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Pólya urn: definition
I Introduced by Eggenberger and Pólya in 1923: “Über die

Statistik verketteter Vorgänge”, i.e. “On statistics of linked
behaviors”.

I Urn with balls of two colors: green and red.
I Initially a, resp. b > 0 balls of green, red color.
I Gn, Rn numbers of balls of green, red color added until n-th

draw, G0 = R0 = 0.
I Reinforcement rule: pick one ball at random and put it back

together with another ball of same color:

P(Gn+1 = Gn + 1 |Gk ,Rk k 6 n) =
a + Gn

a + Gn + b + Rn
=: αn.

n 0 n 1 n 2 n 3

Let us now endow the set of all urn paths with a particular dynamics thus defining
a stochastic process. Fix wi i 0

0 the reinforcement weight sequence and
define the quantity π r, g wr

wr wg
which we shall understand as the probability of drawing

a red ball among r red and g green balls. Note that π r, g π g, r 1. For n 1, define
the increment of red (resp. green) balls at time n by ∆rn rn rn 1 (resp. ∆gn gn gn 1).
Then the dynamics is defined as follows: X Rn,Gn n is a Markov chain with X0

0,0 and the transition law

∆Rn 1 a Xn r, g Xn r,g
d
a π r, g aπ g, r d a

Xn r,g , a,0 a d;
∆Gn 1 d ∆Rn 1.

It is clear that X is an urn path with parameter d a.s. In words, ∆Rn 1 (and ∆Gn 1)
follows a binomial distribution B d,π r, g conditionally on Xn r, g : each of the d
balls added at time n is independently red with probability π Rn,Gn and green with
probability π Gn,Rn .

For n , denote by n the σ-field generated by the n first steps:

n σ X0,X1, . . . ,Xn .

This model can be linked with multiple Reinforced Random Walks. Consider the
following star shaped graph:

Suppose that there are d particles on the central vertex and at each step they jump over
one of the vertices with probability proportional to wi, where i is the number of time the
vertex has been visited by one of the particles since the begining, and then jump back
to the central vertex. This dynamic is equivalent to an urn process in which d balls are
added in the urn at each step and the balls could be of E different colours where E is the
number of edges (or the number of vertices different from the central one). In this paper
we will limit ourselves to two different colours, that is E 2:

Remark 1. This model is equivalent to the Interacting Urn Model [2] with d urns in the
case when the memory sharing is maximal, that is the correlation probability p 1. In
that setting all the d urns always draw their balls in the d urns combined. Therefore,
Theorem 2.3 answers an open question of [2].
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Pólya urn: results and statistical view

Theorem
I (αn)n∈N converges a.s. to a random variable α ∈ (0, 1).

I α ∼ Beta(a, b).

I (de Finetti, by exchangeability) Conditionally on α,
(Gn+1 − Gn)n∈N is an i.i.d. sequence of Bernoulli random
variables with success probability α.

Statistical view
I Given sequence of i.i.d. Bernoulli random variables with

unknown random success probability α, how can we estimate
α?

I Bayesian approach: choose prior distribution on random
variable α.

I If prior on α is Beta(a, b), then

L((1Isuccess at time n)n∈N) = L((Gn)n∈N),

where (Gn)n∈N defined from Pólya urn above.



Statistical view of Pólya urn: consequences

I Hence, if the prior on α is Beta(a, b), then the posterior
distribution after p successes and q failures is
Beta(a + p, b + q).

I The prior and posterior are in the same family of probability
(beta) distributions, and are thus called conjuguate priors.

I (Gn,Rn) is a sufficient statistic for α at time n:
I Informally: no other statistic that can be calculated from the

sequences (Gk)k6n and (Rk)k6n provides any additional
information as to the value of the parameter α.

I Formally: given statistical model {Pα : α ∈ (0, 1)}, where Pα
is the law of i.i.d. sequences with success probability α,
Pα((Gk ,Rk)k6n|(Gn,Rn)) does not depend on α.

I It is a minimal sufficient statistics: there is no sufficient
statistics that needs less information.



Edge-Reinforced Random Walk (Coppersmith and
Diaconis, 1986)

I G = (V ,E ) non-oriented locally finite graph

I ae > 0, e ∈ E , initial weights

• Edge-Reinforced Random Walk (ERRW) (Xn) on V : X0 = i0
and, if Xn = i , then

P(Xn+1 = j |Xk , k 6 n) = 1{j∼i}
Zn({i , j}))∑

k∼Xn
Zn({i , k})

where

Zn({i , j}) = ai ,j +
n∑

k=1

1{Xk−1,Xk}={i ,j}.

I ae small: strong reinforcement

I ae large: small reinforcement



First results on Edge-Reinforced random walk (’86-’09)

I Partially exchangeable: probability of path only depends on
numbers of crossings of edges

I Diaconis and Freedman’80: partial exchangeability =⇒
ERRW is a Random Walk in Random Environment (RWRE)

I Explicit computation of mixing measure:
Coppersmith-Diaconis ’86, Keane-Rolles ’00

I Pemantle ’88: recurrence/transience phase transition on trees

I Merkl Rolles ’09: recurrence on a 2d graph (but not Z2)



Edge Reinforced Random Walks (ERRW): Limit measure
(Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

Theorem
I (Zn(e)/n)n∈N converges a.s. to a random vector X = (Xe)e∈E
I Conditionally on x , ERRW is a reversible Markov chain Px

with jump probability xij/xi from i to j , xi =
∑

k∼i xik .

I X has the following density w.r.t to surface measure on the
simplex {∀e ∈ E , xe > 0

∑
e∈E xe = 1}

γ(i0, α)
√
xi0

∏
e∈E xae−1e∏
i∈V x

1
2
ai

i

√
D(x)



Edge Reinforced Random Walks (ERRW): Limit measure
(Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

We have

γ(i0, α) =
21−|V |+

∑
e∈E ae

√
π
|V |−1

Γ(|V |)

∏
i∈V Γ(12(ai + 1− 1i=i0))∏

e∈E Γ(ae)
,

and
D(y) =

∑
T∈T

∏
e∈T

ye ,

where T is the set of (non-oriented) spanning trees of G .



Edge-Reinforced random walk (ERRW): statistical view

I Given reversible Markov Chain Px with unknown random
vector x , how can we estimate x?

I Bayesian approach: assume prior on x is Pi0,a, then law is the
one of ERRW by definition

I Hence, the posterior distribution after n first steps is given by
PXn,(Zn(e))e∈E .

I Thus prior and posterior are conjuguate priors.

I (Diaconis and Rolles, 2006) (Zn(e)− Z0(e))e∈E is a minimal
sufficient statistic for the model, also provide method of
simulation of the posterior.



ERRW and statistical physics: ERRW ←→ VRJP (I)

Let (We)e∈E be conductances on edges, We > 0.
VRJP (Ys)s>0 is a continuous-time process defined by Y0 = i0 and,
if Ys = i , then, conditionally to the past,

Y jumps to j ∼ i at rate Wi ,jLj(s),

with

Lj(s) = 1 +

∫ s

0
1{Yu=j}du.

Proposed by Werner and first studied on trees by Davis, Volkov
(’02,’04).



ERRW and statistical physics: ERRW ←→ VRJP (II)
Random conductances (We)e∈E

Theorem (T. ’11, Sabot-T. ’15)

ERRW (Xn)n∈N with weights (ae)e∈E

”law”

=
VRJP (Yt)t>0 with conductances We ∼ Γ(ae) indep.

(at jump times)

I Similar equivalence applies to any linearly reinforced RW on
its continuous time version (initially proved for VRRW, T’. 11)



VRJP ←→ SuSy hyperbolic sigma model in QFT (I)
Fixed conductances (We)e∈E , G finite

I G = (V ,E ) finite, N := |V |
I Pi0 law of (Ys)s>0 starting from i0 ∈ V

I Change time at vertices `i = L2i − 1, i ∈ V −→ (Zt)t>0

B(s) =
∑
i∈V

(Li (s)2 − 1), Zt = YB−1(t).

Theorem (ST ’15)

Under Pi0 , (Zt)t>0 is a mixture of Markov jump processes (MJPs)
starting from i0 with jump rate from i to j

1

2
Wi ,je

Uj−Ui .

Let Qi0,W be the mixing measure on U = (Ui )i∈V .



VRJP ←→ SuSy hyperbolic sigma model in QFT (II)
Fixed conductances (We)e∈E , G finite (ST ’15 continued)

The measure Qi0,W (du) has density on H0 = {(ui ),
∑

ui = 0}

N

(2π)(N−1)/2
eui0 e−H(W ,u)

√
D(W , u),

where
H(W , u) = 2

∑
{i ,j}∈E

Wi ,j sinh2 ((ui − uj)/2)

and
D(W , u) =

∑
T∈T

∏
{i ,j}∈T

W{i ,j}e
ui+uj ,

T is the set of (non-oriented) spanning trees of G .



VRJP ←→ SuSy hyperbolic sigma model in QFT (III)
Fixed conductances (We)e∈E , G finite (Merkl-Rolles-T.’19)

• Qi0,W (du) marginal of Gibbs “measure” on supermanifold
extension H2|2 of hyperbolic plane with action
AW (v , v) =

∑
i ,j Wij(vi − vj , vi − vj), taken in horospherical

coordinates after integration over fermionic variables.

• Merkl-Rolles-T.’19: Other variables in extension SuSy model
arise on two different time scales as limits of

I local times on logarithmic scale

I rescaled fluctuations of local times

I rescaled crossing numbers

I last exit trees of the walk (tree version of fermionic variables)

• Bauerschmidt-Helmuth-Swan ’19 (AP and AIHP): very nice
interpretation of in terms of Brydges-Fröhlich-Spencer-Dynkin
isomorphism for the supersymmetric field



Linear ERRW and statistical physics: other links
Fixed conductances (We)e∈E , G finite

I Random Schrödinger operator (Sabot-T.-Zeng ’17): let

βi =
1

2

∑
j∼i

Wije
uj−ui + 1Ii0γ,

γ ∼ Γ(1/2) indep. of u: β field 1-dependent on {Hβ > 0},
Hβ = −∆W + 2β, ∆W discrete Laplacian
−→ eu. proportional to Green function H−1β (i0, .).

I Ray-Knight second generalised Theorem (Sabot-T.’16,
Lupu-Sabot-T’19): reversed VRJP Ỹ , with jump rate
WijLj(t) from i to j

Li (t) = ϕi −
∫ s

0
1{Ỹu=j}du

enables to invert Ray-Knight identity in a magnetized version.



ERRW/VRJP and statistical physics: implications

Using link with QFT and localisation/delocalisation results of
Disertori, Spencer, Zirnbauer ’10 :

Theorem (ST’15, Angel-Crawford-Kozma’14, G bded degree)

ERRW (resp.VRJP) is positive recurrent at strong reinforcement,
i.e. for ae (resp. We) uniformly small in e ∈ E .

Theorem (ST’15, Disertori-ST’15, G = Zd , d > 3)

ERRW (resp. VRJP) is transient at weak reinforcement, i.e. for ae
(resp. We) uniformly large in e ∈ E .

Using link with Random Schrödinger operator:

Theorem (Sabot-Zeng ’19, Sabot -19, Merkl-Rolles ’09)

ERRW with constant weights ae = a (resp. We = W ) is recurrent
in dimension 2.



*-Edge-Reinforced Random Walk motivation : Reversible
k-dependent Markov chains

I (Yi ) k-dependent Markov chain on S finite (i.e. law of Yn+1

depends only on (Yn−k+1, . . . ,Yn)).

I Equivalent to Markov chain (Xn) on the (directed) de Bruijn
graph G = (V = Sk ,E ) with

ω = (i1, . . . , ik)→ ω̃ = (i2, . . . , ik+1)

with transition rate p(ω, ω̃), and invariant measure π(ω).

The k-dependent Markov chain is called reversible if

(Y1, . . . ,Yn)
law
= (Yn, . . . ,Y1).

as soon as (Y1, . . . ,Yk) ∼ π. This is equivalent to the ”modified”
balance condition

π(ω)p(ω, ω̃) = π(ω̃∗)p(ω̃∗, ω∗),

where ω∗ is the flipped k-string ω∗ = (ik , . . . , i1).



General framework

I G = (V ,E ) directed graph with involution ∗ on V s.t.

(i , j) ∈ E ⇒ (j∗, i∗) ∈ E

I αi ,j > 0, (i , j) ∈ E such that αi ,j = αj∗,i∗ .

We call ?-ERRW with initial weights (αe), the discrete time
process (Xn) defined by

P(Xn+1 = j |Xk , k 6 n) = 1{Xn→j}
Zn((Xn, j))∑

l ,Xn→l Zn((Xn, l))

where

Zn((i , j)) = αi ,j + Ni ,j(n) + Nj∗,i∗(n)

Ni ,j(n) =
n∑

k=1

1{(Xk−1,Xk )=(i ,j)}.



Let div be the divergence operator div : RE 7→ RV

div(z)(i) =
∑
j ,i→j

zi ,j −
∑
j ,j→i

zj ,i .

Proposition (Bacallado ’11, Baccalado, Sabot and T. ’21)

i) Let i0 ∈ V . If div(α) = δi∗0 − δi0 , then the ?-ERRW starting from
i0 is partially exchangeable.

Proof.
Let σ be a path. We prove that

P?−ERRW (X follows σ) =
function (Ne(σ))

function (Ni (σ))
,

where as usual Ni ,j(σ) is the number of crossings of the (directed)
edge (i , j) and

Ni (σ) =
∑
i→j

Ni ,j(σ).

Numerator : trivial
Denominator : needs condition (1).



*-Edge Reinforced Random Walks (*-ERRW): statistical
view

I Statistical analysis of molecular dynamics simulations with
microscopically reversible laws.

I Two other applications, beyond Bayesian analysis of
higher-order Markov chains (Bacallado, 2006):
I Variable-order Markov chains with context set
C ⊆ S ∪ S2 ∪ · · · ∪ Sk on de Bruijn graph: ∀(i1, . . . , i`) ∈ C,
transition probabilities out of x and y are the same whenever x
and y both end in (i1, . . . , i`). Can define a prior with full
support on the space of variable-order, reversible Markov
chains with a specific context set.

I Reinforced random walk with amnesia: RW on G = (V ,E )
defined by V = S ∪ S2 ∪ . . . Sk with two types of edges:
“forgetting” ones (i1, . . . , im)→ (i2, . . . , im), if m > 1,
“appending” ones (i1, . . . , im)→ ((i1, . . . , im, j), for each
j ∈ V , if m < k . Generalization of the above.



*-Edge Reinforced Random Walks (*-ERRW): results

Theorem (Bacallado, Sabot and T., 2021)

I (Zn(e)/n)n∈N converges a.s. to a random vector X = (Xe)e∈E
in

L1 =

{
(xe) ∈ (0,∞)E : xi ,j = xj∗,i∗ , div(x) = 0,

∑
e∈E

xe = 1

}
.

I Conditionally on x , ERRW is a reversible Markov chain Px

with jump probability xij/xi from i to j , xi =
∑

i→k xik .

I The random variable X has the following density on L1, w.r.t
pullback of Lebesgue measure on RB by the projection
(xe) ∈ L0 7→ (xe)e∈B , B basis of L1:

Cγ(i0, α)
√
xi0

∏(i ,j)∈Ẽ x
αi,j−1
i ,j∏

i∈V x
1
2
αi

i

 1∏
i∈V0

√
xi

√
D(x) dxL1 ,



*-Edge Reinforced Random Walks (*-ERRW): results

We have

γ(i0, α) =

(∏
i∈V0

Γ(12(αi + 1− 1i=i0)2
1
2
(αi−1i=i0

)
) (∏

i∈V1
Γ(inf(αi , αi∗))

)∏
(i ,j)∈Ẽ Γ(αi ,j)

,

C =
2

√
2π
|V0|−1√

2
|V0|+|V1|

,

and
D(y) =

∑
T

∏
(i ,j)∈T

yi ,j .

The last sum runs on spanning trees directed towards a root
j0 ∈ V (value does not depend on the choice of the root j0.


