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Many expansions in physics are asymptotic:
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some 651/'@771,[)165.' (beware! highly incomplete list)

v

quartic/cubic oscillator, Mathieu, Zeeman, Stark, ...

Euler-Heisenberg, QFT in dS/AdS background, large N, ...

v

» genus expansion in string theory (c; ~ (29)!) (shenker]

v

hydrodynamics [Heller,Spalinski; GB, Dunne; Aniceto, Spalinski|



Resurgence
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perturbative ﬁuctuatlons v N———

k—instantons quasi-zero-modes

a characteristic feature of resurgence is there are
stringently relations between ¢, ;s where large
order growth of perturbative series is related to low
order coefficients of fluctuations around instantons
and so on...



Punchline of this talk:

“Beyond resurgence”

[Dunne Unsal; GB, Dunne]

For certain Schrodinger equations (relevant for
SUSY QFTs) in addition to the large order - low
order relations between perturbative and
non-perturbative expansions, there is a surprising
low order - low order relation between them.

It can be understood in terms of the geometry of
the spectral curve.



Mathieu equation [GB, Dunne; 1501.05671]

K2 d?
—5 d_;f + cos(z) Y = u(N,h)

NS limit of the V' = 2, SU(2) theory, u < tr(®2), moduli

Space COOI‘d. [see talks by Hatsuda, Kashani-Poor, Russo|

Wilson loops in A/ = 4 (via AdS/CFT and Pohlmeyer
Reduction) [Kruczenski et. all

more generally, ODE < 2D integrable models  [porey, Tateo;

Voros; Bazhanov, Fateev, Lukyanov, Zamolodchikov; ...]


http://inspirehep.net/record/1340869?ln=en

Strong coupling expansion: Nh := > 1
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u(h)
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Weak coupling expansion: \ < 1



Trans-series

near u ~ —1, tightly bound states, tunneling exponentially
suppressed
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1—instanton 2—instanton

trans-monomaials:

—k Sins ..
A" (perturbative fluctuations), e~ & (multi instantons),
log(—1/h)! (quasi zero modes)



Resurgence relations

large order growth of perturbative series:
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Beyond resurgence

» In addition to the large order - low order relations
between perturbative and non-perturbative expansions,
there is a surprising low order - low order relation
between them!

» allows one to [ully construct the non-perturbative
fluctuations from perturbative data.

» valid everywhere in the spectrum



WKDB expansion
P~ e%Q(z,u;h) = Q’Q +ihQ" —2(u—V(2)) =0 (Ricatti eqn.)
Q(z) ~ Z R'Qn(z,u) = / V2(u—V)dz + Z R Qn(z,u)
n=0 n=1
WKB actions: [Dunham)]|

1 o
a(u;h) = 27T/AQ’dZNZan(u)h2”
n=0
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a”(uih) = 27 /BQ e n—=0 G

perturbative : a(u;h) = %(N +1/2) = up. (N)

. : _2n7yiaD
non-perturbative (tunneling): Au = %ag]’\’;'e 7. Lmla”]

a(u) and a”(u) are related order by order in A!
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a(u) and a”(u) are related order by order in A! = P = NP



Geometry and WKDB

» Set A = 0 for now.

» Classically the (complex) phase space can be identified
with the moduli space of complex tori.

» u < moduli space parameter

2
p —
Uu=-—+Cc0sz = X =C08z, Y=

x
2 V2

y2 = (x2 — 1)(37 — u) genus-1 elliptic curve



Geometry and WKB

W/

WKB actions: integrals of abelian differentials over the two
independent cycles of torus

ap(u /\/u— dz—\/_ u_xdm

T Ja Y
aOD(u)zg/B\/u—V(z)dz:g/Bu;ivda:

= Seiberg-Witten differentials for SU(2) [Gorsky, Krichever, Marshakhov, Mironov, Morozov]|



Geometry and WKB

ap and af’ are related via Riemann bilinear identity
D .
o d00 _ pdao i Sinst
du “du 2 T
T = 2w =period of the harm. oscll. at the bottom of the well

> ag, ab: satisfy a Picard-Fuchs equation

ag (u) — ﬁao(u) =0

» Bilinear identity < Wronskian

Sinst

» alternatively: al’(u) = 70(u) ag(u) — Ueren)

where wo = a(, modular parameter: 79 = w(’)j/wo



Geometry and WKB: Quantum corrections

Z an h2n : Z ak h2n

All higher order actions are encoded in the lowest order
(classical) action

an(u) = pp(u)ao(u) + gn(u)ag(w)
ay, (u) = pn(w)ad (1) + g (u)al (u)

> Dn,qn: rational functions that can be derived from
Schrodinger eqn.



Geometry and WKB: Quantum corrections

“quantum corrections” to the bilinear identity

[GB, Dunne]
da\ da” p ,0aP\ da 2
(a—ha—h)a—u— ( —h%)a—;

» connects the perturbative expansion to
non-perturbative fluctuations order by order

» valid everywhere in the spectrum

» SUSY inspired proof via Matone’s relation [corsky. Mileknin]



quantum corrections to the Picard Fuchs equation:

[GB, Dunne, Unsal, in prep|

a’(u) + F(u)ad'(u) + G(u)a(u) =0

F(u):=Y B'fa(u) , G(u):=Y h"g,(u)

quantum corrections: higher order poles

1 1
8(—1+u) 8(1+u)

1 1 1 1
6ut+1)? 9w—12 ° T T 96us1)?  3BAutl)

fo(u)zo y go=

fi(u) = —

5+

no new singularities!



P = NP
perturbative expansion:

1\* 1
N+ = Z
(v+3) +3

, 17 »?
W (N.h) ~ 14BN+ | =

0

band width (non-perturbative, 1-instanton-+fluctuations) :

12 142
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checked up to 3 loops via explicit calculation [Escobar-Ruiz, Shuryak, Turbiner]

Aul inst. (N7 h) =

+ ...



Strong coupling expansion: Nh > 1
u(h) U
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Strong coupling (x> 1)

gauge theory detour [Alday, Gaiotto, Tachikawa; Marshakov et. al.; ...]

00 2n
. A? _
stt.(a; 61,62) _ 2 : <> QAI([ln], [171])’ QA(Y,Y') = (A|Ly L_y/|A)

€1€
n—0 1€2

» from AGT: A =

(a2 _ (61+62)2) . c=1- 6(e1t€2)?

€1€2 4 €1€2

> €9 — 0 limit, t’wwt@d S’U,p(i’IpOt(iTLtlal' [Nekrasov, Shatashvili]

Wi (a;6)) = — L lim e log (Z"(a, €1, €2))

T e2—0

> identify ¢y = h, a = Nh/2

2 oA 8

_im OV 2 8A* N 8A® (5N% +7) N
(N2—1)h* (N2 —4)(N2-1)*R8



Strong coupling (x> 1)
back to QQM: level splitting
» uP"'(N, h) is not the whole story

> In the limit IV, A > 1 there are exponentially small gaps in
the spectrum

» uP"'(N, h) determines the center of the gap

gap width:

AP~ 712 1 2 - 1+0 (h_4)]
N 4 (N-1(N — 1)\ A
N K2 e \2N
2 (ﬁ)



Strong coupling: complex instantons

Is there a semi-classical interpretation of the exponentially small
gaps at strong coupling, similar to the instantons for the case of
exponentially small bands at weak coupling?

YES! complex instantons
» For u > 1, the turning points are complex.
» aP goes around these complex turning points.

» when i < 1 and N > h~! (u>> 1) semi-classically:

A,Ugap ~ ga“pem P—%ImaD ~ Nh2 (L)QN
N T ON or \Nh



Strong coupling (x> 1)

A physical analogy:
Schwinger effect in monochromatic electric field &€ cos(wt)

» Pair production rate behaves differently for different ws

» Keldysh adiabaticity parameter: y = #&*

> v < 14 constant field, v > 1 <+ multi-photon limit

=& N=m o N=2y

» In our analogy: h = =g

Y

2
, e e, yx1
R

27 4
—m T 4 Jog(4y) & \dm/w

I3 T e
€ 7 (4mw)

;o y>1

» in the worldline formalism:
v < 1 ¢ real instantons, v > 1 <> complex instantons



Fluctuations around complex instantons

» “quantum bilinear identity” relates u?*"* (N, k) to Auf”

awn ~ Y e (o)
w2 oo (1)
T

» The level splitting term (gap width) has the same structure
with the leading perturbative expansion.

> Pn(N), Rn(N) are related! |[GB, Dunne, Unsal, in prep]

» New results for Mathieu equation!!



How general is the P- NP connection?
Mathieu (classical, h = 0)

D F, (L L
modular parameter: 7o(u) = o ((u)) =1 2F1 E%’ %
wolu 281 \35 9

1454)
1i

)

7p satisfies a Schwarzian equation: {79, u} + Qo(u) =0

where:

11 7 2
P 3 T _ 1 1 1 1
{m0,u} == 2 — b (L/) o Qolu) = 2(u—1)2 + S(ut+1) + 1(ut+1)2 ~ B(u—1)

To 7o

spectrum can be obtained by inversion (qg := €™™):

u(qo) = =1 + Mqo) = —1 + 32qp — 256¢2 + 14085 + . ..



How general is the P- NP connection?
Mathieu (quantum, % # 0)
quantum correction to the Schwarzian equation:

{r,u} +Q(u) =0
where: Q(u) =Y0° (" Qn(u)
——

> poles at u==%1

inversion — spectrum:

u(q) = =1+ XMq)+ Y _ h*" fulg)
n=1



there are 3 more cases that have the same P = NP
structure as the Mathieu equation upon quantization:

» quantum bilinear identity:
da\ daP daP\ da  iSipst

_pdty et thi va _ ins

<“ an) ou <“ oh ) u_ or

» Schwarzian & Picard-Fuchs equations:

{(r,u} + QWM (u) =0
a"(u) + FM (w)d (u) + G (u)a(u) = 0

QU (u) := 2 hQWM (w), ete...

n=0

h0— FM (u), G (u), M) (u): sum over higher order
poles at the same locations as the classical curve

they have a remarkable connection to number theory,
quasi-modular forms and Hecke groups and possibly
SupeI‘COIlfOI"mal N — 2 SUSY theOl"leS |GB, Dunne, Unsal, in progress|



and more examples with more complicated P = NP
relations:

generic genus-1: 2" order Picard-Fuchs eqn. for aj(u)

» Lamé equation V(z) = P(z;1) related to N = 2*SU(2)

|GB, Dunne; Kashani-Poor, Troost, ...|

mi1—m 2
V() = cos(z) + 2oz 4 ()

related to N' = 2,SU(2), Ny = 2

v

Double sine gordon V (z) = sin(2) + psin(2)
Asymmetric double well V(z) = (2% — 1)* + pz

v

v



v

v

Conclusions

In an infinite class of QM systems in addition to the
standard resurgence relations there is a low order -low order
relation between perturbative and non-perturbative sectors

Classically it is related to the topology of the spectral curve

It is valid everywhere in the spectrum even though the
series are drastically different (asymptotic vs. convergent)
in different regions

Quantization preserves this P = N P relation

4 examples such that P = NP is particularly simple





