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Main Goal

Mathematically ”sound” approach to justify the description of the evolution of
thermodynamic characteristics of a fluid.

• System with large number of
components.

• A precise description of the
microscopic state of the system is
very intractable.

• Reduce to study the collective
behavior of these ”particles”.

• Characterize the equilibrium
states of the system by some
small number of macroscopic
quantities (temperature, pressure,
density . . . )

• Drive the system out of
equilibrium while maintaining a
local (and ”mesoscopic”)
equilibrium.

Figure 1: Ludwig Boltzmann
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Modern Approach

• Simplification by considering
stochastic underlying
microscopic dynamics.

• Pioneering work [1]
• Deep ”phenomanological”

interest, explaining macrospocic
behavior via stochastic particle
systems:
• Interacting random walkers on

some lattice under some local
interaction.

• Ecompasses mass-transport,
polarization, coalescence . . . via
systems evolving under a
Markovian law.

Figure 2: Frank Spitzer
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Some more examples

Figure 3: Spin Chain

Figure 4: From Flocking with discrete symmetry, the 2d active Ising model, Solon &
Taileur 2015 [13, 13]
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Dynamics

• Lattice: ΛN = {1, . . . , N − 1};
• Site: x ∈ ΛN ;
• Bond: {x, y} with x, y ∈ ΛN ;

• Process: η = (η(1), . . . , η(N − 1));

• State Space: ΩN = {0, 1}ΛN ;

• ”Boundary”: I− = {1, . . . ,K} and I+ = {N − 1−K, . . . , N − 1} for K ≥ 1.
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Main result

Theorem (Hydrodynamic Limit)

• Assumption: The finite sequences α, γ, β, δ are non-increasing.

• The macroscopic density of particles, ρt(u), is solution in a weak sense of
the Heat Equation, ∂tρt = ∆ρt, with boundary conditions

θ = 1: ”Nonlinear” Robin

{
∂uρt(0) +Dα,γρt(0) = 0,

∂uρt(1)−Dβ,δρt(1) = 0,

θ > 1: Neumann

{
∂uρt(0) = 0,

∂uρt(1) = 0,

where for λ = (λ1, . . . , λK), σ = (σ1, . . . , σK) and f : [0, 1]→ R,

Dλ,σf :=

K∑
x=1

{λx(1− f)fx−1 − σxf(1− f)x−1}.
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On the Msc. Thesis

Motivation

Dynamics introduced in Truncated correlations in the stirring process with births
and deaths [4]

• Following works: [5] (LLN for empirical density and current), [6] (LLN w.r.t.
the stationary measure)

Goals

• Study [4, 5]
• Show the LLN without resorting to the machinery on [4]

• Later included Fick’s Law and Hydrostatic Limit [8] (joint work with Clément
Erignoux, ”INRIA Lille Nord”)

• Study the applicability of the Matrix Product Ansatz (and possible extension)
• Ongoing project (joint work with Gunter Schutz, ”Institute of Biological

Information Processing” and ”Institute for Advanced Simulation”)
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Markov Chains

Stochastic Process

Sequence of r.v.’s, {Xi}i∈J , defined on a common probability space {Ω,F , P}.
• For each ω ∈ Ω let Xi(ω) ∈ S where (S,Σ) is some measurable space.

Remark

• Xi(·) : Ω→ S and X·(ω) : J → S are random variables.

• We can define the law of the stochastic process as µ := P ◦X−1.

(Time Homogenous) Markov Chain

Satisfies the Markov property:

P (Xn+1 = x | Xn = xn, . . . X0 = x0) = P (Xn+1 = x | Xn = xn) := p(1)
xn,x

Figure 5: Markov Chain (Straight outta Wikipedia)
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From transitions to rates

From discrete to continuous time

• We can go from discrete to continuous time by considering a DTMC as the
skeleton of a CTMC and appropriatedly interpolating on (random) times.

• This leads to an important ”linearization” for the transition probabilities:

P (Xt+ε = j | Xt = i) = δij + qijε+ o(ε), ε↘ 0

and we find that

d

dt
pt(η) =

∑
η′∈S

(c(η′, η)pt(η
′)− pt(η)c(η, η′)) 

d

dt
P (t) = P (t)Q, [P (t), Q] = 0.

• Another level of abstraction shows that the above is part of something larger

d

dt
Stf = LStf = StLf

Stf(η0) = E(f(ηt) | η0), Lf(η) =
∑
ξ∈S

c(η, ξ)(f(η′)− f(η)).
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Generator description

Definition (Generator)

LN = LN,0 +
1

Nθ
LN,b  L = N2LN ,

where

(LN,0f)(η) =

N−2∑
x=1

[η(x)(1− η(x+ 1)) + (1− η(x))η(x+ 1)]{f(ηx,x+1)− f(η)},

(LN,bf)(η) = (LN,−f)(η) + (LN,+f)(η),

(LN,±f)(η) =
∑
I±

c±x (η){f(ηx)− f(η)}

Rates

c−x (η) = αx(η)(1− η(x)) + γx(1− η)η(x)

c+x (η) = (1− η(x))βx(η) + η(x)δx(1− η).
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Empirical Measure and Time-scalling

Definition (Empirical measure)

πN (η, du) =
1

N − 1

∑
x∈ΛN

η(x)δ x
N

(du)

where we have a natural mapping

(D([0, T ], {0, 1}ΛN ),PNµ )→ (D([0, T ],M),QN := PµN ◦ π−1)

{ηt}t∈[0,T ] 7→ {πNt }t∈[0,T ]

Dynkin’s Martingale

Let {Xt}t≥0 be a Markov process with generator L and countable state space S,
and f : R+ × S −→ R bounded with some regularity assumptions. For all t ≥ 0 let

Mt(f) := f(t,Xt)− f(0, X0)−
∫ t

0

(∂s + L)f(s,Xs)ds.

Then {Mt(f)}t≥0 is a martingale w.r.t. the natural filtration of {Xt}t≥0.
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Identifying the Hydrodynamic Equation

Computing this martingale for f(t,Xt) ≡ 〈πNt , Gt〉 we see that

MN
t = 〈πNt , Gt〉 − 〈πN0 , G0〉 −

∫ t

0

〈πNs , (∂s + ∆N )Gs〉ds

−
∫ t

0

[
∇+
NGs(0)ηN2s(1)−∇−NGs(1)ηN2s(N − 1)

]
ds

− N2

Nθ

∫ t

0

[
〈πN (DN,−

α,γ ηN2s, ·), Gs〉+ 〈πN (DN,+
β,δ ηN2s, ·), Gs〉

]
ds

Weak Formulation

0 = 〈ρt, Gt〉 − 〈f0, G0〉 −
∫ t

0

〈ρs,
(
∂2
u + ∂s

)
Gs〉ds

+

∫ t

0

{
ρs(1)∂uGs(1)− ρs(0)∂uGs(0)

}
ds

− 1θ=1

(∫ t

0

Gs(1)(Dβ,δρs)(1)ds+

∫ t

0

Gs(0)(Dα,γρs)(0)ds

)
=: Fθ(ρ,G, t).
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Results

Definition (Associated profile)

A sequence of probability measures {µN}N≥1 on ΩN is associated with a profile
ρ0 : [0, 1]→ [0, 1] if for any continuous function G : [0, 1]→ R and every δ > 0,

lim
N→∞

µN
(
η ∈ ΩN :

∣∣∣〈πN , G〉 − 〈ρ0, G〉
∣∣∣ > δ

)
= 0

Theorem (Hydrodynamic Limit)

Let f0 : [0, 1]→ [0, 1] be a measurable function and {µN}N≥1 a sequence of
probability measures in ΩN associated with f0 in the sense above. Then, for any
t ∈ [0, T ] and every δ > 0,

lim
N→∞

PµN

(∣∣∣〈πNt , G〉 − 〈ρt, G〉∣∣∣ > δ
)

= 0,

where ρ is the unique weak solution for the heat equation with boundary conditions
and formulation as previously.
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Entropy Method

Strategy

• Convergence in subsequences:
• Prokhorov’s Theorem + Aldous’ criterion for tightness;

• Characterization of the Limit points:
• Absolute continuity: πt(du) = ρt(u)du;
• Existence of solutions via microscopic system;
• Replacement Lemmas (mean field estimates to control correlation terms) [2, ?];

• Uniqueness of the Limit (PDE’s problem):
• Choice of test function (backwards heat equation) [3]
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