Learning to Solve the Traveling Salesman Problem
with Transformers

Xavier Bresson

e NANYANG School of Computer Science and Engineering
TECHNOLOGICAL NATIONAL RESEARCH FOUNDATION

UNIVERSITY Data Science and AI Research Centre FRIME SUINIFTER'S QEEICE
BINERPORE Nanyang Technological University (NTU), Singapore

Joint work with Thomas Laurent (LMU)

Seminar series on "Mathematics, Physics and Machine Learning"
Instituto Superior Técnico
Jan 27t 2021

Organizer : Prof. Mario Figueiredo

Xavier Bresson 1

Xavier Bresson

History of TSP
Traditional Solvers
Neural Network Solvers
Proposed Architecture
Numerical Results
Discussion

Conclusion

Outline

Outline

e History of TSP
°

Xavier Bresson

Traveling Salesman Problem (TSP)

@ TSP : “Given a list of cities and the distances between each pair of cities,
what is the shortest possible path that visits each city exactly once and
returns to the origin city?” — First mathematical formulation by W.
Hamilton 1805-1865.

@ TSP belongs to the class of routing problems which are used every day in
industry (warehouse, transportation, supply chain, hardware design,
manufacturing, etc).

@ TSP is NP-hard, exhaustive search has a complexity in O(n!).

@ TSP is the most popular and most studied combinatorial problems, starting
with von Neumann (1951).

@ TSP has driven the discovery of several important optimization techniques :
Cutting Planeslll, Branch-and-Bound[?, Local Searchl®l, Lagrangian
Relaxation!, Simulated Annealingll.

[1] Dantzig, Fulkerson, Johnson, 1954

[2] Bellman, Held, Karp, 1962

[3] Croes, A method for solving traveling-salesman problems, 1958

[4] Fisher, The Lagrangian Relaxation Method for Solving Integer Programming Problems, 1981
[5] Kirkpatrick, Gelatt, Vecchi, Optimization by Simulated Annealing, 1983

Xavier Bresson

Outline

@ Traditional Solvers

Xavier Bresson

Traditional TSP Solvers

@ Two traditional approaches to tackle combinatorial problems :

@ Exact algorithms : Exhaustive search or Integer Programming. These algorithms are
guaranteed to find optimal solutions, but they become intractable for n>20-40.

@ Approximate/heuristic algorithms : These algorithms trade optimality for computational
efficiency. They are problem-specific, often designed by iteratively applying a simple man-
crafted rule, known as heuristic. Their complexity is polynomial and their quality depends
on an approximate ratio that characterizes the (worst/average-case) error w.r.t the optimal
solution.

Xavier Bresson 6

Exact TSP Solvers

o Exact algorithms :
@ Dynamic programminglll : O(n?2"), intractable for n>40.
@ Gurobil? : General purpose Integer Programming (IP) solver with Cutting Planes (CP) and
Branch-and-Bound (BB).

@ ConcordeBl : Highly specialized linear IP+CP+BB for TSP. Concorde is widely regarded as
the fastest exact TSP solver, for large instances, currently in existence.

@ TSP can be formulated as Integer Linear Programming (ILP) problem :

n%in Z det. S.t.

Z To =2 YvoeV
eeCut({v},V—{v})
Y =22 VSCV,S#0,S#V
e€Cut(5,5°)
where Cut(A, A°) = {ey s.t. v € A0 € A°}
zo € {0,1} VecE

[1] Held, Richard, A dynamic programming approach to sequencing problems, 1962
[2] Gu, Rothberg, Bixby, Gurobi, 2008
|3] Applegate, Bixby, Chvatal, Cook, The Traveling Salesman Problem: A Computational Study, 2006

Xavier Bresson

IP Solvers

@ Interpretation :

rréin Z deT. S.t.

Z Te=2 YveV
eeCut({v},V—{v})

Y m>2 VSCV,S#D.S£V
e€Cut(S,5°)
where Cut(A4, A°) = {eyw s.t. v E A0 € A°}
z. €{0,1} VeeFE

Sub-contour constraints that
guarantee a feasible tour.

Z z.>2 VYSCV

Xavier Bresson ecCut(5,5¢)

Satisfied

D

eeCut({v},V—{v})

<>

Not satisfied

r.=2 YveV

IP Solvers

ILP problems are NP-hard because the space of optimization is binary x. € {0,1}.

ILP can be relaxed as a Linear Programming (LP) problem[!l with «, € [0,1] of the standard
form :

min d'x s.t. Az < b,x >0 Polytope
I

LP problems can be solved in O(n?5) but all possible sets S makes the problem intractable.
Candidates S that violate the sub-group constraint must be identified and added to the LP
problem to get a valid tour.

This leads to the Cutting Planes techniquelll, which iteratively solves LP problems by adding
linear inequality constraints.

Polytope i
dTx

[1] Dantzig, Fulkerson, Johnson, 1954

Xavier Bresson

IP Solvers

@ Solving a LP problem does not guarantee a discrete solution x,
€ {0,1}, and continuous values lead to a choice to select or not
the edge in the tour (hence changing the candidates S). This
leads to a tree of possible solutions, and the branch-and-bound
techniquelll discards branches of the search space that provably

do not contain an optimal solution. / \

Discarded solution with an

@ Overall complexity for Concorde/Gurobi is O(n?®b(n)), with upper bound
O(n??) for LP and O(b(n)) for the number of branches to

explore.

[2] Bellman, Held, Karp, 1962

Xavier Bresson

Heuristic Solvers

® Approximate/heuristic algorithms :

@ Christofides algorithml!l : Approximation based on minimum spanning tree. Polynomial-
time algorithm with O(n? logn) that is guaranteed to find a solution within a factor 3/2 of
the optimal solution.

@ 2-Opt algorithm(? : Heuristic is based on a move that replaces two edges to reduce the tour
length. Complexity is O(n? m(n)), where n?is the number of node pairs and m(n) is the
number of times all pairs must be tested to reach a local minimum with worst-case being
O(27/2). The approximation ratio is then 4/vn.

o Farthest/nearest/greedy insertion algorithmP : Complexity is O(n?) and the approximation
ratio is 2.43 for farthest insertion (best insertion in practice).

@ Google OR-Tools!¥ : Highly optimized program that solves TSP and a larger set of vehicle
routing problems. This program applies different heuristics s.a. Simulated Annealing,
Greedy Descent, Tabu Search, to navigate in the search space, and refines the solution by

Local Search techniques. 2-Opt move
« X » = & »

[1] Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, 1976

[2] Johnson, McGeoch, The traveling salesman problem: A case study in local optimization, 1995 Farthest Farthest
[3] Johnson, Local Optimization and the Traveling Salesman Problem, 1990 . Insertion . Insertion
[4] Google OR-tools: Google's Operations Research tools, 2015 @ i #
Xavier Bresson O o ®

Traditional Solvers

@ Hierarchy of traditional TSP algorithms :

2.43 3/2 4/Vn 0 0 0

| I I | I I Exactness
| | | | | | >

O(n?) O(n?logn) O(n?m(n)) O(n?5b(n)) O(n?2m) O(n!)
| | | | | | Complexity
1 | T T T 1 >

Farthest Christofides!’! 2-Opt!4 Concordel?l/ Dynamic Exhaustive

Insertion!®! Gurobi®l Programming/!! search
H_/
Tractable (W / Intractable for n>20

one computer)
[1] Held, Richard, A dynamic programming approach to sequencing problems, 1962 _
[2] Applegate, Bixby, Chvatal, Cook, The Traveling Salesman Problem, 2006 up to ’I’L—].,OOO Intractable for n>40

[3] Gu, Rothberg, Bixby, Gurobi, 2008

[4] Johnson, McGeoch, The traveling salesman problem: A case study in local optimization, 1995
[5] Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, 1976
[6] Johnson, Local Optimization and the Traveling Salesman Problem, 1990

Xavier Bresson

Xavier Bresson

Neural Network Solvers

Outline

13

Deep Learning for the TSP Combinatorial Problem

@ DL has significantly improved Computer Vision, Natural Language Processing and Speech
Recognition in the last decade by replacing hand-crafted visual/text/speech features by features
learned from datall:2l.

@ For combinatorial problems, the main question is whether DL can learn better heuristics from
data, i.e. replacing human-engineered heuristics?

@ This is appealing because developing algorithms to tackle efficiently NP-hard problems
may require years of research (TSP has been actively studied for 60 years). Besides, many
industry problems are combinatorial by nature.

@ The last five years have seen the emergence of promising techniques where (graph) neural
networks have been capable to learn new combinatorial algorithms with supervised or
reinforcement learning.

[1] LeCun, Bottou, Bengio, Haffner, Gradient Based Learning Applied to Document Recognition, 1998
[2] LeCun, Bengio, Hinton, Deep learning, 2015

Xavier Bresson

Neural Network Solvers

o Hopfield Netsl!l : First NN to solve (small) TSPs.

@ PointerNetsl?l : Pioneer paper using modern DL to tackle TSP and combinatorial optimization
problems. Combine recurrent networks to encode the cities and decode the node sequence of the
tour (auto-regressive decoding), and attention mechanismPl (similar idea thanll that was
applied to NLP with great success). Supervised learning with approximate TSP solutions.

v v v 2
v v v v },
S A A A A e s e LR
|
[hf;] > [@fl = [hg} e > [/@} | > | e [> [hgiec] = |hge B e
.................... |
|

LT
L
~,
......
.,
LE]
"

-
-
-
-
-
-
-

I I R R R ORI IR EEIRTET—— — e o e s s]

Encoder Decoder

[1] Hopfield, Tank, Neural computation of decisions in optimization problems, 1985
[2] Vinyals, Fortunato, Jaitly, Pointer networks, 2015
[3] Bahdanau, Cho, Bengio, Neural machine translation by jointly learning to align and translate, 2014

Xavier Bresson

Neural Network Solvers

o PointerNets+RLl! : Improvel? with Reinforcement Learning (no TSP solutions required). Two
RL approaches : A standard unbiased reinforce algorithml®l and an active search algorithm that
can explore more candidates. The tour length is used as the reward.

@ Order-invariant PointerNets+RL4 : Improvel? which is not invariant by permutations of the
order of the input cities (which is important for NLP but not for TSP). That requiresl? to
randomly permute the input order to make the network learn this invariance.

@ S2V-DQNDBI: A graph network that takes a graph and a partial tour as input, and outputs a
state-valued function Q to estimate the next node in the tour. Training is done by RL and
memory replaylfl, which allows intermediate rewards that encourage farthest node insertion
heuristic.

@ Quadratic Assignment Problem!” : TSP can be formulated as a QAP, which is NP-hard and
hard to approximate. A graph network based on the powers of adjacency matrix of node
distances is trained in supervised manner. The loss is the KL distance between the adjacency
matrix of the ground truth cycle and its network prediction. A feasible tour is computed with
beam-search.

[1] Bello, Pham, Le, Norouzi, Bengio, Neural combinatorial optimization with reinforcement learning, 2016
[2] Vinyals, Fortunato, Jaitly, Pointer networks, 2015

[3] Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, 1992
[4] Nazari, Oroojlooy, Takac, Snyder, Reinforcement Learning for Solving the Vehicle Routing Problem, 2018
[6] Khalil, Dai, Zhang, Dilkina, Song, Learning combinatorial optimization algorithms over graphs, 2017

[6] Mnih et al, Playing Atari with Deep Reinforcement Learning, 2013

Kavier B [7] Nowak, Villar, Bandeira, Bruna, A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks, 2017
Xavier Bresson

16

Xavier Bresson

Neural Network Solvers

Permutation-invariant Pooling Networkl!l : Solve a variant of TSP with multiple salesmen. The
network is trained by supervised learning and outputs a fractional solution, which is
transformed into a feasible integer solution by beam-search. Non-autoregressive approach.

Tranformer-encoder+2-Opt heuristicl? : Use standard transformer to encode the cities and
decode sequentially with a query composed of the last three cities (the cities before are

ignored). Train with Actor-Critic RL, and solution is refined with a standard 2-Opt heuristic.

Tranformer-encoder+Attention-decoder® : Also use standard transformer to encode the cities
and decode sequentially with a query composed of the first city, the last city in the partial tour
and a global representation of all cities. Train with reinforce and a deterministic baseline.

GraphConvNetM : Learn a deep graph network by supervision to predict the probabilities of an
edge to be in the TSP tour. A feasible tour is generated by beam-search. Non-autoregressive
approach.

[1] Kaempfer, Wolf, Learning the Multiple Traveling Salesmen Problem with Permutation Invariant Pooling Network, 2018
[2] Deudon, Cournut, Lacoste, Adulyasak, Rousseau, Learning Heuristics for the TSP by Policy Gradient, 2018

[3] Kool, Van Hoof, Welling, Attention, learn to solve routing problems!, 2018

[4] Joshi, Laurent, Bresson, An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem, 2019

Neural Network Solvers

@ 2-Opt Learningl!l : Design transformer-based network to learn to select nodes for the 2-Opt

heuristics (original 2-Opt may require O(2"/2) moves before stopping). Learn by RL and actor-
critic.

@ GNNs with Monte Carlo Tree Searchl? : Inspired by AlphaGol3l, augment graph network with

Xavier Bresson

MCTS to improve the search exploration of tours by evaluating multiple next node candidates
in the tour (auto-regressive methods cannot go back to the selection of the nodes).

[1] Wu, Song, Cao, Zhang, Lim, Learning Improvement Heuristics for Solving Routing Problems, 2020
[2] Xing, Tu, A Graph Neural Network Assisted Monte Carlo Tree Search Approach to Traveling Salesman Problem, 2020
[3] D. Silver et al, Mastering the game of go with deep neural networks and tree search, 2016

Outline

@ Proposed Architecture

Xavier Bresson 19

Our Approach

@ We cast TSP as a “translation” problem :

@ Source is a set of 2D points.

@ Target is a tour (sequence of indices) with minimal length.
@ Motivation : The translation problem has seen significant progress with Transformerslll.
@ We train by reinforcement learning, with the same setting asl?l for comparison.

@ The reward is the tour length and the baseline is simply updated if the train network
improves it on a set of TSPs.

Input /source Output/target

[1] Vaswani et al, Attention is all you need, 2017
[2] Kool, Van Hoof, Welling, Attention, learn to solve routing problems!, 2018

Xavier Bresson

Xavier Bresson

Proposed Architecture

I

: Index
I Samphng,r
I

dec
[p start

19

)

13

]kl

Mask of Visited
Nodes M1

Encoded Nodes H®"¢

Final Attention Layer between h; and Encoded Nodes €

t

q
hstart

i\

¢

/M

BHE -

A
r N\
{}LTHC] hgl]C] ves [h?LHC]
Self-Attention Layer applied to (z,2s,...,2,) X Le°

t
| | ¢

LR] [xn]

Encoder

Attention Layer between node ¢ and Encoded Nodes €

1

¢

| L

1

|

] eee

X Ldec

Self-Attention Layer applied to (hy9,hyde,..

. htdec)

T

-

]

+PE,

+PE; +PE;

Decoding is auto-
regressive, one node
at a time.

@ Standard Transformer encoder :

Xavier Bresson

used.

Fene — HE:LG“C e Rnxd

where
HKZO — X = Rnx2

¢
H*™! = softmax(

T

Qﬁ — HEWCS c Rnxd
K*= H'Wj, e R"
V= HWy e "¢

Vd

@ Multi-head attention, residual
connection, batch normalization are

|
|
|
|
|
|
Memory/speed complexity is O(n?). |
|
|
|
|
|
|
|
|

)Vﬁ c Rnxd,

Encoder

¢

\
{h%n(:]

il b Ll E L bbbt |
Encoded Nodes H°"¢
A
p
-
Self-Attention Layer applied to (xz;,2s,...,2,) X L€
[.’El] {I?Q‘l see
Encoder
o1
o Encoder
O O of all cities
° (single pass)
e 2
o —
() o
o
X

(]
. enc
hott
@
o
®
henc . .
o
. . h;n(‘,
enc

[\
[}

Xavier Bresson

Decoder

The decoding is auto-regressive, one city
at a time.

Suppose we have decoded the first ¢-1
cities in the tour, and we want to predict
the next city.

The decoding process has four steps :
@ Part 1 : Start with encoding of the %,
city + positional encoding.
@ Part 2 : Encode " city with the
partial tour using self-attention.

@ Part 3 : Query the next city with the
non-visited cities using multi-head
attention.

@ Part 4 : Final query using a single-
head attention + index sampling.

Index 4 1 o ig

Sampling 1‘ T

AN
] b]

Mask of Visited
Nodes M1

Final Attention Layer between h; and Encoded Nodes €

(R |

sl 1) b

/M

()

Attention Layer between node ¢ and Encoded Nodes €

tt

R

X Ldec

Self-Attention Layer applied to (hy9%,hyde,..., hde)

{ N -

]]]

+PE, +PE; +PE,

Decoding is auto-
regressive, one node
at a time.

Xavier Bresson

Decoder

Part 1 : Start decoding with the encoding
of the previously selected i; city :

h{°® = h$™ + PE, € R
hdec o hdec — 2+ PE c Rd
t=0 — Nstart — < t=0
\ Learnable start vector,

initialized at random.

Add positional encoding (PE) to order the
nodes in the tour :

PE, € R?

PE, . — sin(27 f;t) if ¢ is even,
B2 cos(2mfit) if i is odd,

10,000 277
27 '

Decoding is auto-

|
I
I
higse | | hL| | S «e+ regressive, one node :
at a time. |
+PEy +PE; +PEs :
Decoder
° Start with 1, b = hgre
(] enc prGViOUSIY [] 9 hflcc — penc
Py o selected city 12 ‘iz
+ add PE 3 ’der‘ — pene
» 43 i3
4, hgfe = heme
henC . . . 4 ..
. = hdcc hs:c
(] P Y
= hen
d
HEHC ht ec + PEt

Decoder — Part 2

@ Part 2 : Encode #* city with the partial
tour using self-attention.

@ Multi-head attention, residual

connection, layer normalization are
used.

@ Memory/speed complexity is O(t) at
each recursive step.

¢t
Vd
i = ! € RY

K* = H{ ,Wf € R™
V= H{ W e R

Rt = softmax(WEeRY, £=0,.., L% —

hdec if ¢ =0

PIE _ 74 By ¥4 AEZ
1,t [hla 7ht]7 h’t h?,ﬁ f0>0

Xavier Bresson

1

LR |

AU
OGO - e

{ I R B

]]

+PEy +PE; +PE, +PE;

Decoding is auto-
hgee| | hgec «++ regressive, one node

|

|

|

|

|

|

|

|

|

Self-Attention Layer applied to (hy%,hy2,..., hd*) |
|

|

|

|

|

at a time. :
|

Un-vis

citie:

1
Encode the new ° .\)

city with the °
partial tour
— e
4
e tial tour L

hie + PE,

>
&

ot

Decoder — Part 3

@ Part 3 : Query the next city with the non-
visited cities using attention.

@ Multi-head attention residual

connection, layer normalization are
used.

@ Memory/speed complexity is O(n) at
each recursive step.

el
Vd
o = hF 1TV € RY
K¢ — HencWIe; c R*d
VE _ HencW‘E/ c Rtxd

REETY = softmax(

Xavier Bresson

OMHVEeR?, £ =0,..., L3 —

HeIlC

1

Un-vis

r —————————————————————————————————————
S S S Sy]

I h B pa Mask of Visited

| start ! 2 Nodes M;

| y

I

t ot

~J [H E

B e e e e e e e e e e e e e

|
|
|
|
|
|
|
|
Attention Layer between node ¢ and Encoded Nodes € :
|
|
|
|
|
|
|

Decoder
1
Query the P .\ 9
next city to P \
add the tour
citie: : o
4
tial tour © 5
D
hy hy!

Decoder — Part 4

@ Part 4 : Final query using attention +
index sampling.

@ Single-head attention is used to get a
distribution over the non-visited
cities.

@ Finally, the next node %;,; is sampled
from the distribution using Bernoulli
during training and greedy (index
with max probability) at inference
time.

@ Memory/speed complexity is O(n).

dec — softmax(C tanh(ﬁ O M) € R"
pt \/E t I
with

q = hiW, € R

K = HencWK c Rnxd

Xavier Bresson

Un-vis

——————————————————————————————————————
Index 1 o ig

L N .
]]

Final Attention Layer between h; and Encoded Nodes €

2] [[

Decoder

Mask of Visited
Nodes M;

Query the next
city to add the
tour with single-
head attention

=

tial tour

citie:

[N}

-3

Architecture Comparison

@ Transformers for NLP (translation) vs. TSP (combinatorial optimization) :
@ Order of input sequence is unknown for TSP.
@ Order of output sequence is coded with PEs for both TSP and NLP.
@ TSP-Encoder benefits from Batch Normalization (one-shot encoding of all cities).
@ TSP-Decoder uses Layer Normalization as with NLP (auto-regressive decoding).

@ TSP transformer is learned by Reinforcement Learning (no TSP solutions/approximations
required).
@ Both transformers for NLP and TSP have quadratic complexity O(n?L).

Xavier Bresson 28

Architecture Comparison

@ Models of Kool-etalll and Deudon-etal? :
@ We use the same transformer-encoder (with BN).
@ Our decoding architecture is different :
Our query uses all cities in the partial tour with a self-attention module.
Kool-etal use the first and current cities with a global representation of all cities as the

query for the next city.

Deudon-etal define the query with the last three cities in the partial tour.

Un-vis

citie:

1

0.\2

Our query

tial tour

Un-vis

ited

cities

1

o N,
\

Kool-etal’s query

[1] Kool, Van Hoof, Welling, Attention, learn to solve routing problems!, 2018
[2] Deudon, Cournut, Lacoste, Adulyasak, Rousseau, Learning Heuristics for the TSP by Policy Gradient, 2018

Xavier Bresson

tial tour

Un-vig

ited

cities

1

0\2

5

' ED

Paj

Deudon-etal’s query

tial tour

Xavier Bresson

Numerical Results

Outline

Numerical Experiments

@ For comparison, the same setting is used as inl!l.

Method Predicted
Tour Length
Applegate, Bixby, Chvatal, Cook (Concorde)’06 7.764
Kool, Van Hoof, Welling’18 8.12
Our implementation of Kool, Van Hoof, Welling’18 8.092
Proposed technique 8.007

Table 1: TSP100

@ Ablation study : Performance degrades if
@ PEs are removed from the decoder.

@ LN is used for the encoder and BN is used for the decoder.

[1] Kool, Van Hoof, Welling, Attention, learn to solve routing problems!, 2018

Xavier Bresson

Learning speed : Baseline perf : 8.007

8.10

8.05

Length

8.00 1

7.95 1

#TSPs

31

Numerical Experiments

@ Proposed technique vs. Concorde :

Xavier Bresson

Length w/ GNN+RL : 7.850

Length w/ Concorde : 7.697

Length w/ GNN+RL : 8.143

Length w/ Concorde : 7.719

Length w/ GNN+RL : 7.941

Length w/ Concorde : 7.722

Length w/ GNN+RL : 7.952

Length w/ Concorde : 7.876

Length w/ GNN+RL : 8.125

Length w/ Concorde : 7.821

Length w/ GNN+RL : 8.299

Length w/ Concorde : 8.087

Length w/ GNN+RL : 7.904

Length w/ Concorde : 7.767

Length w/ GNN+RL : 8.148

Length w/ Concorde : 7.987

Length w/ GNN+RL : 7.797

Length w/ Concorde : 7.624

32

Xavier Bresson

Discussion

Outline

33

Future Work

@ In this work, we essentially focused on the architecture.

@ Further developments :
@ Sampling techniques such as beam-search are known to improve the resultsl!:2:3:4],

@ Use of human-made heuristics like 2-Opt to get intermediate rewards has also shown
improvementsl (the tour length as reward requires to wait the end of the tour
construction before backpropagation).

@ Look-ahead strategies like MCTS has shown great promisel6l.

[1] Nowak, Villar, Bandeira, Bruna, A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks, 2017
[2] Kaempfer, Wolf, Learning the Multiple Traveling Salesmen Problem with Permutation Invariant Pooling Network, 2018

[3] Kool, Van Hoof, Welling, Attention, learn to solve routing problems!, 2018

[4] Joshi, Laurent, Bresson, An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem, 2019

[5] Wu, Song, Cao, Zhang, Lim, Learning Improvement Heuristics for Solving Routing Problems, 2020

[6] Xing, Tu, A Graph Neural Network Assisted Monte Carlo Tree Search Approach to Traveling Salesman Problem, 2020

Xavier Bresson

Discussion

@ Curb your enthusiasm !

@ Traditional solvers like Concorde/Gurobi (LP+CP+BB) outperform learning solvers in
terms of (1) performance and (2) generalization.

Learning speed : Baseline perf : 8.007

@ But neural network solvers have faster inference time, O(n? L) vs. O(n2® b(n)). . k

@ What’s next ?

@ The Bitter Lesson, R. Sutton, 2019 : Learn longer as we can generate an infinite number of
training data in CO.

@ Can we improve further the architecture? The learning paradigm?
Scaling to larger TSP sizes, n>1000, n>1M cities?

@ GPU memory is limited with O(n?) (Transformer architectures and auto-regressive
decoding are in O(n?)).

@ Consider “harder” TSP problems where traditional solvers like Gurobi can only provide
weaker solutions or would take very long to solve.

Xavier Bresson

Discussion

@ What’s next ?

@ Consider “harder” combinatorial problems where traditional solvers s.a. Gurobi cannot be

used :
min ¢’z st. Axr<b, >0 = min f(z) s.t. g(x) <0, h(z) =0
xz€{0,1}" xze{0,1}"
Linear /convex Convex Non-convex Non-linear
objective polytope objective constraints

@ Leverage learning techniques to improve traditional solvers :

@ Traditional solvers leverage Branch-and-Bound techniquelll. Selecting the variables to
branch is critical for search efficiency, and relies on human-engineered heuristics s.a.
Strong Branchingl? which is a high-quality but expensive branching rule. Recent
worksl34 have shown that neural networks can be successfully used to imitate expert
heuristics and speed-up the BB computational time.

@ Future work may focus on going beyond imitation of human-based heuristics, and
learning novel heuristics for faster Branch-and-Bound technique.

[1] Bellman, Held, Karp, 1962

[2] Achterberg, Koch, Martin, Branching rules revisited, 2005

[3] Gasse, Chetelat, Ferroni, Charlin, Lodi, Exact Combinatorial Optimization with Graph Convolutional Neural Networks, 2019
[4] Nair et al, Solving Mixed Integer Programs Using Neural Networks, 2020

Xavier Bresson

36

Xavier Bresson

Conclusion

Outline

37

Conclusion

@ Combinatorial optimization is pushing the limit of deep learning.

Xavier Bresson

Traditional solvers still provide better solutions than learning models.

Traditional solvers have been studied since the 1950s and the interest of applying deep
learning to combinatorial optimization has just started.

This topic of research will naturally expend in the coming years as combinatorial problems
problems s.a. assignment, routing, planning, scheduling are used every day by companies.

Novel software will be developed that combine continuous, discrete optimization and
learning techniques.

Xavier Bresson

Workshop Announcement

-

Workshops

> Deop Lec d Combinatorial Optir

Deep L ing and Combi ial O
FEBRUARY 22 - 26, 2021

/| APPLICATION & REGISTRATION

Overview
. deep learning has significanty impr of compi . natural
speech recognition. Beyond these traditional fields, deep learning has been expended to quantum chemisty, physics,
neuroscience, and more recenty to combinatorial optmization (CO). Welknown CO problems are Traveling Salesman
Probi fouting, p 9. CO s basically y
management,transportt Jy chain, public poliy,
computing and information technology.
. require
For examle, the famous than 80
years, and the best solver leverages 30 years of heuistics
science. Inthe last few years, promising with
classical CO problems such as TSP, MaxCut, Minimum Vertex Cover, Knapsack, Guackatic Assignment Problem and
oL address CO prob is hgh flexivily, :

https://www.ipam.ucla.edu/programs/workshops/deep-
learning-and-combinatorial-optimization

ORGANIZING COMMITTEE

Peter Battaglia (DeepMind Technologies)

Xavier Bresson (Nanyang Technological University, Singapore)

Stefanie Jegelka (Massachusetts Institute of Technology)

Yann LeCun (New York University, Canadian Institute for Advanced Research)
Andrea Lodi (Ecole Polytechnique de Montréal)

Stanley Osher (University of California, Los Angeles (UCLA), Mathematics)
Oriol Vinyals (DeepMind Technologies)

Max Welling (University of Amsterdam)

Speaker List

Shipra Agrawal (Columbia University, Computer Science)

Sanjeev Arora (Princeton University)

Peter Battaglia (DeepMind Technologies)

Xavier Bresson (Nanyang Technological University, Singapore)

Joan Bruna (New York University)

Laurent Charlin (HEC Montréal)

Kyle Cranmer (New York University)

Sanjeeb Dash (IBM Watson Research Center)

Santanu Dey (Georgia Institute of Technology, School of Industrial and Systems Engineering)
Bistra Dilkina (University of Southern California (USC))

Tina Eliassi-Rad (Northeastern University, Computer Science & Network Science)
Emma Frejinger (University of Montreal)

Maxime Gasse (Ecole Polytechnique de Montréal)

Stefano Gualandi (Universita di Pavia)

Oktay Gunluk (Cornell University)

Joey Huchette (Rice University)

Stefanie Jegelka (Massachusetts Institute of Technology)

Ron Kimmel (Technion - Israel Institute of Technology, Intel Perceptual Computing)
Zico Kolter (Carnegie Mellon University)

Vladlen Koltun (Intel Corporation)

Wouter Kool (University of Amsterdam)

Andrea Lodi (Ecole Polytechnique de Montréal)

Azalia Mirhoseini (Google Inc.)

Stanley Osher (University of California, Los Angeles (UCLA), Mathematics)

Sebastian Pokutta (Konrad-Zuse-Zentrum fir Informationstechnik (ZIB), Department of Mathematics)

Louis-Martin Rousseau (Ecole Polytechnique de Montréal)
Thiago Serra (Bucknell University)

Le Song (Georgia Institute of Technology)

Petar Velickovic (DeepMind Technologies)

Oriol Vinyals (DeepMind Technologies)

Ellen Vitercik (Carnegie Mellon University)

39

Xavier Bresson
xbresson@ntu.edu.sg

'%@f Thank you {» http://www.ntu.edu.sg/home/xbresson

© https://github.com /xbresson

¥ https://twitter.com/xbresson

Ed https://www.facebook.com /xavier.bresson.1

@ https://www.linkedin.com/in/xavier-bresson-738585b

40

Xavier Bresson

