Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Facets and Parallel Universes of Modal Logic

Cristina Sernadas

Departamento de Matemática, Instituto Superior Técnico SQIG-IT

Winter School Mathematics, February 22-26, 2021 IST

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Roadmap

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

A possible Octopus of Modal Logic

- \blacksquare Semantic Facets and their Relationship \checkmark
- Fancier Semantics and Model Theory
- \blacksquare Kripke Semantics for Intuitionistic Logic \checkmark

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Labelled Deduction
- Combination of Logics
- Parallel Universes
- Open Questions \checkmark
- Challenges

Formulas

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Let *P* be a countable set (proposicional symbols). The set of modal formulas L_P is inductively defined as follows:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• $P \subseteq L_P$;

- $\neg \varphi, \Box \varphi$ whenever $\varphi \in L_P$;
- $\varphi_1 \supset \varphi_2$ whenever $\varphi_1, \varphi_2 \in L_P$.

$$\Diamond \varphi =_{\mathsf{abb}} \neg \Box \neg \varphi.$$

(Set-Theoretic) Semantic Facets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

> > Relational

- Algebraic
- Topological

Relational via Kripke structures

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

A Kripke frame is a pair (W, R) where W is a non-empty set and $R \subseteq W^2$.

A Kripke structure is a triple (W, R, V) where (W, R) is a Kripke frame and $V : P \to \wp W$ is a map. A Kripke structure (W, R, V) and $w \in W$ (locally) satisfy φ , written

 $(W, R, V), w \Vdash \varphi$

whenever

- $(W, R, V), w \Vdash p$ whenever $w \in V(p)$
- (*W*, *R*, *V*), $w \Vdash \neg \psi$ whenever (*W*, *R*, *V*), $w \nvDash \psi$
- $(W, R, V), w \Vdash \Box \psi$ whenever

 $(W, R, V), w' \Vdash \psi$ for all $w' \in W$ such that wRw'

• $(W, R, V), w \Vdash \psi_1 \supset \psi_2$ whenever either $(W, R, V), w \nvDash \psi_1$ or $(W, R, V), w \Vdash \psi_2$.

Relational via Kripke structures

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

A Kripke structure (W, R, V) satisfies φ , written $(W, R, V) \Vdash \varphi$

whenever (W, R, V), $w \Vdash \varphi$ for every $w \in W$. Similarly, a Kripke frame (W, R) satisfies φ , written

 $(W, R) \Vdash \varphi$

whenever (W, R, V) satisfies φ for ever map $V : P \rightarrow \wp W$.

Validity over a class \mathfrak{F} of frames:

 $\vDash_{\mathfrak{F}} \varphi \text{ whenever } (W, R) \Vdash \varphi \text{ for every } (W, R) \in \mathfrak{F}.$

Different properties of R lead to different logics:

For instance, S4 is the modal logic where R is reflexive and transitive. Observe that R can have properties that are not elementary.

Hilbert Calculus for Modal Logic

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Modal **K** (no properties on R)

Axioms

The usual ones for propositional logic plus

 $\mathsf{K} \quad (\Box(\varphi_1 \land \varphi_2)) \equiv ((\Box \varphi_1) \land (\Box \varphi_2));$

Rules

 $\mathbf{MP} \quad \frac{\varphi_1 \quad \varphi_1 \supset \varphi_2}{\varphi_2} \quad \text{and} \quad \mathbf{Nec} \quad \frac{\varphi}{\Box \varphi}$

Modal **S**4 (R reflexive and transitive) is

Modal K + Axioms T $(\Box \varphi) \supset \varphi$ and 4 $(\Box \varphi) \supset (\Box \Box \varphi)$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

General Form of Completeness Results

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Proposition

 $\vdash_{\mathbf{K}} \varphi \quad \text{if and only if} \quad \vDash_{\mathfrak{F}} \varphi$

where \mathfrak{F} is the class of all frames.

 $\vdash_{\mathbf{S4}} \varphi \quad \text{if and only if} \quad \vDash_{\mathfrak{Fr}} \varphi$

where $\mathfrak{F}_{\mathsf{rt}}$ is the class of all reflexive and transitive frames.

Is it always possible to obtain such nice results? The end of the story is not here...

General Kripke Frames: Motivation

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

The so called McKinsey formula

 $(\Box\Diamond\varphi)\supset(\Diamond\Box\varphi)$

is not satisfied in the frame $(\mathbb{N}, <)$.

But it is a valid formula whenever a valuation assigns a finite or a co-finite set of natural numbers to each $p \in P$.

That is, we need to work with general Kripke frames.

General Kripke Frames

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

A general Kripke frame is a triple (W, R, A) where (W, R) is a frame and $A \subseteq \wp W$ fulfils the following closure properties:

- if $A \in \mathcal{A}$ then $W \setminus A \in \mathcal{A}$;
- if $A_1, A_2 \in \mathcal{A}$ then $A_1 \cup A_2 \in \mathcal{A}$;
- if $A \in \mathcal{A}$ then $\{w \in W : \forall w' \in W, w' \in A \text{ whenever } wRw'\} \in \mathcal{A};$

A general Kripke structure is a tuple (W, R, A, V) where (W, R, A) is a general Kripke frame and $V : P \to A$ is a map.

Then

```
(\mathbb{N},<,\mathcal{A},V)\Vdash(\Box\Diamond\varphi)\supset(\Diamond\Box\varphi)
```

where \mathcal{A} is the class of all finite and cofinite subsets of \mathbb{N} .

Algebraic Semantics via Modal Algebras

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

A modal algebra is a tuple $\mathfrak{A} = (A, \sqcap, \sqcup, \sqsupset, -, \top, \boxdot)$ where $(A, \sqcap, \sqcup, \sqsupset, -, \top)$ is a Boolean algebra, $\boxdot : A \to A$ satisfies the following identities:

$$\Box(a_1 \sqcap a_2) = (\Box a_1 \sqcap \Box a_2)$$
 and $\Box \top = \top$.

A modal algebraic structure is a pair (\mathfrak{A}, V) where $V : P \to A$ is a map.

The denotation of φ in

$$\llbracket \varphi \rrbracket^{\mathfrak{A},V} \in A$$

is inductively defined as follows:

$$\llbracket p \rrbracket^{(\mathfrak{A},V)} = V(p) \text{ for } p \in P; \\ \llbracket \neg \psi \rrbracket^{(\mathfrak{A},V)} = -\llbracket \psi \rrbracket^{(\mathfrak{A},V)}; \\ \llbracket \psi_1 \supset \psi_2 \rrbracket^{(\mathfrak{A},V)} = \llbracket \psi_1 \rrbracket^{(\mathfrak{A},V)} \sqsupset \llbracket \psi_2 \rrbracket^{(\mathfrak{A},V)}; \\ \llbracket \square \psi \rrbracket^{(\mathfrak{A},V)} = \bigsqcup \llbracket \psi \rrbracket^{(\mathfrak{A},V)}.$$

Observation

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

The denotation of φ in

Kripke semantics is such that

$$\llbracket \varphi \rrbracket^{(W,R,V)} \in \wp W$$

general Kripke semantics is such that

$$\llbracket \varphi \rrbracket^{(W,R,\mathcal{A},V)} \in \mathcal{A}$$

modal algebra semantics

$$\llbracket \varphi \rrbracket^{(\mathfrak{A},V)} \in A$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Stone Representation (The Simpler View)

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Modal Algebraic Structures $\longrightarrow^{g} D$ General Kripke Structures

D General Kripke Structures \longrightarrow^{h} Modal Algebraic Structures

Stone Representation

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Let g be such that

$$g(\mathfrak{A}, V) = (W, R, \underline{V})$$

where

- W is $\{U \subseteq A : U$ is an ultrafilter of $\mathfrak{A}\}$
- **URU'** whenever for every $a \in A$ if $\square a \in U$ then $a \in U'$
- $\bullet \underline{V}(p) = \{U \in W : V(p) \in U\}.$

Proposition

For every $U \in W$,

 $\llbracket \varphi \rrbracket^{\mathfrak{A},V} \in U \quad \text{if and only if} \quad (W,R,\underline{V}), U \Vdash \varphi.$

Furthermore,

 $(\mathfrak{A}, V) \Vdash \varphi$ if and only if $(W, R, \underline{V}) \Vdash \varphi$.

Stone Representation

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

A filter of a modal algebra \mathfrak{A} , is a set $F \subseteq A$ such that: $T \in F$ if $a, b \in F$ then $a \sqcap b \in F$ if $a \in F$ and $a \leq b$ then $b \in F$. A filter F is a ultrafilter whenever: $\bot \notin F$ for every $a \in A$ either $a \in F$ or $-a \in F$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Stone Representation

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Let h be such that

 $h(W, R, \mathcal{A}, V) = (\mathcal{A}, \cap, \cup, -. \Box, W, V)$

where

$$-Z = W \setminus Z;$$

$$\square Z = \{ w \in W : w' \in Z \text{ whenever } wRw' \}.$$

Proposition

For every $w \in W$,

 $(W, R, \mathcal{A}, V), w \Vdash \varphi$ if and only if $w \in \llbracket \varphi \rrbracket^{((\mathcal{A}, \cap, \cup, -. \Box, W), V)}$.

Furthermore,

 $(W, R, \mathcal{A}, V) \Vdash \varphi$ if and only if $((\mathcal{A}, \cap, \cup, -. \underline{\Box}, W), V) \Vdash \varphi$.

Topological Semantics for **S**4

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

A topological structure is a triple (X, τ, V) where (X, τ) is a topological space and $V : P \to \wp X$ is a map. A topological structure (X, τ, V) and $x \in X$ (locally) satisfy φ , written

 $(X, \tau, V), x \Vdash \varphi$

whenever

- $(X, \tau, V), x \Vdash p$ whenever $x \in V(p)$;
- $(X, \tau, V), x \Vdash \neg \psi$ whenever $(X, \tau, V), x \nvDash \psi$;
- $(X, \tau, V), x \Vdash \Box \psi$ whenever there is $U \in \tau$ such that $x \in U$ and $(X, \tau, V), y \Vdash \psi$ for all $y \in U$:

• $(X, \tau, V), x \Vdash \psi_1 \supset \psi_2$ whenever either $(X, \tau, V), x \nvDash \psi_1$ or $(X, \tau, V), x \Vdash \psi_2$;

	Topological Semantics for S 4
Facets and Parallel Universes of Modal Logic	
Cristina Sernadas	The denotation of a formula
	$\llbracket \varphi \rrbracket^{(X,\tau,V)} \subseteq X$
	Proposition
	$\llbracket \Box \psi \rrbracket^{(X,\tau,V)} = (\llbracket \psi \rrbracket^{(X,\tau,V)})^{\circ}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Topological Semantics for **S**4

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

- $\blacksquare \llbracket \Box (\varphi \land \psi) \rrbracket^{(X,\tau,V)} = \llbracket \Box \varphi \rrbracket^{(X,\tau,V)} \cap \llbracket \Box \psi \rrbracket^{(X,\tau,V)} \quad \mathsf{K}$
- $\llbracket \varphi \land \psi \rrbracket^{(X,\tau,V)})^{\circ} = (\llbracket \varphi \rrbracket^{(X,\tau,V)})^{\circ} \cap (\llbracket \psi \rrbracket^{(X,\tau,V)})^{\circ}$
- $\bullet \llbracket \varphi \land \psi \rrbracket^{(X,\tau,V)} = \llbracket \varphi \rrbracket^{(X,\tau,V)} \cap \llbracket \psi \rrbracket^{(X,\tau,V)};$

• $(\llbracket \varphi \rrbracket^{(X,\tau,V)} \cap \llbracket \psi \rrbracket^{(X,\tau,V)})^{\circ} = (\llbracket \varphi \rrbracket^{(X,\tau,V)})^{\circ} \cap (\llbracket \psi \rrbracket^{(X,\tau,V)})^{\circ}.$

 $X^{\circ} = (\llbracket \top \rrbracket^{(X,\tau,V)})^{\circ} = \llbracket \Box \top \rrbracket^{(X,\tau,V)} = \llbracket \top \rrbracket^{(X,\tau,V)} = X$ $(\llbracket \varphi \rrbracket^{(X,\tau,V)})^{\circ} \subseteq \llbracket \varphi \rrbracket^{(X,\tau,V)}$ $(\llbracket \varphi \rrbracket^{(X,\tau,V)})^{\circ} \subseteq ((\llbracket \Box \varphi \rrbracket^{(X,\tau,V)})^{\circ})^{\circ}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Topological Semantics for **S**4

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Let g and h be such that

 $g(W, R) = (W, \{A \subseteq W : A \text{ is } R \text{ upclosed of } (W, R)\})$

and

$$h(X, \tau) = (X, \{(x, y) : y \in Cl(x)\})$$

Proposition

S4 is sound and complete with respect to topological semantics.

Kripke Semantics for Intuitionistic Logic

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

The propositional connectives are not abbreviations of each other. In the sequel \sim is the symbol adopted for negation.

The Gödel map provided a translation from

$$\tau: L_{\text{Int}} \rightarrow L_{\text{S4}}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

as follows

•
$$\tau(\rho) = \Box \rho$$

• $\tau(\varphi_1 *' \varphi_2) = \tau(\varphi_1) * \tau(\varphi_2)$ where $* \in \{\land, \lor\}$
• $\tau(\varphi_1 \supset' \varphi_2) = \Box(\tau(\varphi_1) \supset \tau(\varphi_2))$
• $\tau(\sim \varphi) = \Box \neg \tau(\varphi).$

Intuitionistic Structures

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

An intuitionistic structure is a triple (D, S, V) where (D, S) is a preorder and $V : P \to \wp D$ fulfilling the hereditary property:

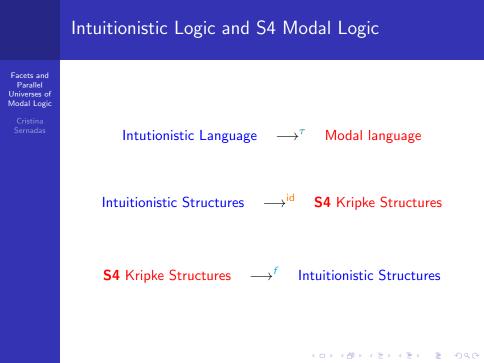
if $d \in V(p)$ then $d' \in V(p)$, for every $d' \in D$ such that dSd'.

Surprise:

 $p \lor \sim p$ is no longer a valid formula.

The triple (D, S, V) where $D = \{d_1, d_2\}$, $S = \{(d_1, d_1), (d_2, d_2), (d_1, d_2)\}$ and $V(p) = \{d_2\}$ is an intuitionistic structure. However,

 $(D, S, V), d_1 \not\Vdash p$ and $(D, S, V), d_1 \not\Vdash \sim p$



From Intuitionistic Logic to S4

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Proposition

 $(D, S, V), d \Vdash_{Int} \varphi$ if and only if $(D, S, V), d \Vdash_{S4} \tau(\varphi)$. In particular,

 $(D, S, V), d \Vdash_{Int} p$ if and only if $(D, S, V), d \Vdash_{S4} \Box p$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

From S4 to Intuitionistic Logic

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Let f be such that

$$f(W, R, V) = (W, R, V')$$

where $V'(p) = \{w \in W : (W, R, V), w \Vdash \Box p\}.$

Proposition

 $(W, R, V'), w \Vdash_{\mathsf{Int}} \varphi$ if and only if $(W, R, V), w \Vdash_{\mathsf{S4}} \tau(\varphi)$.

In particular,

,

 $(W, R, V'), w \Vdash_{\operatorname{Int}} p$ if and only if $(W, R, V), d \Vdash_{\operatorname{S4}} \Box p$.

Parallel Worlds: Linear Temporal Logic

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Propositional Language + $\mathbf{X}\varphi$, $\varphi_1 \mathbf{U}\varphi_2 \in L_P$:

Semantics is a family $V = \{V_k\}_{k \in \mathbb{N}}$ such that $V_k \subseteq P$

• $V, k \Vdash p$ whenever $p \in V_k$

• $V, k \Vdash \mathbf{X} \varphi$ whenever $V, k + 1 \Vdash \varphi$

• $V, k \Vdash \varphi_1 \mathbf{U} \varphi_2$ whenever there is $n \in \mathbb{N}$ such that $V, k + i \Vdash \varphi_1$ for every i < n and $V, k + n \Vdash \varphi_2$

• $\vDash \varphi$ whenever $V, 0 \Vdash \varphi$ for every V.

Important abbreviations

$$\mathbf{F}\varphi =_{\mathsf{abb}} \top \mathbf{U}\varphi$$
 and $\mathbf{G}\varphi =_{\mathsf{abb}} \neg \mathbf{F} \neg \varphi$

Parallel Worlds: Linear Temporal Logic Facets and Parallel Universes of Modal Logic LTL is not compact: indeed, $\{\mathbf{X}^{k}\varphi:k\in\omega\}\models\mathbf{G}\varphi$ but there is no finite subset Ψ of $\{\mathbf{X}^k \varphi : k \in \omega\}$ such that $\Psi \models \varphi$ ■ LTL is not (strongly) complete

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Parallel Worlds: Linear Temporal Logic

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

LTL is a fusion (with interaction) of modal logics

- Axiom $\neg \mathbf{X} \varphi \equiv \mathbf{X} \neg \varphi$
- Axiom $(\varphi_1 \mathbf{U} \varphi_2) \supset \mathbf{F} \varphi_2$
- Axiom $(\varphi_1 \mathbf{U} \varphi_2) \equiv (\varphi_2 \lor (\varphi_1 \land \mathbf{X}(\varphi_1 \mathbf{U} \varphi_2)))$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Parallel Worlds: Deontic Logic

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

SDL axiomatized as modal logic K plus D $(\Box \varphi) \supset (\Diamond \varphi)$ SDL⁺ axiomatized as modal logic SDL plus

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\mathsf{D}^+ \quad \Box((\Box\varphi) \supset \varphi)$

How to avoid axiom \mathbf{K} ?

Parallel Worlds: Neighbourhood Semantics

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

A neighbourhood structure is a pair (W, R, V) where W is a non empty set, $R \subseteq W^3$ and $V : P \rightarrow \wp W$. Then

 $(W, R, V), w \Vdash \Box \varphi$

whenever, for every $w', w'' \in W$,

if wRw'w" then

either (W, R, V), $w' \Vdash \varphi$ or (W, R, V), $w'' \Vdash \varphi$.

Observe that

 $\not\models ((\Box \varphi_1) \land (\Box \varphi_2)) \supset (\Box (\varphi_1 \land \varphi_2)).$

Parallel Worlds: Logic of Programs

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Let Π be a set of atomic programs. The set L_{Π} of programs is inductively defined as follows:

Π ⊆ L_Π;
α; β, α ∪ β ∈ L_Π whenever α, β ∈ L_Π;
α* ∈ L_Π whenever α ∈ L_Π;
φ? ∈ L_Π whenever φ ∈ L_P;

Moreover, L_P is a propositional language with mixed formulas of the form

$[\alpha]\varphi$

where $\alpha \in L_{\Pi}$ and $\varphi \in L_{P}$. Each $[\alpha]$ is a modal operator.

Parallel Worlds: Logic of Programs

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Semantics given by multimodal Kripke structures

 $M = (W, \{R_{\alpha}\}_{\alpha \in L_{\Pi}}, V)$

$$[[[\alpha; \beta]]]^M = [[\alpha]]^M \circ [[\beta]]^M$$

$$\blacksquare \llbracket [[\alpha^*] \rrbracket^M = (\llbracket \alpha \rrbracket^M)^*$$

$$\blacksquare \llbracket [[\alpha \cup \beta]]^M = \llbracket \alpha \rrbracket^M \cup \llbracket \beta \rrbracket^M$$

$$\llbracket \varphi ? \rrbracket^{M} = \{ (w, w) \in W^{2} : w \in \llbracket \varphi \rrbracket^{M} \};$$

 $\blacksquare \llbracket [\llbracket \alpha] \varphi \rrbracket^M = \{ w \in W : \text{if } w R_\alpha w' \text{ then } w' \in \llbracket \varphi \rrbracket^M, w' \in W \}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Parallel Worlds: Logic of Programs

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Some Axioms

- $\bullet \ [\alpha;\beta]\varphi \equiv [\alpha][\beta]\varphi$
- $\ \ \, [\varphi?]\psi\supset(\varphi\supset\psi)$
- $\varphi \supset (([\alpha^*](\varphi \supset [\alpha]\varphi)) \supset [\alpha^*]\varphi)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Parallel Worlds: Hoare Logic

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

An assertions

 $\{\varphi\}\,\alpha\,\{\psi\}$

is an abbreviation of $\varphi \supset ([\alpha]\psi)$.

While Rule

 $\frac{\{\varphi \land \psi\} \alpha \{\psi\}}{\{\psi\} \text{ while } \varphi \text{ do } \alpha\{(\neg \varphi) \land \psi\}}$

where while $\varphi \operatorname{do} \alpha$ is an abbreviation of

 $(\varphi?;\alpha)^*;(\neg\varphi)?$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Parallel Worlds: Epistemic Logic

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Multimodal Logic with a finite family of operators

 $\{\mathcal{K}_a\}_a \in A$

where A is a finite set.

We can write formulas like this one

$$(\mathcal{K}_{a}\mathcal{K}_{b}p)\supset \mathcal{K}_{b}\mathcal{K}_{a}\mathcal{K}_{b}p.$$

A possible axiom is

 $(\neg \mathcal{K}_a p) \supset \mathcal{K}_a \neg \mathcal{K}_a p$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

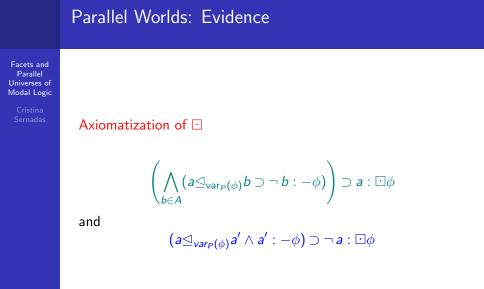
which is true in Euclidean frames.

Parallel Worlds: Evidence Logic

Facets and Parallel Universes of Modal Logic

Assume that

- ϕ is either $t \cdot p$ or $-(t \cdot p)$ meaning that p holds at t and p does not hold at t
- a: φ and −a: φ meaning that agent a claims φ and agent a does not claim φ, respectively
- a: ⊡φ states that there are no agents at least as trustworthy with respect to φ as a that state -φ. That is, each agent at least as trustworthy with respect to p as a does not claim -φ
- $a \leq_{var_P(\phi)} b$ means that agent *b* is more trustworthy than agent *a* with respect to the variable in ϕ



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Parallel Worlds: Provability Logic GL (Gödel-Löb)

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

After Gödel Second Incompleteness Theorem Modal Logic $\mathbf{K} + \mathbf{GL}$ $(\Box((\Box p) \supset p)) \supset (\Box p)$

The binary relation $R \subseteq W^2$ is converse wellfounded if for every non-empty set $X \subseteq W$ there is $w \in X$ such that for every $x \in X$ it is not the case that wRx.

Proposition

 $\vdash_{\mathbf{G}L} \varphi \quad \text{if and only if} \quad \vDash_{\mathfrak{F}_{\mathsf{cwf}}} \varphi$

where $\mathfrak{F}_{\mathsf{cwf}}$ is the class of all converse wellfounded.

Parallel Worlds: Spatial

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

S4.2 is S4+ the axiom

 $(\Diamond \Box p) \supset (\Box \Diamond p)$

corresponding to the first-order property

 $\forall x_1, x_2((xRx_1 \land xRx_2) \supset (\exists y (x_1Ry \land x_2Ry))$

It is related to Relativity:

if there are two different causal futures of some world then there is a common future history.

Open Questions in Heaven

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

> > Generalized modalities for axiomatizing qualitative properties in measure theory and in probability concepts like almost everywhere and very unlikely

> > > $\Box_{\mathsf{AE}} \varphi$ and $\Box_{\mathsf{VL}} \varphi$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Open Questions in Heaven

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Complete axiomatization of geometric notions like betweeness

Enrichment of propositional with the operator **B** leading to formulas of the kind $\mathbf{B}(\varphi, \psi)$. Let $R \subseteq W^3$ be a relation. Then

 $(W, R, V), w \Vdash \mathbf{B}(\varphi, \psi)$

whenever there are $w_1, w_2 \in W$ such that

 $\begin{cases} R(w_1, w, w_2) \\ (W, R, V), w_1 \Vdash \varphi \text{ and } (W, R, V), w_2 \Vdash \psi. \end{cases}$

Then

 $(W, R, V), w \Vdash \mathbf{B}(\varphi, \mathbf{B}(\psi, \delta)) \supset \mathbf{B}(\mathbf{B}(\varphi, \psi), \delta)$ holds of and only if (Pash axiom) $\forall t, x, y, z, u((R(x, t, u) \land R(y, u, z))) \supset (\exists v(R(x, v, y) \land R(v, t, z)))$

Open Questions in Heaven

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Algebraic semantics for non-normal modal logics in particular and neighbourhood semantics in general Dynamic quantum logic incorporating compatible observables Many Questions in Parallel Universes Many Questions in Combination of Logics

Challenges on Earth and in Hell

Facets and Parallel Universes of Modal Logic

> Cristina Sernadas

Is modal logic relevant for

- Al H yes \supset G yes
- Security $P yes \supset G yes$
- ML That's a good question! FG yes
- Climate change I believe...
- Medical applications | believe...
- Real jobs

Yes e.g Specification and Verification, Model Checking and Information Security

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

a CEO Quantum superposition of Yes and No