shapes of territories Influence of the consumption rate Type II functional response

Predator-preinteraction

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functionaries response

Conclusion

H. Berestycki and A. Zilio.

Predator-prey models with competition: The emergence of territoriality. *The American Naturalist*, 193(3):436–446,2019.

H. Berestycki and A. Zilio.

Predators-prey models with competition, Part I: existence, bifurcation and qualitative properties.

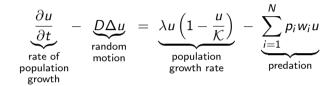
Communications in Contemporary Mathematics, 20(07):1850010, 2018.

• Equation for the prey:

Predator-pre interaction

The model

Existence of solution


Result

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rat

Type II functiona response

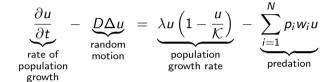
• Equation for the prey:

Predator-pre interaction

The model

Existence of solution

Result


The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

Conclusion

• Equation for each predator:

IfécNico The predator-prey model

Predator-pre interaction

The model

Existence of solution

Result

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II function response

Conclusion

The complete model reads

$$\begin{cases} \frac{\partial u}{\partial t} - D\Delta u = \left(\lambda - \frac{\lambda}{\mathcal{K}}u - \sum_{i=1}^{N} p_{i}w_{i}\right)u & \text{ in } \Omega \times (0, +\infty), \\ \frac{\partial w_{i}}{\partial t} - d_{i}\Delta w_{i} = \left(p_{i}u - l_{i} - a_{ii}w_{i} - \beta\sum_{j \neq i} a_{ij}w_{j}\right)w_{i} & \text{ in } \Omega \times (0, +\infty), \\ \partial_{\nu}u = \partial_{\nu}w_{i} = 0 & \text{ on } \partial\Omega \times (0, +\infty), \\ u(x, 0) = u_{0}(x) & \text{ in } \Omega, \\ w_{i}(x, 0) = w_{i,0}(x) & \text{ in } \Omega, \end{cases}$$

where $\boldsymbol{\nu}$ is the outward normal vector at the boundary.

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

Conclusion

Lemma [2, Lemma 2.1]:

Given a sufficiently regular initial condition $(u_0, w_{1,0}, \ldots, w_{N,0}) \in C^{0,\alpha}(\overline{\Omega})$ there exists a unique global solution $(u, w_1, \ldots, w_N) \in C_x^{2,\alpha} C_t^{1,\alpha/2}(\Omega \times (0, +\infty))$ of problem (1). Moreover, the solution is bounded and, for any $\varepsilon > 0$

$$\sup_{(x,t)\in\Omega\times[\mathcal{T}_{\varepsilon},+\infty)}u(x,t)\leq\mathcal{K}+\varepsilon$$

and

$$\sup_{(x,t)\in\Omega\times[T_\varepsilon,+\infty)}w_i(x,t)\leq \frac{\mathcal{K}p_i-l_i}{a_{ii}}+\varepsilon.$$

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II function: response

Conclusion

Consequence: if there exists an index $i \in \{1, ..., N\}$ such that $\mathcal{K}p_i \leq I_i$, then

$$\sup_{x\in\Omega}w_i(x,t)\to 0,$$

as $t \to +\infty$.

Figure: Simulation that gave rise to extinction of both predators ($\mathcal{K} = 2$, $p_i = 2$ and $l_i = 4$ for i = 1, 2).

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

Conclusion

Predator-prey interaction The model

2 Results

The influence of the competition Simulations in 2D: possible shapes of territories Influence of the consumption rate Type II functional response

FECNICO The Influence of the competition



Figure: Impact of the competition parameter β on the predator-prey model (1). Lighter colours correspond to small values of β , from 2, while darker colours correspond to higher values, up to 35. This figure is consistent and replicates the results of [1, Figure 1].

UTÉCNICO Simulations in 2D: possible shapes of territories

Predator-prey interaction

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

Conclusion

Figure: Simulation with 9 indistinguishable groups of predators.

UTÉCNICO Simulations in 2D: possible shapes of territories

Predator-prey interaction

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

Conclusion

Figure: Simulation considering Dirichlet boundary condition for the prey and Neumann boundary conditions for the 6 groups of predators.

If $\frac{1}{1580A}$ The influence of the consumption rate p_i

Predator-prey interaction

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

Conclusion

Figure: Simulation with $p_1 = p_9 = 1.4$ and $p_i = 1$ for $i = 2, \dots, 8$. On the left we show the evolution of the density of prey and on the right the cumulative density of predators also along time.

If TERMAN Type II functional response model

Predator-preginteraction

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functional response

Conclusion

Handling time (T_i) : the average time predator *i* spends on a captured prey.

The model with type II functional response:

$$\begin{cases} \frac{\partial u}{\partial t} - D\Delta u = \left(\lambda - \frac{\lambda}{\mathcal{K}}u\right)u - u\sum_{i=1}^{N}\frac{p_{i}}{1 + p_{i}T_{i}u}w_{i} & \text{in }\Omega,\\ \frac{\partial w_{i}}{\partial t} - d_{i}\Delta w_{i} = \left(-l_{i} - a_{ii}w_{i}\right)w_{i} + \frac{p_{i}}{1 + p_{i}T_{i}u}uw_{i} - \beta w_{i}\sum_{j\neq i}a_{ij}w_{j} & \text{in }\Omega,\\ \partial_{\nu}u = \partial_{\nu}w_{i} = 0 & \text{on }\partial\Omega. \end{cases}$$

If CALLON Original model vs Type II

Predator-prey interaction

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functional response

Conclusion

Figure: Evolution of the solution of the original model.

Figure: Evolution of the solution of the model with type II functional response (here $T_1 = T_2 = 0.25$).

I TÉCNICO What happens when $T_1 > T_2$?

Predator-prey interaction

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functional response

Conclusion

Figure: Simulation with $T_1 = 0.5$ and $T_2 = 0.25$ leading to extinction of predator 1 (red curve). We consider here strong competition ($\beta = 100$).

The model Existence of solution

Result

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II function: response

Conclusion

Predator-prey interaction The model

Results

The influence of the competition Simulations in 2D: possible shapes of territories Influence of the consumption rate Type II functional response

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

Conclusion

• Territoriality is an emergent property of the model giving rise to a buffer zone benefiting both the populations involved.

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functional response

- Territoriality is an emergent property of the model giving rise to a buffer zone benefiting both the populations involved.
 - Consumption rate of a given predator increases its territory size.

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

- Territoriality is an emergent property of the model giving rise to a buffer zone benefiting both the populations involved.
 - Consumption rate of a given predator increases its territory size.
 - Handling time increased the prey population inside the buffer zone.

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

- Territoriality is an emergent property of the model giving rise to a buffer zone benefiting both the populations involved.
 - Consumption rate of a given predator increases its territory size.
 - Handling time increased the prey population inside the buffer zone.
- The territory size decreases with an increase in the handling time until it reaches a rupture point and the predator becomes extinct.

The model Existence of solution

Results

The influence of the competition

Simulations in 2D: possible shapes of territories

Influence of the consumption rate

Type II functiona response

Conclusion

thank you!