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Roadmap

A possible Octopus of Modal Logic

Semantic Facets and their Relationship X

Fancier Semantics and Model Theory

Kripke Semantics for Intuitionistic Logic X

Labelled Deduction

Combination of Logics

Parallel Universes X

Open Questions X

Challenges X
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Formulas

Let P be a countable set (proposicional symbols). The set of
modal formulas LP is inductively defined as follows:

P ⊆ LP ;

¬ϕ,�ϕ whenever ϕ ∈ LP ;

ϕ1 ⊃ ϕ2 whenever ϕ1, ϕ2 ∈ LP .

♦ϕ =abb ¬�¬ϕ.
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(Set-Theoretic) Semantic Facets

Relational

Algebraic

Topological
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Relational via Kripke structures

A Kripke frame is a pair (W ,R) where W is a non-empty set
and R ⊆W 2.

A Kripke structure is a triple (W ,R,V ) where (W ,R) is a
Kripke frame and V : P → ℘W is a map. A Kripke structure
(W ,R,V ) and w ∈W (locally) satisfy ϕ, written

(W ,R,V ),w  ϕ

whenever

(W ,R,V ),w  p whenever w ∈ V (p)

(W ,R,V ),w  ¬ψ whenever (W ,R,V ),w 6 ψ
(W ,R,V ),w  �ψ whenever

(W ,R,V ),w ′  ψ for all w ′ ∈W such that wRw ′

(W ,R,V ),w  ψ1 ⊃ ψ2 whenever either
(W ,R,V ),w 6 ψ1 or (W ,R,V ),w  ψ2.
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Relational via Kripke structures

A Kripke structure (W ,R,V ) satisfies ϕ, written

(W ,R,V )  ϕ

whenever (W ,R,V ),w  ϕ for every w ∈W . Similarly, a
Kripke frame (W ,R) satisfies ϕ, written

(W ,R)  ϕ

whenever (W ,R,V ) satisfies ϕ for ever map V : P → ℘W .

Validity over a class F of frames:

�F ϕ whenever (W ,R)  ϕ for every (W ,R) ∈ F.

Different properties of R lead to different logics:

For instance, S4 is the modal logic where R is reflexive and
transitive. Observe that R can have properties that are not
elementary.
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Hilbert Calculus for Modal Logic

Modal K (no properties on R)

Axioms

The usual ones for propositional logic plus

K (�(ϕ1 ∧ ϕ2)) ≡ ((�ϕ1) ∧ (�ϕ2));

Rules

MP
ϕ1 ϕ1 ⊃ ϕ2

ϕ2
and Nec

ϕ

�ϕ

Modal S4 (R reflexive and transitive) is

Modal K + Axioms T (�ϕ)⊃ ϕ and 4 (�ϕ)⊃ (��ϕ).
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General Form of Completeness Results

Proposition

`K ϕ if and only if �F ϕ

where F is the class of all frames.

`S4 ϕ if and only if �Frt ϕ

where Frt is the class of all reflexive and transitive frames.

Is it always possible to obtain such nice results? The end of the
story is not here...
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General Kripke Frames: Motivation

The so called McKinsey formula

(�♦ϕ)⊃ (♦�ϕ)

is not satisfied in the frame (N, <).

But it is a valid formula whenever a valuation assigns a finite or
a co-finite set of natural numbers to each p ∈ P.

That is, we need to work with general Kripke frames.
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General Kripke Frames

A general Kripke frame is a triple (W ,R,A) where (W ,R) is a
frame and A ⊆ ℘W fulfils the following closure properties:

if A ∈ A then W \ A ∈ A;

if A1,A2 ∈ A then A1 ∪ A2 ∈ A;

if A ∈ A then
{w ∈W : ∀w ′ ∈W , w ′ ∈ A whenever wRw ′} ∈ A;

A general Kripke structure is a tuple (W ,R,A,V ) where
(W ,R,A) is a general Kripke frame and V : P → A is a map.

Then
(N, <,A,V )  (�♦ϕ)⊃ (♦�ϕ)

where A is the class of all finite and cofinite subsets of N.
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Algebraic Semantics via Modal Algebras

A modal algebra is a tuple A = (A,u,t,A,−,>,�) where
(A,u,t,A,−,>) is a Boolean algebra, � : A→ A satisfies the
following identities:

�(a1 u a2) = (�a1 u�a2) and �> = >.

A modal algebraic structure is a pair (A,V ) where V : P → A
is a map.
The denotation of ϕ in

[[ϕ]]A,V ∈ A

is inductively defined as follows:

[[p]](A,V ) = V (p) for p ∈ P;

[[¬ψ]](A,V ) = −[[ψ]](A,V );

[[ψ1 ⊃ ψ2]](A,V ) = [[ψ1]](A,V ) A [[ψ2]](A,V );

[[�ψ]](A,V ) = �[[ψ]](A,V ).
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Observation

The denotation of ϕ in

Kripke semantics is such that

[[ϕ]](W ,R,V ) ∈ ℘W

general Kripke semantics is such that

[[ϕ]](W ,R,A,V ) ∈ A

modal algebra semantics

[[ϕ]](A,V ) ∈ A
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Stone Representation (The Simpler View)

Modal Algebraic Structures −→g D General Kripke Structures

D General Kripke Structures −→h Modal Algebraic Structures
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Stone Representation

Let g be such that

g(A,V ) = (W ,R,V )

where

W is {U ⊆ A : U is an ultrafilter of A}
URU ′ whenever for every a ∈ A if �a ∈ U then a ∈ U ′

V (p) = {U ∈W : V (p) ∈ U}.

Proposition

For every U ∈W ,

[[ϕ]]A,V ∈ U if and only if (W ,R,V ),U  ϕ.

Furthermore,

(A,V )  ϕ if and only if (W ,R,V )  ϕ.
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Stone Representation

A filter of a modal algebra A, is a set F ⊆ A such that:

> ∈ F

if a, b ∈ F then a u b ∈ F

if a ∈ F and a ≤ b then b ∈ F .

A filter F is a ultrafilter whenever:

⊥ /∈ F

for every a ∈ A either a ∈ F or −a ∈ F .
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Stone Representation

Let h be such that

h(W ,R,A,V ) = (A,∩,∪,−.�,W ,V )

where

−Z = W \ Z ;

�Z = {w ∈W : w ′ ∈ Z whenever wRw ′}.

Proposition

For every w ∈W ,

(W ,R,A,V ),w  ϕ if and only if w ∈ [[ϕ]]((A,∩,∪,−.�,W ),V ).

Furthermore,

(W ,R,A,V )  ϕ if and only if ((A,∩,∪,−.�,W ),V )  ϕ.
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Topological Semantics for S4

A topological structure is a triple (X , τ,V ) where (X , τ) is a
topological space and V : P → ℘X is a map. A topological
structure (X , τ,V ) and x ∈ X (locally) satisfy ϕ, written

(X , τ,V ), x  ϕ

whenever

(X , τ,V ), x  p whenever x ∈ V (p);

(X , τ,V ), x  ¬ψ whenever (X , τ,V ), x 6 ψ;

(X , τ,V ), x  �ψ whenever there is U ∈ τ such that

x ∈ U and (X , τ,V ), y  ψ for all y ∈ U;

(X , τ,V ), x  ψ1 ⊃ ψ2 whenever either (X , τ,V ), x 6 ψ1

or (X , τ,V ), x  ψ2;
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Topological Semantics for S4

The denotation of a formula

[[ϕ]](X ,τ,V ) ⊆ X

Proposition

[[�ψ]](X ,τ,V ) = ([[ψ]](X ,τ,V ))◦.
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Topological Semantics for S4

[[�(ϕ ∧ ψ)]](X ,τ,V ) = [[�ϕ]](X ,τ,V ) ∩ [[�ψ]](X ,τ,V ) K

([[ϕ ∧ ψ)]](X ,τ,V ))◦ = ([[ϕ]](X ,τ,V ))◦ ∩ ([[ψ]](X ,τ,V ))◦

[[ϕ ∧ ψ]](X ,τ,V ) = [[ϕ]](X ,τ,V ) ∩ [[ψ]](X ,τ,V );

([[ϕ]](X ,τ,V ) ∩ [[ψ]](X ,τ,V ))◦ = ([[ϕ]](X ,τ,V ))◦ ∩ ([[ψ]](X ,τ,V ))◦.

X ◦ = ([[>]](X ,τ,V ))◦ = [[�>]](X ,τ,V ) = [[>]](X ,τ,V ) = X

([[ϕ]](X ,τ,V ))◦ ⊆ [[ϕ]](X ,τ,V )

([[ϕ]](X ,τ,V ))◦ ⊆ (([[�ϕ]](X ,τ,V ))◦)◦
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Topological Semantics for S4

Let g and h be such that

g(W ,R) = (W , {A ⊆W : A is R upclosed of (W ,R)})

and
h(X , τ) = (X , {(x , y) : y ∈ Cl(x)})

Proposition

S4 is sound and complete with respect to topological semantics.
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Kripke Semantics for Intuitionistic Logic

The propositional connectives are not abbreviations of each
other. In the sequel ∼ is the symbol adopted for negation.

The Gödel map provided a translation from

τ : LInt → LS4

as follows

τ(p) = �p

τ(ϕ1 ∗′ ϕ2) = τ(ϕ1) ∗ τ(ϕ2) where ∗ ∈ {∧,∨}
τ(ϕ1 ⊃′ ϕ2) = �(τ(ϕ1)⊃ τ(ϕ2))

τ(∼ ϕ) = �¬ τ(ϕ).
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Intuitionistic Structures

An intuitionistic structure is a triple (D, S ,V ) where (D, S) is
a preorder and V : P → ℘D fulfilling the hereditary property:

if d ∈ V (p) then d ′ ∈ V (p), for every d ′ ∈ D such that dSd ′.

Surprise:

p∨∼ p is no longer a valid formula.

The triple (D,S ,V ) where D = {d1, d2},
S = {(d1, d1), (d2, d2), (d1, d2)} and V (p) = {d2} is an
intuitionistic structure. However,

(D, S ,V ), d1 6 p and (D,S ,V ), d1 6∼ p
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Intuitionistic Logic and S4 Modal Logic

Intutionistic Language −→τ Modal language

Intuitionistic Structures −→id S4 Kripke Structures

S4 Kripke Structures −→f Intuitionistic Structures
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From Intuitionistic Logic to S4

Proposition

(D,S ,V ), d Int ϕ if and only if (D, S ,V ), d S4 τ(ϕ).

In particular,

(D, S ,V ), d Int p if and only if (D, S ,V ), d S4 �p.
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From S4 to Intuitionistic Logic

Let f be such that

f (W ,R,V ) = (W ,R,V ′)

where V ′(p) = {w ∈W : (W ,R,V ),w  �p}.

Proposition

(W ,R,V ′),w Int ϕ if and only if (W ,R,V ),w S4 τ(ϕ).

In particular,

(W ,R,V ′),w Int p if and only if (W ,R,V ), d S4 �p.

’



Facets and
Parallel

Universes of
Modal Logic

Cristina
Sernadas

Parallel Worlds: Linear Temporal Logic

Propositional Language + Xϕ, ϕ1Uϕ2 ∈ LP :

Semantics is a family V = {Vk}k∈N such that Vk ⊆ P

V , k  p whenever p ∈ Vk

V , k  Xϕ whenever V , k + 1  ϕ

V , k  ϕ1Uϕ2 whenever there is n ∈ N such that
V , k + i  ϕ1 for every i < n and V , k + n  ϕ2

� ϕ whenever V , 0  ϕ for every V .

Important abbreviations

Fϕ =abb >Uϕ and Gϕ =abb ¬F¬ϕ
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Parallel Worlds: Linear Temporal Logic

LTL is not compact: indeed,

{Xkϕ : k ∈ ω} � Gϕ

but there is no finite subset Ψ of {Xkϕ : k ∈ ω} such that
Ψ � ϕ

LTL is not (strongly) complete
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Parallel Worlds: Linear Temporal Logic

LTL is a fusion (with interaction) of modal logics

Axiom ¬Xϕ ≡ X¬ϕ
Axiom (ϕ1Uϕ2)⊃ Fϕ2

Axiom (ϕ1Uϕ2) ≡ (ϕ2 ∨ (ϕ1 ∧ X(ϕ1Uϕ2))
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Parallel Worlds: Deontic Logic

SDL axiomatized as modal logic K plus

D (�ϕ)⊃ (♦ϕ)

SDL+ axiomatized as modal logic SDL plus

D+ �((�ϕ)⊃ ϕ)

How to avoid axiom K?
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Parallel Worlds: Neighbourhood Semantics

A neighbourhood structure is a pair (W ,R,V ) where W is a
non empty set, R ⊆W 3 and V : P → ℘W . Then

(W ,R,V ),w  �ϕ

whenever, for every w ′,w ′′ ∈W ,

if wRw ′w ′′ then

either (W ,R,V ),w ′  ϕ or (W ,R,V ),w ′′  ϕ.

Observe that

6� ((�ϕ1) ∧ (�ϕ2))⊃ (�(ϕ1 ∧ ϕ2)).
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Parallel Worlds: Logic of Programs

Let Π be a set of atomic programs. The set LΠ of programs is
inductively defined as follows:

Π ⊆ LΠ;

α;β, α ∪ β ∈ LΠ whenever α, β ∈ LΠ;

α∗ ∈ LΠ whenever α ∈ LΠ;

ϕ? ∈ LΠ whenever ϕ ∈ LP ;

Moreover, LP is a propositional language with mixed formulas
of the form

[α]ϕ

where α ∈ LΠ and ϕ ∈ LP . Each [α] is a modal operator.
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Parallel Worlds: Logic of Programs

Semantics given by multimodal Kripke structures

M = (W , {Rα}α∈LΠ
,V )

[[[α;β]]]M = [[α]]M ◦ [[β]]M

[[[α∗]]]M = ([[α]]M)∗

[[[α ∪ β]]]M = [[α]]M ∪ [[β]]M

[[ϕ?]]M = {(w ,w) ∈W 2 : w ∈ [[ϕ]]M};

[[[α]ϕ]]M = {w∈W : if wRαw
′ then w ′∈[[ϕ]]M ,w ′ ∈W }.
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Parallel Worlds: Logic of Programs

Some Axioms

[α;β]ϕ ≡ [α][β]ϕ

[ϕ?]ψ ⊃ (ϕ⊃ ψ)

ϕ⊃ (([α∗](ϕ⊃ [α]ϕ))⊃ [α∗]ϕ)
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Parallel Worlds: Hoare Logic

An assertions
{ϕ}α {ψ}

is an abbreviation of ϕ⊃ ([α]ψ).

While Rule
{ϕ ∧ ψ}α {ψ}

{ψ}whileϕdoα{(¬ϕ) ∧ ψ}
where whileϕdoα is an abbreviation of

(ϕ?;α)∗; (¬ϕ)?
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Parallel Worlds: Epistemic Logic

Multimodal Logic with a finite family of operators

{Ka}a ∈ A

where A is a finite set.

We can write formulas like this one

(KaKbp)⊃KbKaKbp.

A possible axiom is

(¬Kap)⊃Ka ¬Kap

which is true in Euclidean frames.
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Parallel Worlds: Evidence Logic

Assume that

φ is either t · p or −(t · p) meaning that p holds at t and
p does not hold at t

a : φ and −a : φ meaning that agent a claims φ and agent
a does not claim φ, respectively

a : �φ states that there are no agents at least as
trustworthy with respect to φ as a that state −φ. That is,
each agent at least as trustworthy with respect to p as a
does not claim −φ

aEvarP(φ)b means that agent b is more trustworthy than
agent a with respect to the variable in φ
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Parallel Worlds: Evidence

Axiomatization of �

(∧
b∈A

(aEvarP(φ)b ⊃ ¬ b : −φ)

)
⊃ a : �φ

and
(aEvarP(φ)a

′ ∧ a′ : −φ)⊃ ¬ a : �φ
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Parallel Worlds: Provability Logic GL (Gödel-Löb)

After Gödel Second Incompleteness Theorem

Modal Logic K + GL (�((�p)⊃ p))⊃ (�p)

The binary relation R ⊆W 2 is converse wellfounded if for
every non-empty set X ⊆W there is w ∈ X such that for every
x ∈ X it is not the case that wRx .

Proposition

`GL ϕ if and only if �Fcwf
ϕ

where Fcwf is the class of all converse wellfounded.
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Parallel Worlds: Spatial

S4.2 is S4+ the axiom

(♦�p)⊃ (�♦p)

corresponding to the first-order property

∀x1, x2((xRx1 ∧ xRx2)⊃ (∃y (x1Ry ∧ x2Ry))

It is related to Relativity:

if there are two different causal futures of some world then
there is a common future history.
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Open Questions in Heaven

Generalized modalities for axiomatizing qualitative properties in
measure theory and in probability concepts like almost
everywhere and very unlikely

�AE ϕ and �VL ϕ
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Open Questions in Heaven

Complete axiomatization of geometric notions like betweeness

Enrichment of propositional with the operator B leading to
formulas of the kind B(ϕ,ψ). Let R ⊆W 3 be a relation. Then

(W ,R,V ),w  B(ϕ,ψ)

whenever there are w1,w2 ∈W such that{
R(w1,w ,w2)

(W ,R,V ),w1  ϕ and (W ,R,V ),w2  ψ.

Then

(W ,R,V ),w  B(ϕ,B(ψ, δ))⊃ B(B(ϕ,ψ), δ)

holds of and only if (Pash axiom)

∀t,x ,y ,z ,u((R(x , t, u) ∧ R(y , u, z))⊃ (∃v(R(x , v , y) ∧ R(v , t, z))
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Open Questions in Heaven

Algebraic semantics for non-normal modal logics in particular
and neighbourhood semantics in general

Dynamic quantum logic incorporating compatible observables

Many Questions in Parallel Universes

Many Questions in Combination of Logics
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Challenges on Earth and in Hell

Is modal logic relevant for

AI H yes ⊃ G yes

Security P yes ⊃ G yes

ML That’s a good question! FG yes

Climate change I believe...

Medical applications I believe...

Real jobs
Yes e.g Specification and Verification, Model Checking
and Information Security

a CEO Quantum superposition of Yes and No


