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There is now a large class of observables in different gauge theories in various dimensions that

have been computed exactly, allowing us to explore fascinating aspects of gauge theories, such as

dualities, large N physics, resurgence, non-perturbative phenomena, integrable systems, Wilson

loops.

Today we discuss:

• Weak coupling expansion in four-dimensional N =2 gauge theories

• Seiberg-Witten theory for SQCD with two massive flavors.

• N =2  gauge theories on ellipsoids. Connection with WKB expansion in quantum mechanics
and Nekrasov-Shatashvili limit. 



Exact partition function for N = 2 supersymmetric YM theories on S4,  with
arbitrary matter content .                                [Pestun,  0712.2824]

),,( 1 Naadiag  VEV of scalar of vector multiplet

Partition function localizes to a finite dimensional integral over Coulomb moduli

Consider SU(N) N = 2 supersymmetric YM theories on S4 , radius R

Vector multiplet

Matter hypermultiplet mass M                                                                                  adjoint or fundamental
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SUPERSYMMETRIC LOCALIZATION
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Z = Z(g) is given in terms of a very complicated integral which must still be computed  
to be able to understand how the partition function depends on the coupling.

Z = Z(g)
Exact g dependence
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The one-loop factor
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The different multiplets contribute as follows:

Vector multiplet

Adjoint hypermultiplet

Fundamental hypermultiplet
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How can we find Z(g)?            

• Only for the N = 4 theory the integral defining Z(g) can be carried out exactly.

In N = 2 theories, we may consider limits :

I) Weak coupling. Perturbation series in g2

II) Large N,  R arbitrary   (l = g2 N fixed)
This implies two big simplifications that will allow us to determine Z exactly.

a) At N Infinity the integral is exactly determined by a saddle-point.
b) Instantons do not contribute. zinst  1 , since 

III) Finite N (e.g. SU(2))   but R Infinity [J.R. arxiv 1411.2602]

a) The integral is also exactly determined by a saddle-point, as long as a saddle-point exists
b) Instanton contribution can be incorporated exactly using Seiberg-Witten curve.
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Weak coupling expansion in four-dimensional N =2 gauge theories

Some supersymmetric observables have been computed exactly in N =2 four-dimensional
gauge theories on S4. This includes

• Free energy
• ½ BPS Circular Wilson loop
• ‘t Hooft loops
• n-point correlation functions of chiral primaries

The structure of perturbation series for all N =2 four-dimensional gauge theories on S4 turns
out to be qualitatively similar:

In all cases, perturbation series is asymptotic and Borel summable.

Discussions can be found in:

• [Aniceto, Schiappa, J.R., 1410.5834]; [J.R., 1203.5061]

• [Dunne, Shifman, Unsal, 1502.06680]

• [Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski and Pufu, 1602.05971]

• [M. Honda, 1604.08653]



Weak coupling expansion in SU(2) N =2 SCF theory 

By localization, we can compute the VEV of the circular Wilson loop or the free energy. 
The partition function is given by
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The Nekrasov instanton factor is
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Each distinct topological sector can be addressed separately, as the resurgent structure of different
topological sectors does not mix.

Consider first the zero-instanton sector, k =  0. 

The perturbative series is then obtained by expanding the one-loop factor in powers of a and 
performing the integration.



A direct approach is to consider the original integral and change integration variable
s = 2A a2 = (4 p) 2 a2 
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From this formula we can directly read off the Borel transform of Z:
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Thus the Borel transform has poles at 
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There is a single Stokes line at q =  p



One finds
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The discontinuity encodes the complete information of the asymptotic series
In particular, one can determine the large-order behavior of the coefficients of the series from the
Cauchy dispersion relation
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This leads to a precise determination of the large-order behavior of the perturbation series, which
exactly matches the analytically computed coefficients (in terms of Riemann z(2k+1)).
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The discontinuity across the Stokes line can be found from the behavior of the Borel transform
around each pole                                                                                                     [Aniceto, Schiappa, J.R]
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Instanton sectors
The instanton partition function is given in terms of factors which are rational functions
of a2.  In particular

As a result, the resurgence properties in instanton sectors are qualitatively the same as in the
zero instanton sector: resurgence acts within each instanton sector alone, with no mixing
between different instanton sectors.

Thus non-perturbative ambiguities cancel out at fixed topological charge.

They have poles at the same location as zeros of Z(0)

They modify the order of the zeros, but they do not add extra poles.

This property applies to all N = 2 theories. 
In general, the instanton partition function has poles at [Pestun, 0712.2824]
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For SU(2) gauge theories on the four-sphere, this implies poles at

There are exactly n of such poles for n1 =1,2,…,n-1, leading to a pole of order n in Zinst and a 
pole of order 2n in |Zinst|

2   , which cancels against a zero of order 2n in the one-loop factor.



In some N =2 theories, the perturbation series does not exhibit large order n! behavior.

For example, consider the partition function for SU(2) SQCD with Nf = 2 massless flavors on S4

The perturbative part is
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The Borel transform is regular. Thus, perturbation series is convergent.
Here there are gauge-theory instantons but they do not induce n! behavior.

This does not imply that the theory contain “less” Feynman diagrams at each loop order.
There are massive cancellations due to the high amount of supersymmetries.

Another example: Pure SU(2) SYM
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Perturbation theory has a finite radius of convergence, |gYM| <  2.8

The theory contains instantons, but they do not induce n! behavior.



Higher rank gauge groups

So far we discussed N =2 theories with SU(2) gauge group. 

Higher rank groups have been recently discussed by [Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski and 
Pufu, 1602.05971] and more generally by [M. Honda, 1604.08653].

Starting with the matrix integral, and changing integration variables to “spherical” coordinates 
the partition function takes the form

where is given by the integral over the “angular” coordinates of the integrand of Z.

Thus can be viewed as the Borel transform of the original perturbation series.

The structure of Borel singularities is not as explicit as in the SU(2) case.
However, one can argue that the small t expansion converges  uniformly, which allows to exchange the order of 
integrals over and perturbative sum. There are no singularities along the positive real t axes and as a result
perturbation series for any N = 2 gauge theory is Borel summable.
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Correlation functions of chiral primary operators

Chiral primary operators (CPO): Annihilated by all supercharges of one chirality.

Consider 2 pt functions:

These correlation functions can be computed exactly in any N = 2 superconformal gauge theory
by a construction based on localization recently developed by
[Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski and Pufu, 1602.05971]

The method can be used to determine correlators of the form

The deformed matrix models is
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The perturbation series is of the form

This was carried out for SU(2), SU(3) and SU(4) gauge groups. They are asymptotic with the leading behavior

Padé approximants can be used to predict the value of an+1 from the n-loop result with exponentially small error.
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Massive gauge theories: The N = 2* case

This theory is obtained by a massive deformation of N = 4 theory.
For the SU(2) theory, singularities in the Borel plane now appear at complex values

As in the N = 2 superconformal case, the singularities originate from the one-loop factor.
There are now infinite countable Stokes lines, each with one pole. Stokes discontinuities can be
computed and the resurgent behavior of Z can be studied in a similar way as in the earlier
example.
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Decompactification limit and large N phase transitions

Many novel features of massive N = 2 theories arise in the decompactification limit.

At infinite radius all singularities in the Borel plane move to infinity.

The weak coupling expansion becomes an expansion in Exp[- 8p2/l]

The mass deformation leads to drammatic effects such as phase transitions [JR, Zarembo, 1302.6968, 1309.1004].

For N = 2* at large N, they occur at:

Unlike N = 4 theory, physical observables are not smooth as a function of the coupling.

[Similar transitions occur at finite N, i.e. in N = 2* SU(N) theory, see Hollowood, Kumar. arxiv:1509.00716]
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Weak coupling expansion:

In the weak coupling phase, the free energy is given by the analytic formula

The decompactification limit produced another drammatic effect: all perturbative contributions disappeared

and only non-perturbative terms have been left.  

These non-perturbative terms are not instanton contributions. 

They represent the operator product expansion that arises after integrating out the massive hypermultiplet. 

This leads to pure SYM with dynamically generated scale

In ordinary QCD there are similar terms contributed by renormalons and implying large n! behavior. 

A striking feature is that the coefficients of  the OPE are simple rational numbers

More generally, one would expect an infinite perturbative series multiplying each exponential factor.

The OPE can thus be viewed as a transseries, where each sector has a single term.
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The Free Energy From Seiberg-Witten
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SW computes the holomorphic prepotential F(ak) in flat spacetime.

The partition function Z can then be computed by saddle-point [J.R., 1411.2602]
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Thus the saddle occurs at a particular degenerating point of the SW curve where all periods aDk vanish

For S4, e1 = e2 =1/R

[J.R., 1411.2602]
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Large N: 
Since the integrand is exp (N2 f(a)), the large N physics is also extracted from the condition aDk = 0

What does the condition aDk = 0 mean? (more generally, massless dyon singularity)

Consider a SW curve
N

N xxNxxpxpy 21
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p(x) depends on: 
- masses
- couplings
- moduli parameters {uk},  k =1,…, N-1

x2 x3 x4 x5 x6          . . . x2Nx2N-1x2N-2
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Define homology cycles an and bn
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N-1 conditions for N-1 unknowns {uk}
Substituting the solution for {uk}  into the prepotential, we find the free energy F(M,l) at large N



Example: SQCD     [J.R., 1504.02958 ]

Consider the Seiberg-Witten curve that describes N = 2 SU(N) gauge theory coupled to 2Nf

fundamental hypermultiplets of mass M
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In the continuum, large N limit, the equation is transformed into an integral equation
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reproducing exactly the same integral equation that one finds from localization.
This equation implies the existence of a phase transition, since the solution is different if x lies inside
or outside the integration region (which in turns depends on the condition 2L/M> or < 1)
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Operator product expansion in N = 2 SQCD at large N

Use exact results to compute non-perturbative physics. 
Example: all-order OPE.

Consider dynamically generated scale Leff << M. Then observables admit an expansion
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-The mass M in the denominator arises from expanding the effective action in local operators. 
-Powers of Leff in the numerator come from  the VEV of the local operators generated by the OPE. 

These VEV involve non-perturbative physics and in ordinary QCD are difficult to calculate.

From the localization formula for  SQCD with Nf flavors, we can now compute the OPE.

For M >> L , we can  expand the free energy in inverse powers of the mass:
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Example: N = 2 SU(2) SYM with two flavors
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The branch points are at the three roots e1 , e2 , e3 of the cubic polynomial.
•The cycle a defining aD surrounds e1  , e2 . 
•The cycle b defining a surrounds e2  , e3 . 

At large R, the partition function is determined by a saddle point [J.R., 1411.2602]

Saddle points occur at singularities of the SW curve. 
These are located at 
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At u u3, and M < L/2, one finds e1e2 and

If M > L/2, then e2 e3 , the cycle a does not shrink. Then aD is different from 0 in the whole complex u-plane.

At M = L/2 , all e1 , e2 , e3 branch points collapse. At this point a  M and the hypermultiplet becomes
massless. It is an Argyres-Douglas point, first found in [Argyres, Plesser, Seiberg Witten], where mutually non-local
states become massless. Thus this point represents the critical point of our phase transitions.

The Argyres-Douglas point is also a special point in the resurgent properties of the associated quantum mechanical
system [Demulder, Dorigoni and Thompson, 1604.07851]

SQCD with SU(2) gauge group
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Summarizing:
The saddle-point aD=0 occurs in the strong coupling phase L>2M
It lies at the singularity u = u3

Is there any saddle-point in the weak coupling phase L<2M  ?
Let us look for complex saddle-points. More generally, the condition is
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Hence, Im[aD]=0. 
In the weak coupling phase, L<2M, one finds that this is satisfied at the singular point
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THUS THE ARGYRES-DOUGLAS POINT REPRESENTS THE CRITICAL POINT OF A 3rd-ORDER PHASE TRANSITION  



Consider Nekrasov partition function with equivariant parameters

Nekrasov-Shatashvili limit:

In this limit, the supersymmetric vacua are related to the eigenstates of a quantum integrable system.
The non-zero deformation parameter e plays the role of
The Seiberg-Witten prepotential can be constructed from the Bohr-Sommerfeld periods of quantum
mechanical systems:

Mathieu:
Lamé:
Whittaker-Hill:

•Nekrasov, Shatashvili, 0908.4052
•Mironov , Morozov, 0910.5670

The WKB expansion is asymptotic and requires the construction of the associated transseries. 
Discussions on resurgence and Stokes phenomena can be found in

• Dunne, Ünsal, 1306.4405, 1603.04924; Başar, Dunne, 1501.05671
• Kashani-Poor, Troost, 1504.08324
• Piatek, Pietrykowski, 1604.03574
• Ashok, Jatkar, John, Raman, Troost, 1604.05520
• Demulder, Dorigoni and Thompson, 1604.07851
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W deformation and Super Yang-Mills theory on the Ellipsoid

Some curved spaces different from round spheres still admit rigid supersymmetry.
One example is the 4d ellipsoid [Hama-Hosomichi, 1206.6359]

The partition function Z for SYM depends on the gauge coupling, on masses, and on the squashing
parameter Q = b+1/b, b = sqrt[R1/R2]

The ellipsoid is particularly interesting for the AGT connection:  Z is connected with correlation
functions of 2D Liouville (or Toda CFTs) with central charge c = 1+6Q2.

The one-loop determinant is given in terms of the double infinite product
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The contribution of localized instantons near the poles is described by Nekrasov’s instanton
partition function with equivariant parameters

e1 = 1/R1    ,      e2 =1/R2

Can we describe the Nekrasov – Shatashvili limit as a squashing limit of the ellipsoid?




 
0,

11 ))(()(
nm

Qnbmbxnbmbxx



Example: N =2* theory on the ellipsoid

The partition function can be written as by
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is given by the Nekrasov partition function with parameters e1 = 1/R1, e2 =1/R2

For example, for SU(2)
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The one-loop factor exactly matches the one-loop term in the W deformation (c.f. Billo et al, 1302.0686)

The one-loop factor of Hama-Hosomichi looks different from the Nekrasov’s one-loop factor

However, the key is the equivariant mass parameter [Okuda, Pestun, arXiv:1004.1222] :
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In studying massless theories, Hama-Hosomichi set to zero M0  . But the physical mass is M.



Squashing limit: 

At large R2, the partition function takes the form
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Z is determined by a  saddle-point. The solution can be obtained by expanding at large   a R1  the 
Gamma and the Barnes G-function. This produces an asymptotic expansion in powers of                                      

It is in correspondence with the WKB expansion of the Lamé quantum mechanical system.
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Concluding remarks

1. SU(2) SQCD with Nf = 2

a) Decompactification limit of S4 leads to the theory on R4 which has two phases separated by

Argyres-Douglas point.

b) Nekrasov-Shatashvili limit leads to a theory which is in correspondence with Whittaker-Hill quantum

mechanical system.

The theory on R4, with phase transitions, is seen when also R1 goes to infinity,

in the classical limit

(which is the leading term in the asymptotic semiclassical expansion)

2. Nekrasov equivariant partition function admits an interpretation as N =2 gauge theory on an ellipsoid

with e1 = 1/R1 , e2 =1/R2

Squashing limit of N =2 gauge theories on ellipsoids (R2 infinity , R1 fixed) coincides with Nekrasov-

Shatashvili limit.

The resulting partition function can be expanded in a/R1 .
This expansion is in correspondence with the WKB of a quantum mechanical system.

It would definitely be interesting to exploit the ellipsoid interpretation, in particular consider other

possible squashing limits.
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