Reinforced random walks and statistical physics

Pierre Tarrès, NYU Shanghai, CNRS,
Courant Institute for Mathematical Sciences

Técnico Lisboa, Probability and Stochastic Analysis Seminar, 9 February 2021

Outline

Pólya urn (Eggenberger and Pólya, 1923)
Definition
Pólya urn: results and statistical view
Statistical view of Pólya urn: consequences
Edge-Reinforced Random Walk and statistical physics
Definition
Edge-Reinforced random walk (ERRW): first results
Edge-Reinforced random walk (ERRW): statistical view
ERRW \longleftrightarrow VRJP (Vertex Reinforced Jump Process)
VRJP \longleftrightarrow SuSy hyperbolic sigma model in QFT
VRJP \longleftrightarrow Random Schrödinger operator, Dynkin/Ray-Knight
Applications: recurrence/transience
*-Edge-Reinforced Random Walk
Definition and remarks
-Edge Reinforced Random Walks (-ERRW): statistical view
-Edge Reinforced Random Walks (-ERRW): results

Pólya urn: definition

- Introduced by Eggenberger and Pólya in 1923: "Über die Statistik verketteter Vorgänge", i.e. "On statistics of linked behaviors".
- Urn with balls of two colors: green and red.
- Initially a, resp. $b>0$ balls of green, red color.
- G_{n}, R_{n} numbers of balls of green, red color added until n-th draw, $G_{0}=R_{0}=0$.
- Reinforcement rule: pick one ball at random and put it back together with another ball of same color:

$$
\mathbb{P}\left(G_{n+1}=G_{n}+1 \mid G_{k}, R_{k} k \leqslant n\right)=\frac{a+G_{n}}{a+G_{n}+b+R_{n}}=: \alpha_{n} .
$$

Pólya urn: results and statistical view

Theorem
$-\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ converges a.s. to a random variable $\alpha \in(0,1)$.
$\rightarrow \alpha \sim \operatorname{Beta}(a, b)$.

- (de Finetti, by exchangeability) Conditionally on α, $\left(G_{n+1}-G_{n}\right)_{n \in \mathbb{N}}$ is an i.i.d. sequence of Bernoulli random variables with success probability α.

Statistical view

- Given sequence of i.i.d. Bernoulli random variables with unknown random success probability α, how can we estimate α ?
- Bayesian approach: choose prior distribution on random variable α.
- If prior on α is $\operatorname{Beta}(a, b)$, then

$$
\mathcal{L}\left(\left(\mathbf{1}_{\text {success at time } n}\right)_{n \in \mathbb{N}}\right)=\mathcal{L}\left(\left(G_{n}\right)_{n \in \mathbb{N}}\right),
$$

where $\left(G_{n}\right)_{n \in \mathbb{N}}$ defined from Pólya urn above.

Statistical view of Pólya urn: consequences

- Hence, if the prior on α is $\operatorname{Beta}(a, b)$, then the posterior distribution after p successes and q failures is
$\operatorname{Beta}(a+p, b+q)$.
- The prior and posterior are in the same family of probability (beta) distributions, and are thus called conjuguate priors.
- $\left(G_{n}, R_{n}\right)$ is a sufficient statistic for α at time n :
- Informally: no other statistic that can be calculated from the sequences $\left(G_{k}\right)_{k \leqslant n}$ and $\left(R_{k}\right)_{k \leqslant n}$ provides any additional information as to the value of the parameter α.
- Formally: given statistical model $\left\{P_{\alpha}: \alpha \in(0,1)\right\}$, where P_{α} is the law of i.i.d. sequences with success probability α, $P_{\alpha}\left(\left(G_{k}, R_{k}\right)_{k \leqslant n} \mid\left(G_{n}, R_{n}\right)\right)$ does not depend on α.
- It is a minimal sufficient statistics: there is no sufficient statistics that needs less information.

Edge-Reinforced Random Walk (Coppersmith and
 Diaconis, 1986)

- $G=(V, E)$ non-oriented locally finite graph
- $a_{e}>0, e \in E$, initial weights
- Edge-Reinforced Random Walk (ERRW) $\left(X_{n}\right)$ on $V: X_{0}=i_{0}$ and, if $X_{n}=i$, then

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{k}, k \leqslant n\right)=\mathbb{1}_{\{j \sim i\}} \frac{\left.Z_{n}(\{i, j\})\right)}{\sum_{k \sim X_{n}} Z_{n}(\{i, k\})}
$$

where

$$
Z_{n}(\{i, j\})=a_{i, j}+\sum_{k=1}^{n} \mathbb{1}_{\left\{X_{k-1}, X_{k}\right\}=\{i, j\}} .
$$

- a_{e} small: strong reinforcement
- a_{e} large: small reinforcement

First results on Edge-Reinforced random walk ('86-'09)

- Partially exchangeable: probability of path only depends on numbers of crossings of edges
- Diaconis and Freedman'80: partial exchangeability \Longrightarrow ERRW is a Random Walk in Random Environment (RWRE)
- Explicit computation of mixing measure: Coppersmith-Diaconis '86, Keane-Rolles '00
- Pemantle '88: recurrence/transience phase transition on trees
- Merkl Rolles '09: recurrence on a $2 d$ graph (but not \mathbb{Z}^{2})

Edge Reinforced Random Walks (ERRW): Limit measure (Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

Theorem

- $\left(Z_{n}(e) / n\right)_{n \in \mathbb{N}}$ converges a.s. to a random vector $X=\left(X_{e}\right)_{e \in E}$
- Conditionally on x, ERRW is a reversible Markov chain P_{x} with jump probability $x_{i j} / x_{i}$ from i to $j, x_{i}=\sum_{k \sim i} x_{i k}$.
- X has the following density w.r.t to surface measure on the simplex $\left\{\forall e \in E, x_{e}>0 \sum_{e \in E} x_{e}=1\right\}$

$$
\gamma\left(i_{0}, \alpha\right) \sqrt{x_{i 0}} \frac{\prod_{e \in E} x_{e}^{a_{e}-1}}{\prod_{i \in V} x_{i}^{\frac{1}{2} a_{i}}} \sqrt{D(x)}
$$

Edge Reinforced Random Walks (ERRW): Limit measure (Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

We have

$$
\gamma\left(i_{0}, \alpha\right)=\frac{2^{1-|V|+\sum_{e \in E} a_{e}}}{\sqrt{\pi}{ }^{|V|-1} \Gamma(|V|)} \frac{\prod_{i \in V} \Gamma\left(\frac{1}{2}\left(a_{i}+1-\mathbb{1}_{i=i_{0}}\right)\right)}{\prod_{e \in E} \Gamma\left(a_{e}\right)},
$$

and

$$
D(y)=\sum_{T \in \mathcal{T}} \prod_{e \in T} y_{e},
$$

where \mathcal{T} is the set of (non-oriented) spanning trees of G.

Edge-Reinforced random walk (ERRW): statistical view

- Given reversible Markov Chain P_{x} with unknown random vector x, how can we estimate x ?
- Bayesian approach: assume prior on x is $\mathbb{P}_{i_{0}, a}$, then law is the one of ERRW by definition
- Hence, the posterior distribution after n first steps is given by $\mathbb{P}_{X_{n},\left(Z_{n}(e)\right)_{e \in E}}$.
- Thus prior and posterior are conjuguate priors.
- (Diaconis and Rolles, 2006) $\left(Z_{n}(e)-Z_{0}(e)\right)_{e \in E}$ is a minimal sufficient statistic for the model, also provide method of simulation of the posterior.

ERRW and statistical physics: ERRW \longleftrightarrow VRJP (I)

Let $\left(W_{e}\right)_{e \in E}$ be conductances on edges, $W_{e}>0$.
$\operatorname{VRJP}\left(Y_{s}\right)_{s \geqslant 0}$ is a continuous-time process defined by $Y_{0}=i_{0}$ and, if $Y_{s}=i$, then, conditionally to the past,

$$
Y \text { jumps to } j \sim i \text { at rate } W_{i, j} L_{j}(s),
$$

with

$$
L_{j}(s)=1+\int_{0}^{s} \mathbb{1}_{\left\{Y_{u}=j\right\}} d u
$$

Proposed by Werner and first studied on trees by Davis, Volkov ('02,'04).

ERRW and statistical physics: ERRW \longleftrightarrow VRJP (II)

 Random conductances $\left(W_{e}\right)_{e \in E}$Theorem (T. '11, Sabot-T. '15)
$\operatorname{ERRW}\left(X_{n}\right)_{n \in \mathbb{N}}$ with weights $\left(a_{e}\right)_{e \in E}$

$$
\begin{aligned}
\text { "law" } & \text { VRJP }\left(Y_{t}\right)_{t \geqslant 0} \text { with conductances } W_{e} \sim \Gamma\left(a_{e}\right) \text { indep. } \\
= & \text { (at jump times) }
\end{aligned}
$$

- Similar equivalence applies to any linearly reinforced RW on its continuous time version (initially proved for VRRW, T'. 11)

VRJP \longleftrightarrow SuSy hyperbolic sigma model in QFT (I) Fixed conductances $\left(W_{e}\right)_{e \in E}, G$ finite

- $G=(V, E)$ finite, $N:=|V|$
- $\mathbb{P}_{i_{0}}$ law of $\left(Y_{s}\right)_{s \geqslant 0}$ starting from $i_{0} \in V$
- Change time at vertices $\ell_{i}=L_{i}^{2}-1, i \in V \longrightarrow\left(Z_{t}\right)_{t \geqslant 0}$

$$
B(s)=\sum_{i \in V}\left(L_{i}(s)^{2}-1\right), \quad Z_{t}=Y_{B^{-1}(t)}
$$

Theorem (ST '15)
Under $\mathbb{P}_{i_{0}},\left(Z_{t}\right)_{t \geqslant 0}$ is a mixture of Markov jump processes (MJPs) starting from i_{0} with jump rate from i to j

$$
\frac{1}{2} W_{i, j} e^{U_{j}-U_{i}}
$$

Let $\mathcal{Q}^{i_{0}, W}$ be the mixing measure on $U=\left(U_{i}\right)_{i \in V}$.

VRJP \longleftrightarrow SuSy hyperbolic sigma model in QFT (II)
Fixed conductances $\left(W_{e}\right)_{e \in E}, G$ finite (ST '15 continued)

The measure $\mathcal{Q}^{i_{0}, W}(d u)$ has density on $\mathcal{H}_{0}=\left\{\left(u_{i}\right), \sum u_{i}=0\right\}$

$$
\frac{N}{(2 \pi)^{(N-1) / 2}} e^{u_{i_{0}}} e^{-H(W, u)} \sqrt{D(W, u)},
$$

where

$$
H(W, u)=2 \sum_{\{i, j\} \in E} W_{i, j} \sinh ^{2}\left(\left(u_{i}-u_{j}\right) / 2\right)
$$

and

$$
D(W, u)=\sum_{T \in \mathcal{T}} \prod_{\{i, j\} \in T} W_{\{i, j\}} e^{u_{i}+u_{j}}
$$

\mathcal{T} is the set of (non-oriented) spanning trees of G.

VRJP \longleftrightarrow SuSy hyperbolic sigma model in QFT (III)

 Fixed conductances $\left(W_{e}\right)_{e \in E}, G$ finite (Merkl-Rolles-T.'19)- $Q^{i, W}(d u)$ marginal of Gibbs "measure" on supermanifold extension $H^{2 \mid 2}$ of hyperbolic plane with action $A_{W}(v, v)=\sum_{i, j} W_{i j}\left(v_{i}-v_{j}, v_{i}-v_{j}\right)$, taken in horospherical coordinates after integration over fermionic variables.
- Merkl-Rolles-T.'19: Other variables in extension SuSy model arise on two different time scales as limits of
- local times on logarithmic scale
- rescaled fluctuations of local times
- rescaled crossing numbers
- last exit trees of the walk (tree version of fermionic variables)
- Bauerschmidt-Helmuth-Swan '19 (AP and AIHP): very nice interpretation of in terms of Brydges-Fröhlich-Spencer-Dynkin isomorphism for the supersymmetric field

Linear ERRW and statistical physics: other links

 Fixed conductances $\left(W_{e}\right)_{e \in E}, G$ finite- Random Schrödinger operator (Sabot-T.-Zeng '17): let

$$
\beta_{i}=\frac{1}{2} \sum_{j \sim i} W_{i j} e^{u_{j}-u_{i}}+\mathbf{1}_{i 0} \gamma
$$

$\gamma \sim \Gamma(1 / 2)$ indep. of $u: \beta$ field 1-dependent on $\left\{H_{\beta}>0\right\}$, $H_{\beta}=-\Delta^{W}+2 \beta, \Delta^{W}$ discrete Laplacian
$\longrightarrow e^{\mu}$. proportional to Green function $H_{\beta}^{-1}\left(i_{0},.\right)$.

- Ray-Knight second generalised Theorem (Sabot-T.'16, Lupu-Sabot-T'19): reversed VRJP \tilde{Y}, with jump rate $W_{i j} L_{j}(t)$ from i to j

$$
L_{i}(t)=\varphi_{i}-\int_{0}^{s} \mathbb{1}_{\left\{\tilde{Y}_{u}=j\right\}} d u
$$

enables to invert Ray-Knight identity in a magnetized version.

ERRW/VRJP and statistical physics: implications

Using link with QFT and localisation/delocalisation results of Disertori, Spencer, Zirnbauer '10:
Theorem (ST'15, Angel-Crawford-Kozma'14, G bded degree) ERRW (resp.VRJP) is positive recurrent at strong reinforcement, i.e. for a_{e} (resp. W_{e}) uniformly small in $e \in E$.

Theorem (ST'15, Disertori-ST'15, $G=\mathbb{Z}^{d}, d \geqslant 3$)
ERRW (resp. VRJP) is transient at weak reinforcement, i.e. for a_{e} (resp. W_{e}) uniformly large in $e \in E$.
Using link with Random Schrödinger operator:
Theorem (Sabot-Zeng '19, Sabot -19, Merkl-Rolles '09)
ERRW with constant weights $a_{e}=a$ (resp. $W_{e}=W$) is recurrent in dimension 2. k-dependent Markov chains

- $\left(Y_{i}\right)$ k-dependent Markov chain on S finite (i.e. law of Y_{n+1} depends only on $\left(Y_{n-k+1}, \ldots, Y_{n}\right)$).
- Equivalent to Markov chain $\left(X_{n}\right)$ on the (directed) de Bruijn graph $G=\left(V=S^{k}, E\right)$ with

$$
\omega=\left(i_{1}, \ldots, i_{k}\right) \rightarrow \tilde{\omega}=\left(i_{2}, \ldots, i_{k+1}\right)
$$

with transition rate $p(\omega, \tilde{\omega})$, and invariant measure $\pi(\omega)$.
The k-dependent Markov chain is called reversible if

$$
\left(Y_{1}, \ldots, Y_{n}\right) \stackrel{\operatorname{law}}{=}\left(Y_{n}, \ldots, Y_{1}\right)
$$

as soon as $\left(Y_{1}, \ldots, Y_{k}\right) \sim \pi$. This is equivalent to the "modified" balance condition

$$
\pi(\omega) p(\omega, \tilde{\omega})=\pi\left(\tilde{\omega}^{*}\right) p\left(\tilde{\omega}^{*}, \omega^{*}\right)
$$

where ω^{*} is the flipped k-string $\omega^{*}=\left(i_{k}, \ldots, i_{1}\right)$.

General framework

- $G=(V, E)$ directed graph with involution $*$ on V s.t.

$$
(i, j) \in E \Rightarrow\left(j^{*}, i^{*}\right) \in E
$$

- $\alpha_{i, j}>0,(i, j) \in E$ such that $\alpha_{i, j}=\alpha_{j^{*}, i^{*}}$.

We call \star-ERRW with initial weights $\left(\alpha_{e}\right)$, the discrete time process $\left(X_{n}\right)$ defined by

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{k}, k \leqslant n\right)=\mathbb{1}_{\left\{X_{n} \rightarrow j\right\}} \frac{Z_{n}\left(\left(X_{n}, j\right)\right)}{\sum_{l, X_{n} \rightarrow I} Z_{n}\left(\left(X_{n}, l\right)\right)}
$$

where

$$
\begin{aligned}
Z_{n}((i, j)) & =\alpha_{i, j}+N_{i, j}(n)+N_{j^{*}, i^{*}}(n) \\
N_{i, j}(n) & =\sum_{k=1}^{n} \mathbb{1}_{\left\{\left(X_{k-1}, X_{k}\right)=(i, j)\right\}} .
\end{aligned}
$$

Let div be the divergence operator div: $\mathbb{R}^{E} \mapsto \mathbb{R}^{V}$

$$
\operatorname{div}(z)(i)=\sum_{j, i \rightarrow j} z_{i, j}-\sum_{j, j \rightarrow i} z_{j, i}
$$

Proposition (Bacallado '11, Baccalado, Sabot and T. '21)
i) Let $i_{0} \in V$. If $\operatorname{div}(\alpha)=\delta_{i_{0}^{*}}-\delta_{i_{0}}$, then the \star-ERRW starting from i_{0} is partially exchangeable.

Proof.
Let σ be a path. We prove that

$$
\mathbb{P}^{\star-E R R W}(X \text { follows } \sigma)=\frac{\text { function }\left(N_{e}(\sigma)\right)}{\text { function }\left(N_{i}(\sigma)\right)}
$$

where as usual $N_{i, j}(\sigma)$ is the number of crossings of the (directed) edge (i, j) and

$$
N_{i}(\sigma)=\sum_{i \rightarrow j} N_{i, j}(\sigma)
$$

Numerator: trivial
Denominator: needs condition (1).

-Edge Reinforced Random Walks (-ERRW): statistical view

- Statistical analysis of molecular dynamics simulations with microscopically reversible laws.
- Two other applications, beyond Bayesian analysis of higher-order Markov chains (Bacallado, 2006):
- Variable-order Markov chains with context set $\mathcal{C} \subseteq S \cup S^{2} \cup \cdots \cup S^{k}$ on de Bruijn graph: $\forall\left(i_{1}, \ldots, i_{\ell}\right) \in \mathcal{C}$, transition probabilities out of x and y are the same whenever x and y both end in (i_{1}, \ldots, i_{ℓ}). Can define a prior with full support on the space of variable-order, reversible Markov chains with a specific context set.
- Reinforced random walk with amnesia: RW on $G=(V, E)$ defined by $V=S \cup S^{2} \cup \ldots S^{k}$ with two types of edges: "forgetting" ones $\left(i_{1}, \ldots, i_{m}\right) \rightarrow\left(i_{2}, \ldots, i_{m}\right)$, if $m>1$, "appending" ones $\left(i_{1}, \ldots, i_{m}\right) \rightarrow\left(\left(i_{1}, \ldots, i_{m}, j\right)\right.$, for each $j \in V$, if $m<k$. Generalization of the above.

-Edge Reinforced Random Walks (-ERRW): results

Theorem (Bacallado, Sabot and T., 2021)

- $\left(Z_{n}(e) / n\right)_{n \in \mathbb{N}}$ converges a.s. to a random vector $X=\left(X_{e}\right)_{e \in E}$ in

$$
\mathcal{L}_{1}=\left\{\left(x_{e}\right) \in(0, \infty)^{E}: x_{i, j}=x_{j^{*}, i^{*}}, \operatorname{div}(x)=0, \sum_{e \in E} x_{e}=1\right\} .
$$

- Conditionally on x, ERRW is a reversible Markov chain P_{x} with jump probability $x_{i j} / x_{i}$ from i to $j, x_{i}=\sum_{i \rightarrow k} x_{i k}$.
- The random variable X has the following density on \mathcal{L}_{1}, w.r.t pullback of Lebesgue measure on \mathbb{R}^{B} by the projection $\left(x_{e}\right) \in \mathcal{L}_{0} \mapsto\left(x_{e}\right)_{e \in B}, B$ basis of $\mathcal{L}_{1}:$

$$
C \gamma\left(i_{0}, \alpha\right) \sqrt{x_{i 0}}\left(\frac{\prod_{(i, j) \in \tilde{E}} x_{i, j}^{\alpha_{i, j}-1}}{\prod_{i \in V} x_{i}^{\frac{1}{2} \alpha_{i}}}\right) \frac{1}{\prod_{i \in V_{0}} \sqrt{x_{i}}} \sqrt{D(x)} d x_{\mathcal{L}_{1}},
$$

-Edge Reinforced Random Walks (-ERRW): results

We have

$$
\begin{gathered}
\gamma\left(i_{0}, \alpha\right)=\frac{\left(\prod _ { i \in V _ { 0 } } \Gamma (\frac { 1 } { 2 } (\alpha _ { i } + 1 - \mathbb { 1 } _ { i = i _ { 0 } }) 2 ^ { \frac { 1 } { 2 } (\alpha _ { i } - \mathbb { 1 } _ { i = i _ { 0 } }) }) \left(\prod_{i \in V_{1}} \Gamma\left(\inf \left(\alpha_{i}, \alpha_{i^{*}}\right)\right)\right.\right.}{\prod_{(i, j) \in \tilde{E}} \Gamma\left(\alpha_{i, j}\right)} \\
C=\frac{2}{\sqrt{2 \pi}^{\left|V_{0}\right|-1} \sqrt{2}^{\left|V_{0}\right|+\left|V_{1}\right|}},
\end{gathered}
$$

and

$$
D(y)=\sum_{T} \prod_{(i, j) \in T} y_{i, j}
$$

The last sum runs on spanning trees directed towards a root $j_{0} \in V$ (value does not depend on the choice of the root j_{0}.

