Predator-prey reaction-diffusion systems with application to population dynamics

Renata Gomes Amado

Winter School in Mathematics 2021

Instituto Superior Técnico

February 26, 2021

Table of Contents

(1) Predator-prey interaction

The model
Existence of solution
(2) Results

The influence of the competition
Simulations in 2D: possible shapes of territories Influence of the consumption rate
Type II functional response
(3) Conclusion

Table of Contents
(1) Predator-prey interaction

The model
Existence of solution
(2) Results

The influence of the competition
Simulations in 2D: possible shapes of territories
Influence of the consumption rate
Type II functional response
(3) Conclusion

References

Predator-prey interaction The model Existence of solution competition

面 H. Berestycki and A. Zilio.
Predator-prey models with competition: The emergence of territoriality. The American Naturalist, 193(3):436-446,2019.

目 H. Berestycki and A. Zilio.
Predators-prey models with competition, Part I: existence, bifurcation and qualitative properties.
Communications in Contemporary Mathematics, 20(07):1850010, 2018.

The predator-prey model

- Equation for the prey:

The model
Existence of solution
Results
The influence of the competition
Simulations in 2D possible shapes of territories
Influence of the consumption rate Type II functional response

The predator-prey model

- Equation for the prey:

- Equation for each predator:

$$
\underbrace{\frac{\partial w_{i}}{\partial t}}_{\begin{array}{c}
\text { rate of } \\
\text { population } \\
\text { growth }
\end{array}}-\underbrace{d_{i} \Delta w_{i}}_{\begin{array}{c}
\text { random } \\
\text { motion }
\end{array}}=\underbrace{p_{i} u w_{i}}_{\text {predation }}-\underbrace{l_{i} w_{i}}_{\text {mortality }}-\underbrace{a_{i i} w_{i}^{2}}_{\begin{array}{c}
\text { intraspecific } \\
\text { competition }
\end{array}}-\underbrace{\beta \sum_{j \neq i} a_{i j} w_{j} w_{i}}_{\begin{array}{c}
\text { interspecific } \\
\text { competition }
\end{array}}
$$

The predator-prey model

The complete model reads

$$
\begin{cases}\frac{\partial u}{\partial t}-D \Delta u=\left(\lambda-\frac{\lambda}{\mathcal{K}} u-\sum_{i=1}^{N} p_{i} w_{i}\right) u & \text { in } \Omega \times(0,+\infty) \tag{1}\\ \frac{\partial w_{i}}{\partial t}-d_{i} \Delta w_{i}=\left(p_{i} u-l_{i}-a_{i i} w_{i}-\beta \sum_{j \neq i} a_{i j} w_{j}\right) w_{i} & \text { in } \Omega \times(0,+\infty) \\ \partial_{\nu} u=\partial_{\nu} w_{i}=0 & \text { on } \partial \Omega \times(0,+\infty) \\ u(x, 0)=u_{0}(x) & \text { in } \Omega \\ w_{i}(x, 0)=w_{i, 0}(x) & \text { in } \Omega,\end{cases}
$$

where ν is the outward normal vector at the boundary.

Existence of solution

Predator-prey interaction The model Existence of solution
Results
The influence of the competition

Lemma [2, Lemma 2.1]:

Given a sufficiently regular initial condition $\left(u_{0}, w_{1,0}, \ldots, w_{N, 0}\right) \in C^{0, \alpha}(\bar{\Omega})$ there exists a unique global solution $\left(u, w_{1}, \ldots, w_{N}\right) \in C_{x}^{2, \alpha} C_{t}^{1, \alpha / 2}(\Omega \times(0,+\infty))$ of problem (1).
Moreover, the solution is bounded and, for any $\varepsilon>0$

$$
\sup _{(x, t) \in \Omega \times\left[T_{\varepsilon},+\infty\right)} u(x, t) \leq \mathcal{K}+\varepsilon
$$

and

$$
\sup _{(x, t) \in \Omega \times\left[T_{\varepsilon},+\infty\right)} w_{i}(x, t) \leq \frac{\mathcal{K} p_{i}-I_{i}}{a_{i i}}+\varepsilon .
$$

Extinction of predators

Figure: Simulation that gave rise to extinction of both predators ($\mathcal{K}=2, p_{i}=2$ and $I_{i}=4$ for $i=1,2$).

Table of Contents

(1) Predator-prey interaction

The model
Existence of solution
(2) Results

The influence of the competition
Simulations in 2D: possible shapes of territories Influence of the consumption rate
Type II functional response
(3) Conclusion

The Influence of the competition

Predator-prey interaction The model Existence of solution competition

Figure: Impact of the competition parameter β on the predator-prey model (1). Lighter colours correspond to small values of β, from 2 , while darker colours correspond to higher values, up to 35 . This figure is consistent and replicates the results of [1, Figure 1].

Simulations in 2D: possible shapes of territories

Figure: Simulation with 9 indistinguishable groups of predators.

Simulations in 2D: possible shapes of territories

Predator-prey
interaction
The model
Existence of solution

Results
The influence of the competition
Simulations in 2D possible shapes of territories Influence of the consumption rate Type II functional response

Prey density distribution [$\mathrm{t}=0.00$]

$\triangle D$
Figure: Simulation considering Dirichlet boundary condition for the prey and Neumann boundary conditions for the 6 groups of predators.

The influence of the consumption rate p_{i}

- D

Figure: Simulation with $p_{1}=p_{9}=1.4$ and $p_{i}=1$ for $i=2, \cdots, 8$. On the left we show the evolution of the density of prey and on the right the cumulative density of predators also along time.

Type II functional response model

Predator-prey

interaction
The model
Existence of solution
Results
The influence of the
competition
Handling time $\left(T_{i}\right)$: the average time predator i spends on a captured prey.

The model with type II functional response:

$$
\begin{cases}\frac{\partial u}{\partial t}-D \Delta u=\left(\lambda-\frac{\lambda}{\mathcal{K}} u\right) u-u \sum_{i=1}^{N} \frac{p_{i}}{1+p_{i} T_{i} u} w_{i} & \text { in } \Omega, \\ \frac{\partial w_{i}}{\partial t}-d_{i} \Delta w_{i}=\left(-l_{i}-a_{i i} w_{i}\right) w_{i}+\frac{p_{i}}{1+p_{i} T_{i} u} u w_{i}-\beta w_{i} \sum_{j \neq i} a_{i j} w_{j} & \text { in } \Omega, \\ \partial_{\nu} u=\partial_{\nu} w_{i}=0 & \text { on } \partial \Omega .\end{cases}
$$

Predator-prey interaction The model Existence of solution

Resuits
The influence of the competition
Simulations in 2D possible shapes of territories
Influence of the consumption rate Type II functional response

Original model vs Type II

Figure: Evolution of the solution of the original model.

Figure: Evolution of the solution of the model with type II functional response (here $\left.T_{1}=T_{2}=0.25\right)$.

What happens when $T_{1}>T_{2}$?

- D

Figure: Simulation with $T_{1}=0.5$ and $T_{2}=0.25$ leading to extinction of predator 1 (red curve). We consider here strong competition ($\beta=100$).

Table of Contents
(1) Predator-prey interaction

The model
Existence of solution
(2) Results

The influence of the competition
Simulations in 2D: possible shapes of territories
Influence of the consumption rate
Type II functional response
(3) Conclusion

- Territoriality is an emergent property of the model giving rise to a buffer zone benefiting both the populations involved.
- Territoriality is an emergent property of the model giving rise to a buffer zone benefiting both the populations involved.
- Consumption rate of a given predator increases its territory size.
- Territoriality is an emergent property of the model giving rise to a buffer zone benefiting both the populations involved.
- Consumption rate of a given predator increases its territory size.
- Handling time increased the prey population inside the buffer zone.

Conclusion

- Territoriality is an emergent property of the model giving rise to a buffer zone benefiting both the populations involved.
- Consumption rate of a given predator increases its territory size.
- Handling time increased the prey population inside the buffer zone.
- The territory size decreases with an increase in the handling time until it reaches a rupture point and the predator becomes extinct.
dî TÉCNICO

Predator-prey interaction

The model
Existence of solution
Results
The influence of the competition
Simulations in 2D: possible shapes of territories
Influence of the consumption rate
Type II functional
response
Conclusion

