Reinforced random walks and statistical physics

Pierre Tarrès, NYU Shanghai, CNRS, Courant Institute for Mathematical Sciences

Técnico Lisboa, Probability and Stochastic Analysis Seminar, 9 February 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Pólya urn (Eggenberger and Pólya, 1923) Definition Pólya urn: results and statistical view Statistical view of Pólya urn: consequences

Edge-Reinforced Random Walk and statistical physics

Definition

Edge-Reinforced random walk (ERRW): first results

Edge-Reinforced random walk (ERRW): statistical view

 $\mathsf{ERRW}\longleftrightarrow\mathsf{VRJP}\ (\mathsf{Vertex}\ \mathsf{Reinforced}\ \mathsf{Jump}\ \mathsf{Process})$

 $\mathsf{VRJP}\longleftrightarrow\mathsf{SuSy}\ \mathsf{hyperbolic\ sigma\ model\ in\ QFT}$

 $\label{eq:VRJP} \longleftrightarrow \mathsf{Random} \ \mathsf{Schrödinger} \ \mathsf{operator}, \ \mathsf{Dynkin}/\mathsf{Ray-Knight} \\ \mathsf{Applications}: \ \mathsf{recurrence}/\mathsf{transience} \\$

*-Edge-Reinforced Random Walk

Definition and remarks

- *-Edge Reinforced Random Walks (*-ERRW): statistical view
- *-Edge Reinforced Random Walks (*-ERRW): results

Pólya urn: definition

- Introduced by Eggenberger and Pólya in 1923: "Über die Statistik verketteter Vorgänge", i.e. "On statistics of linked behaviors".
- Urn with balls of two colors: green and red.
- lnitially a, resp. b > 0 balls of green, red color.
- G_n , R_n numbers of balls of green, red color added until *n*-th draw, $G_0 = R_0 = 0$.
- Reinforcement rule: pick one ball at random and put it back together with another ball of same color:

$$\mathbb{P}(G_{n+1} = G_n + 1 \mid G_k, R_k \mid k \leq n) = \frac{a + G_n}{a + G_n + b + R_n} =: \alpha_n.$$

Pólya urn: results and statistical view

Theorem

- $(\alpha_n)_{n\in\mathbb{N}}$ converges a.s. to a random variable $\alpha \in (0,1)$.
- $\alpha \sim Beta(a, b)$.
- (de Finetti, by exchangeability) Conditionally on α,
 (G_{n+1} − G_n)_{n∈ℕ} is an i.i.d. sequence of Bernoulli random variables with success probability α.

Statistical view

- Given sequence of i.i.d. Bernoulli random variables with unknown random success probability α, how can we estimate α?
- Bayesian approach: choose prior distribution on random variable α.
- If prior on α is Beta(a, b), then

$$\mathcal{L}((\mathbf{1}_{\text{success at time }n})_{n\in\mathbb{N}}) = \mathcal{L}((G_n)_{n\in\mathbb{N}}),$$

where $(G_n)_{n \in \mathbb{N}}$ defined from Pólya urn above.

Statistical view of Pólya urn: consequences

- Hence, if the prior on α is Beta(a, b), then the posterior distribution after p successes and q failures is Beta(a + p, b + q).
- The prior and posterior are in the same family of probability (beta) distributions, and are thus called conjuguate priors.
- (G_n, R_n) is a sufficient statistic for α at time n:
 - Informally: no other statistic that can be calculated from the sequences (G_k)_{k≤n} and (R_k)_{k≤n} provides any additional information as to the value of the parameter α.
 - Formally: given statistical model {P_α : α ∈ (0, 1)}, where P_α is the law of i.i.d. sequences with success probability α, P_α((G_k, R_k)_{k≤n}|(G_n, R_n)) does not depend on α.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It is a minimal sufficient statistics: there is no sufficient statistics that needs less information. Edge-Reinforced Random Walk (Coppersmith and Diaconis, 1986)

• G = (V, E) non-oriented locally finite graph

▶ $a_e > 0$, $e \in E$, initial weights

• Edge-Reinforced Random Walk (ERRW) (X_n) on $V : X_0 = i_0$ and, if $X_n = i$, then

$$\mathbb{P}(X_{n+1} = j \mid X_k, \ k \leq n) = \mathbb{1}_{\{j \sim i\}} \frac{Z_n(\{i, j\}))}{\sum_{k \sim X_n} Z_n(\{i, k\})}$$

where

$$Z_n(\{i,j\}) = a_{i,j} + \sum_{k=1}^n \mathbb{1}_{\{X_{k-1},X_k\} = \{i,j\}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

a_e small: strong reinforcement

a_e large: small reinforcement

First results on Edge-Reinforced random walk ('86-'09)

- Partially exchangeable: probability of path only depends on numbers of crossings of edges
- Diaconis and Freedman'80: partial exchangeability =>
 ERRW is a Random Walk in Random Environment (RWRE)
- Explicit computation of mixing measure: Coppersmith-Diaconis '86, Keane-Rolles '00
- Pemantle '88: recurrence/transience phase transition on trees

• Merkl Rolles '09: recurrence on a 2*d* graph (but not \mathbb{Z}^2)

Edge Reinforced Random Walks (ERRW): Limit measure (Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

Theorem

- ► $(Z_n(e)/n)_{n \in \mathbb{N}}$ converges a.s. to a random vector $X = (X_e)_{e \in E}$
- Conditionally on x, ERRW is a reversible Markov chain P_x with jump probability x_{ij}/x_i from i to j, $x_i = \sum_{k \sim i} x_{ik}$.
- X has the following density w.r.t to surface measure on the simplex {∀e ∈ E, x_e > 0 ∑_{e∈E} x_e = 1}

$$\gamma(i_0, \alpha) \sqrt{x_{i_0}} \frac{\prod_{e \in E} x_e^{a_e - 1}}{\prod_{i \in V} x_i^{\frac{1}{2}a_i}} \sqrt{D(x)}$$

Edge Reinforced Random Walks (ERRW): Limit measure (Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

We have

$$\gamma(i_0,\alpha) = \frac{2^{1-|V|+\sum_{e\in E} a_e}}{\sqrt{\pi}^{|V|-1}\Gamma(|V|)} \frac{\prod_{i\in V} \Gamma(\frac{1}{2}(a_i+1-\mathbb{1}_{i=i_0}))}{\prod_{e\in E} \Gamma(a_e)},$$

and

$$D(y) = \sum_{T \in \mathcal{T}} \prod_{e \in T} y_e,$$

where T is the set of (non-oriented) spanning trees of G.

Edge-Reinforced random walk (ERRW): statistical view

- Given reversible Markov Chain P_x with unknown random vector x, how can we estimate x?
- ▶ Bayesian approach: assume prior on x is P_{i0,a}, then law is the one of ERRW by definition
- ► Hence, the posterior distribution after *n* first steps is given by $\mathbb{P}_{X_n,(Z_n(e))_{e \in E}}$.
- Thus prior and posterior are conjuguate priors.
- ► (Diaconis and Rolles, 2006) (Z_n(e) Z₀(e))_{e∈E} is a minimal sufficient statistic for the model, also provide method of simulation of the posterior.

ERRW and statistical physics: ERRW \leftrightarrow VRJP (I)

Let $(W_e)_{e \in E}$ be conductances on edges, $W_e > 0$. VRJP $(Y_s)_{s \ge 0}$ is a continuous-time process defined by $Y_0 = i_0$ and, if $Y_s = i$, then, conditionally to the past,

Y jumps to $j \sim i$ at rate $W_{i,j}L_j(s)$,

with

$$L_j(s)=1+\int_0^s\mathbb{1}_{\{Y_u=j\}}du.$$

Proposed by Werner and first studied **on trees** by Davis, Volkov ('02,'04).

ERRW and statistical physics: ERRW $\leftrightarrow \forall$ VRJP (II) Random conductances $(W_e)_{e \in E}$

Theorem (T. '11, Sabot-T. '15)

 $ERRW (X_n)_{n \in \mathbb{N}} \text{ with weights } (a_e)_{e \in E}$ $= VRJP (Y_t)_{t \ge 0} \text{ with conductances } W_e \sim \Gamma(a_e) \text{ indep.}$ (at jump times)

Similar equivalence applies to any linearly reinforced RW on its continuous time version (initially proved for VRRW, T'. 11)

VRJP \leftrightarrow SuSy hyperbolic sigma model in QFT (I) Fixed conductances $(W_e)_{e \in E}$, G finite

•
$$G = (V, E)$$
 finite, $N := |V|$

▶ \mathbb{P}_{i_0} law of $(Y_s)_{s \ge 0}$ starting from $i_0 \in V$

▶ Change time at vertices $\ell_i = L_i^2 - 1$, $i \in V \longrightarrow (Z_t)_{t \ge 0}$

$$B(s) = \sum_{i \in V} (L_i(s)^2 - 1), \ \ Z_t = Y_{B^{-1}(t)}.$$

Theorem (ST '15)

Under \mathbb{P}_{i_0} , $(Z_t)_{t \ge 0}$ is a mixture of Markov jump processes (MJPs) starting from i_0 with jump rate from i to j

$$\frac{1}{2}W_{i,j}e^{U_j-U_i}$$

Let $\mathcal{Q}^{i_0,W}$ be the mixing measure on $U = (U_i)_{i \in V}$.

VRJP \leftrightarrow SuSy hyperbolic sigma model in QFT (II) Fixed conductances $(W_e)_{e \in E}$, G finite (ST '15 continued)

The measure $Q^{i_0,W}(du)$ has density on $\mathcal{H}_0 = \{(u_i), \sum u_i = 0\}$

$$\frac{N}{(2\pi)^{(N-1)/2}}e^{u_{i_0}}e^{-H(W,u)}\sqrt{D(W,u)},$$

where

$$H(W, u) = 2 \sum_{\{i,j\} \in E} W_{i,j} \sinh^2 ((u_i - u_j)/2)$$

and

$$D(W, u) = \sum_{T \in \mathcal{T}} \prod_{\{i,j\} \in T} W_{\{i,j\}} e^{u_i + u_j},$$

 \mathcal{T} is the set of (non-oriented) spanning trees of G.

VRJP \leftrightarrow SuSy hyperbolic sigma model in QFT (III) Fixed conductances $(W_e)_{e \in E}$, G finite (Merkl-Rolles-T.'19)

• $Q^{i_0,W}(du)$ marginal of Gibbs "measure" on supermanifold extension $H^{2|2}$ of hyperbolic plane with action $A_W(v,v) = \sum_{i,j} W_{ij}(v_i - v_j, v_i - v_j)$, taken in horospherical coordinates after integration over fermionic variables.

• Merkl-Rolles-T.'19: Other variables in extension SuSy model arise on two different time scales as limits of

- local times on logarithmic scale
- rescaled fluctuations of local times
- rescaled crossing numbers
- last exit trees of the walk (tree version of fermionic variables)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Bauerschmidt-Helmuth-Swan '19 (AP and AIHP): very nice interpretation of in terms of Brydges-Fröhlich-Spencer-Dynkin isomorphism for the supersymmetric field

Linear ERRW and statistical physics: other links Fixed conductances $(W_e)_{e \in E}$, G finite

Random Schrödinger operator (Sabot-T.-Zeng '17): let

$$\beta_i = \frac{1}{2} \sum_{j \sim i} W_{ij} e^{u_j - u_i} + \mathbf{1}_{i_0} \gamma,$$

 $\gamma \sim \Gamma(1/2)$ indep. of u: β field 1-dependent on $\{H_{\beta} > 0\}$, $H_{\beta} = -\Delta^{W} + 2\beta$, Δ^{W} discrete Laplacian $\rightarrow e^{u}$ proportional to **Green function** $H_{\beta}^{-1}(i_{0},.)$.

 Ray-Knight second generalised Theorem (Sabot-T.'16, Lupu-Sabot-T'19): reversed VRJP Υ̃, with jump rate W_{ij}L_j(t) from i to j

$$L_i(t) = \varphi_i - \int_0^s \mathbb{1}_{\{\tilde{Y}_u = j\}} du$$

enables to invert Ray-Knight identity in a magnetized version.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ERRW/VRJP and statistical physics: implications

Using link with QFT and localisation/delocalisation results of Disertori, Spencer, Zirnbauer '10 :

Theorem (ST'15, Angel-Crawford-Kozma'14, *G* bded degree) ERRW (resp.VRJP) is positive recurrent at strong reinforcement, i.e. for a_e (resp. W_e) uniformly small in $e \in E$.

Theorem (ST'15, Disertori-ST'15, $G = \mathbb{Z}^d$, $d \ge 3$) ERRW (resp. VRJP) is transient at weak reinforcement, i.e. for a_e (resp. W_e) uniformly large in $e \in E$.

Using link with Random Schrödinger operator:

Theorem (Sabot-Zeng '19, Sabot -19, Merkl-Rolles '09) ERRW with constant weights $a_e = a$ (resp. $W_e = W$) is recurrent in dimension 2. *-Edge-Reinforced Random Walk motivation : Reversible *k*-dependent Markov chains

- ► (Y_i) k-dependent Markov chain on S finite (i.e. law of Y_{n+1} depends only on (Y_{n-k+1},..., Y_n)).
- Equivalent to Markov chain (X_n) on the (directed) de Bruijn graph $G = (V = S^k, E)$ with

$$\omega = (i_1, \ldots, i_k) \rightarrow \tilde{\omega} = (i_2, \ldots, i_{k+1})$$

with transition rate $p(\omega, ilde{\omega})$, and invariant measure $\pi(\omega).$

The k-dependent Markov chain is called reversible if

$$(Y_1,\ldots,Y_n)^{law} (Y_n,\ldots,Y_1).$$

as soon as $(Y_1, \ldots, Y_k) \sim \pi$. This is equivalent to the "modified" balance condition

$$\pi(\omega)p(\omega,\tilde{\omega})=\pi(\tilde{\omega}^*)p(\tilde{\omega}^*,\omega^*),$$

where ω^* is the flipped k-string $\omega^* = (i_k, \ldots, i_1)$.

General framework

• G = (V, E) directed graph with involution * on V s.t.

$$(i,j) \in E \Rightarrow (j^*,i^*) \in E$$

► $\alpha_{i,j} > 0$, $(i,j) \in E$ such that $\alpha_{i,j} = \alpha_{j^*,i^*}$. We call *-ERRW with initial weights (α_e) , the discrete time process (X_n) defined by

$$\mathbb{P}(X_{n+1}=j \mid X_k, k \leq n) = \mathbb{1}_{\{X_n \to j\}} \frac{Z_n((X_n, j))}{\sum_{I, X_n \to I} Z_n((X_n, I))}$$

where

$$Z_n((i,j)) = \alpha_{i,j} + N_{i,j}(n) + N_{j^*,i^*}(n)$$
$$N_{i,j}(n) = \sum_{k=1}^n \mathbb{1}_{\{(X_{k-1},X_k)=(i,j)\}}.$$

Let div be the divergence operator div : $\mathbb{R}^E \mapsto \mathbb{R}^V$

$$\operatorname{div}(z)(i) = \sum_{j,i \to j} z_{i,j} - \sum_{j,j \to i} z_{j,i}.$$

Proposition (Bacallado '11, Baccalado, Sabot and T. '21) i) Let $i_0 \in V$. If $div(\alpha) = \delta_{i_0^*} - \delta_{i_0}$, then the *-ERRW starting from i_0 is partially exchangeable.

Proof. Let σ be a path. We prove that

$$\mathbb{P}^{\star-ERRW}(X \text{ follows } \sigma) = \frac{\text{function } (N_e(\sigma))}{\text{function } (N_i(\sigma))},$$

where as usual $N_{i,j}(\sigma)$ is the number of crossings of the (directed) edge (i, j) and

$$N_i(\sigma) = \sum_{i \to j} N_{i,j}(\sigma).$$

< ロ > < 图 > < 差 > < 差 > < 差 > の < で

Numerator : trivial

Denominator : needs condition (1).

-Edge Reinforced Random Walks (-ERRW): statistical view

- Statistical analysis of molecular dynamics simulations with microscopically reversible laws.
- Two other applications, beyond Bayesian analysis of higher-order Markov chains (Bacallado, 2006):
 - ▶ Variable-order Markov chains with context set $C \subseteq S \cup S^2 \cup \cdots \cup S^k$ on de Bruijn graph: $\forall (i_1, \ldots, i_\ell) \in C$, transition probabilities out of x and y are the same whenever x and y both end in (i_1, \ldots, i_ℓ) . Can define a prior with full support on the space of variable-order, reversible Markov chains with a specific context set.
 - ▶ Reinforced random walk with amnesia: RW on G = (V, E)defined by $V = S \cup S^2 \cup ..., S^k$ with two types of edges: "forgetting" ones $(i_1, ..., i_m) \rightarrow (i_2, ..., i_m)$, if m > 1, "appending" ones $(i_1, ..., i_m) \rightarrow ((i_1, ..., i_m, j))$, for each $j \in V$, if m < k. Generalization of the above.

-Edge Reinforced Random Walks (-ERRW): results Theorem (Bacallado, Sabot and T., 2021)

• $(Z_n(e)/n)_{n \in \mathbb{N}}$ converges a.s. to a random vector $X = (X_e)_{e \in E}$ in

$$\mathcal{L}_1 = \left\{ (x_e) \in (0,\infty)^E : x_{i,j} = x_{j^*,i^*}, \ div(x) = 0, \ \sum_{e \in E} x_e = 1 \right\}.$$

- ► Conditionally on x, ERRW is a reversible Markov chain P_x with jump probability x_{ij}/x_i from i to j, $x_i = \sum_{i \to k} x_{ik}$.
- The random variable X has the following density on L₁, w.r.t pullback of Lebesgue measure on ℝ^B by the projection (x_e) ∈ L₀ ↦ (x_e)_{e∈B}, B basis of L₁:

$$C\gamma(i_0,\alpha)\sqrt{x_{i_0}}\left(\frac{\prod_{(i,j)\in\tilde{E}}x_{i,j}^{\alpha_{i,j}-1}}{\prod_{i\in V}x_i^{\frac{1}{2}\alpha_i}}\right)\frac{1}{\prod_{i\in V_0}\sqrt{x_i}}\sqrt{D(x)}\,dx_{\mathcal{L}_1},$$

-Edge Reinforced Random Walks (-ERRW): results

We have

$$\gamma(i_{0},\alpha) = \frac{\left(\prod_{i \in V_{0}} \Gamma(\frac{1}{2}(\alpha_{i}+1-\mathbb{1}_{i=i_{0}})2^{\frac{1}{2}(\alpha_{i}-\mathbb{1}_{i=i_{0}})\right) \left(\prod_{i \in V_{1}} \Gamma(\inf(\alpha_{i},\alpha_{i^{*}}))\right)}{\prod_{(i,j) \in \tilde{E}} \Gamma(\alpha_{i,j})}$$

$$C = \frac{2}{\sqrt{2\pi}^{|V_{0}|-1}\sqrt{2}^{|V_{0}|+|V_{1}|}},$$
and
$$D(v) = \sum \prod_{v_{i} \in V_{i}} v_{i,v_{i}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$D(y) = \sum_T \prod_{(i,j)\in T} y_{i,j}.$$

The last sum runs on spanning trees directed towards a root $j_0 \in V$ (value does not depend on the choice of the root j_0 .