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Hyperasymptotics

Hyperasymptotics is a powerful technique, yet far from having revealed its full
potential, and I will describe a few steps towards pushing them further.

Discovered by Berry and developed by Berry, Howls, Olde Daalhuis and many
others, hyperasymptotics is an important tool in dealing with divergent series
occuring in applications.

Starting with summation to the least term it goes further in using the asymp-
totics of the remainder ε1, summing its expansion to its least term, resulting in
an ε2 and so on indefinitely. Stage n asymptotic analysis yields the necessary
information for step n + 1 through resurgence relations going back to Dingle.

The process ends with nonzero errors, ε∞ = O(ε2
√

2
1 ): as it happens, the ef-

fective variable (singulant) is halved from one stage to the next. Is this a fun-
damental obstruction? (no), or can a detailed Borel plane analysis improve
accuracy? (yes, substantially).

What is the sharp Borel plane structure of optimal truncation remainders?
(meaning the exact physical plane-Borel plane duality of each εn and the com-
plete structure of singularities.)

Can eventual convergence be achieved? Yes.
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Borel plane analysis of hyperasymptotic remainders

A Borel p−plane resurgent function is a function H analytic at zero, with a dis-
crete set of singularities with convergent local expansions, and exponential
bounds at infinity.

If H is resurgent, LH = h, a function in the physical plane, is o�en also called

resurgent. By Watson’s lemma, the asymptotic series of h is h̃ =
∑ H(k)(0)

xk+1 =:∑
hkx−k . By definition, such an h̃ is Borel summable.

Let H be resurgent. Rescale p so that the closest singularity ω ∈ S1. Then
H(k) ∝ k! and thus |hk/xk | ↘ in k if k < |x|, ∝ e−|x| when k ∼ |x| and ↗
therea�er.

Say x > 0. The least term truncation of h̃ is hT =
∑|x|

k=1 hkx
−k . IfH is resurgent,

then h− hT =∝ e−x .

Write h = hT + e−x r , and if r is resurgent, repeat.

With R = L−1r , what we want to understand is the resurgence properties of
the operator H → R = L−1r .

M V Berry, O Costin, R D Costin & C Howls Resurgence 3 / 31
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We can assume w.l.o.g that H is a resurgent “element”, a functions with alge-
braic behavior at infinity and only one singularity ω where H ∈ L1.

We assume ω is not very close to 1; the la�er case is treated separately.
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For simplicity, take x = N ∈ N. Then r = h− hT = LH(N)−
∑N

k=1 hkN
−k=

1
NN

∫ ∞
0

e−NpH(N)(p)dp =
N!

2πiNN

∫ ∞
0

e−Npdp
∮

0

H(s + p)

sN+1 ds

=
(−1)NN!

2πiNN

∫ ∞
0

e−Np
∫ ∞
−ω

∆H(−t)
(p + t)N+1 dt

where ∆H is the branch jump of H. Change the order of integration

(−1)NN!

2πiNN︸ ︷︷ ︸
e−x ·resurgent

∫ ∞
−ω

dt
∫ ∞

0

∆H(−t)e−Np

(p + t)N+1 dp

Change the variable in the innermost integral to

q = p + ln(p + t); p(q, t) = −t + Ω(q + t) where Ω(z) + ln Ω(z) = z (1)

(Ω is the Wright omega function) and change again the integration order.
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A�er some more algebra,

R =
N!e−iNϕ

2πiNN

∫ ∞
0

e−NqQ(q)dq

Thus in Borel plane, the transition operator is H 7→ Q where

T H =

∫ eq+iϕ

ω

∆H(t)[Ω′(q − ln(ω)− ω)− 1]dt

a resurgence-preserving operator, as seen next.
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R = (−1)NN!
2πiNN

∫∞
−ω dt

∫∞
0

∆H(−t)
(p+t)N+1 e−Npdp

Proposition

1 The singular points qs of T H are: the qs s.t. eqs = ps ps is a singular point for
∆H(z) (ω = −1 : qs ∈ πiZ) and the qs where Ω(q + ln(−ω)− ω) is singular.

2 For ω 6= 1, Ω(q+ ln(−ω)−ω) has only two singularities, at ln(−ω)−ω−1± iπ.
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Calculations for Airy Ai

The singularity of H is at −1, this implies that the smallest |qs| is π: the least
term of the R series moves farther at N = πx :

F new nr. of terms to least term Absolute error a�er LTT+one stage

1 4 −0.0021
2 7 0.000037
3 12 3.1× 10−7

4 12 −3.9× 10−9

5 19 2.1× 10−11

6 24 3.9× 10−13

7 24 −4.0× 10−15

8 29 −5.5× 10−17

9 29 7.2× 10−19

10 29 −1.3× 10−20

M V Berry, O Costin, R D Costin & C Howls Resurgence 8 / 31
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If the singularity of H is at−1, then the smallest |qs| is π times as far: the least
term of the R series moves farther.

And, if qs = −1, just one stage results in ε̃2 = επ1 � ε2
√

2
1 � ε1.

Now, each singularity of H results in infinitely many of T H (since Q is singular
if H(eq) is singular).

Because of this, the density of singularities of Rn grows at the unexpected rate
(ee

e···

)n.

Nonetheless, ba�lingly, this whole zoo converges ends up in convergence of the
expansion!

To understand the extravagant proliferation of singularities note that the hy-
perasymptotics of T H depends on the Taylor coe�icients of H. If a func-
tion satisfies an ODE, then its Taylor coe�icients satisfy a di�erence equation.
Hence the dependence on ep. This leads to part II, factorial series.
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Factorial series and their resurgence

Factorial expansions,

∞∑
k=1

ck
(x)k

, (x)k := x(x + 1) · · · (x + k − 1)=
Γ(x + k)

Γ(x)

go back to Stirling and were developed by Jensen, Landau, Nörlund, Horn, Wa-
sow. Since (x)k+1 ∼ k! for large k, the factorial series of a function may con-
verge even when its asymptotic series in powers of x−1 has empty domain of
convergence. Strangely perhaps, b/c (x)k is larger than xk .

Their use in QM and QFT (Jentschura, Weniger) triggered considerable re-
newed interest and substantial literature.

However, typically, classical factorial series have two major limitations: slow
convergence, at best power-like, and limited domain of convergence (a half
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By Watson’s Lemma, the asymptotic series of the toy model

J =

∞∫
0

e−xp

1 + ep
dp
(
= 1

2 Ψ( x
2 + 1)− 1

2 Ψ( x
2 + 1

2 )
)

diverges like k!π−kx−k . However, changing variable to t = e−p and integrat-
ing by parts results in

J =

1∫
0

txdt
t + 1

=
1

2(x + 1)
+

1
x + 1

1∫
0

tx+1dt
(t + 1)2 = · · · =

∞∑
j=0

j!
2j+1(x)j+2

(2)

which converges faster than 2−j in C \R−, since (x)j = O((j− 1)!) for large j.

A change of variable in the classical Borel summation of the series
∑∞

0
k!

(−x)k+1

exEi(−x) =

∞∫
0

e−pxdp
1 + p

t=e−p

= =

1∫
0

tx−1dt
1− ln t

the same procedure leads to an at-best power-like convergence (b/c of the

singularity of ln at zero) at most in the right half plane, H .
M V Berry, O Costin, R D Costin & C Howls Resurgence 11 / 31



By Watson’s Lemma, the asymptotic series of the toy model

J =

∞∫
0

e−xp

1 + ep
dp
(
= 1

2 Ψ( x
2 + 1)− 1

2 Ψ( x
2 + 1

2 )
)

diverges like k!π−kx−k . However, changing variable to t = e−p and integrat-
ing by parts results in

J =

1∫
0

txdt
t + 1

=
1

2(x + 1)
+

1
x + 1

1∫
0

tx+1dt
(t + 1)2 = · · · =

∞∑
j=0

j!
2j+1(x)j+2

(2)

which converges faster than 2−j in C \R−, since (x)j = O((j− 1)!) for large j.

A change of variable in the classical Borel summation of the series
∑∞

0
k!

(−x)k+1

exEi(−x) =

∞∫
0

e−pxdp
1 + p

t=e−p

= =

1∫
0

tx−1dt
1− ln t

the same procedure leads to an at-best power-like convergence (b/c of the

singularity of ln at zero) at most in the right half plane, H .
M V Berry, O Costin, R D Costin & C Howls Resurgence 11 / 31



By Watson’s Lemma, the asymptotic series of the toy model

J =

∞∫
0

e−xp

1 + ep
dp
(
= 1

2 Ψ( x
2 + 1)− 1

2 Ψ( x
2 + 1

2 )
)

diverges like k!π−kx−k . However, changing variable to t = e−p and integrat-
ing by parts results in

J =

1∫
0

txdt
t + 1

=
1

2(x + 1)
+

1
x + 1

1∫
0

tx+1dt
(t + 1)2 = · · · =

∞∑
j=0

j!
2j+1(x)j+2

(2)

which converges faster than 2−j in C \R−, since (x)j = O((j− 1)!) for large j.

A change of variable in the classical Borel summation of the series
∑∞

0
k!

(−x)k+1

exEi(−x) =

∞∫
0

e−pxdp
1 + p

t=e−p

= =

1∫
0

tx−1dt
1− ln t

the same procedure leads to an at-best power-like convergence (b/c of the

singularity of ln at zero) at most in the right half plane, H .
M V Berry, O Costin, R D Costin & C Howls Resurgence 11 / 31



By Watson’s Lemma, the asymptotic series of the toy model

J =

∞∫
0

e−xp

1 + ep
dp
(
= 1

2 Ψ( x
2 + 1)− 1

2 Ψ( x
2 + 1

2 )
)

diverges like k!π−kx−k . However, changing variable to t = e−p and integrat-
ing by parts results in

J =

1∫
0

txdt
t + 1

=
1

2(x + 1)
+

1
x + 1

1∫
0

tx+1dt
(t + 1)2 = · · · =

∞∑
j=0

j!
2j+1(x)j+2

(2)

which converges faster than 2−j in C \R−, since (x)j = O((j− 1)!) for large j.

A change of variable in the classical Borel summation of the series
∑∞

0
k!

(−x)k+1

exEi(−x) =

∞∫
0

e−pxdp
1 + p

t=e−p

= =

1∫
0

tx−1dt
1− ln t

the same procedure leads to an at-best power-like convergence (b/c of the

singularity of ln at zero) at most in the right half plane, H .
M V Berry, O Costin, R D Costin & C Howls Resurgence 11 / 31



Take now the prototypical example of
:::::::::
classically! “non-summable” series:

f̃ =
∞∑
k=0

k!

xk+1 (x →∞) (3)

Median Écalle-Borel summation LB gives

LBf̃ = e−xEi(x) = PV

∞∫
0

e−xpdp
1− p

The same substitution as before, e−p = t gives an integrand with pole at 1/e ,

PV

1∫
0

tx−1dt
1 + ln t

and integration by parts fails, or fails to produce a convergent factorial series.
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To understand the di�erence between these cases, the key element is the shape of

the integrand. In the first example it was (1 + e−p)−1 e−p=t→ (1 + t)−1, in the second
it is (1 + p)−1 → (1− ln t)−1 whereas the third was plain singular.

To deal with these di�iculties we need to represent Borel plane functions as suf-
ficiently rapidly convergent combinations of analytic functions of the exponential
Fj(e−ajp) where Fj(z) are analytic in a disk of radius > 1 centered at one.

This can be arranged for resurgent functions, but first we’ll look at an example.
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First example: Ei in the Stokes ray sector

Let

e−xEi+(x) =

∫ ∞−i0
0

e−px

1− p
dp

(where + refers to the intended direction of x , one in the upper half plane1).

The following identity holds in C \ {1}:

1
1− p

= − πi
e−iπp + 1

+ πi
∞∑
k=1

1
2k

ek
e−rkp + ek

; ek = e−iπ2−k

, rk = iπ2−k

By integration we get

e−xEi+(x) = −i
∫ ∞−0i

0

e−px/π

e−ip + 1
dp + i

∞∑
k=1

∫ ∞−0i

0

eke−
2k px
π

ek + e−ip
dp

where the series converges at least as fast as 2−k (Watson’s lemma).

1Borel summation convention: the direction of integration is chosen s.t. px > 0.
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1 Substituting e−p/2k = t and integrating by parts we get

e−xEi+(x) = −
∞∑
m=1

Γ(m)

2m
1

(y)m
+
∞∑
k=1

∞∑
m=1

Γ(m)ek
(1 + ek)m

1
(2ky)m

(y = −ix/π)

(4)

Proposition

(i) The double series (4) converges geometrically in C \ −iR+.
(ii) The di�erence between the k-th integral and the k-th term in the sum in (4) is of
order C 2−km|1 + ek |−m (note also that ek → 1).

Note
There is a dense set of poles in (4) along−iR+ and there the expansion breaks down.
This is to be expected b/c of 6= behavior of Ei+ on the two sides of −iR+. Close to
−iR but not on it we still have geometric convergence, but it deteriorates.

M V Berry, O Costin, R D Costin & C Howls Resurgence 15 / 31



1 Substituting e−p/2k = t and integrating by parts we get

e−xEi+(x) = −
∞∑
m=1

Γ(m)

2m
1

(y)m
+
∞∑
k=1

∞∑
m=1

Γ(m)ek
(1 + ek)m

1
(2ky)m

(y = −ix/π)

(4)

Proposition

(i) The double series (4) converges geometrically in C \ −iR+.
(ii) The di�erence between the k-th integral and the k-th term in the sum in (4) is of
order C 2−km|1 + ek |−m (note also that ek → 1).

Note
There is a dense set of poles in (4) along−iR+ and there the expansion breaks down.
This is to be expected b/c of 6= behavior of Ei+ on the two sides of −iR+. Close to
−iR but not on it we still have geometric convergence, but it deteriorates.

M V Berry, O Costin, R D Costin & C Howls Resurgence 15 / 31



1 Substituting e−p/2k = t and integrating by parts we get

e−xEi+(x) = −
∞∑
m=1

Γ(m)

2m
1

(y)m
+
∞∑
k=1

∞∑
m=1

Γ(m)ek
(1 + ek)m

1
(2ky)m

(y = −ix/π)

(4)

Proposition

(i) The double series (4) converges geometrically in C \ −iR+.
(ii) The di�erence between the k-th integral and the k-th term in the sum in (4) is of
order C 2−km|1 + ek |−m (note also that ek → 1).

Note
There is a dense set of poles in (4) along−iR+ and there the expansion breaks down.
This is to be expected b/c of 6= behavior of Ei+ on the two sides of −iR+. Close to
−iR but not on it we still have geometric convergence, but it deteriorates.

M V Berry, O Costin, R D Costin & C Howls Resurgence 15 / 31



Figure: Size of terms in the successive series on the Stokes lineR+ with the formula
(4). This plot can be used to determine the number of terms to be kept for a given
accuracy. To get 10−5 accuracy, 10 terms of the first series plus 5 from the second
and so on, and all terms from the fi�h series on can be discarded.
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Figure: f (x) = e−xEi+(x) on the Stokes line: Re f (green), ex Im f
(blue), ln(− Im f ) (red) from formula (4). We see that the small exponen-
tial is “born”, with half of the residue, as expected by comparing with
1
2e
−x (Ei+(x) + Ei−(x)

)
.
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Figure: The antistokes transition of Ei+ from asymptotically decaying to oscilla-
tory. Calculated at distance 0.3 from the two sides of the antistokes line.
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Dyadic decompositions

Lemma (A strange dyadic decomposition)

�e following identity holds in C \ {0}:

1
p

=
1

1− e−p
−
∞∑
k=1

2−k

1 + e−p/2k
(5)

(�e points mπi are removable singularities of the right side.)

A linear a�ine transformation p→ βp− βs gives:

Corollary (Dyadic decomposition of the Cauchy kernel)

1
s − p

= − βe−βs

e−βs − e−βp
+
∞∑
k=1

β2−ke−2−kβs

e−2−kβs + e−2−kβp
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Proof.

1
1− x

=
2

1− x2 −
1

x + 1
=

4
1− x4 −

2
x2 + 1

− 1
x + 1

= . . . =
2n

1− x2n −
n−1∑
j=0

2j

1 + x2j

which implies, with x = e−p/2n ,
1

2n(1− e−p/2n)
=

1
1− e−p

−
n∑

k=1

2−k

e−p/2k + 1
and equality (5) follows by passing to the limit n→∞.

Generalization. Note that 1/(1−p) satisfies f (p) + f (−p) = 21−sf (p2) for
s = 0. For general s, the solution is the polylog Lis(p).

Lemma (A ramified generalization of (5))

�e following identity holds in C for s < 1:

πps−1 = Γ(s) sin(πs)

[
Lis
(
e−p
)
−
∞∑
k=1

2−k(1−s)Lis
(
−e−2−kp

)]
(6)
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Example II Ψ = Γ′/Γ

Since
1
p
− 1

ep − 1
=
∞∑
k=1

e−
p

2k

2k
(
e−

p

2k + 1
) (7)

and

Ψ(x + 1) =
Γ′(x + 1)

Γ(x + 1)
= ln x +

∫ ∞
0

(
1
p
− 1

ep − 1

)
e−xpdp (8)

we have

Ψ(x + 1) = ln x +
∞∑
k=1

∫ ∞
0

e−2kxp−p

1 + e−p
dp (9)

Thus (Stirling’s formula, factorially summed)

Ψ(x + 1) = ln x −
∞∑
k=1

Φ(−1, 1, 2kx + 1) = ln x +
∞∑
k=1

∞∑
j=1

(j − 1)!

2j(2kx + 1)j
(10)
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Dyadic series of general resurgent functions

The dyadic expansion, used in the Cauchy formula,

F (p) =
1

2πi

∮
|p−s|<r

F (s)
s − p

ds

allows for arranging the necessary analyticity in exponentials for quite general
F . Resurgent function (in the sense of Écalle) is a function which is endlessly
continuable and has suitable exponential bounds at infinity. The singularities
are typically assumed to be regular, in the sense of having convergent local
Puiseux series possibly mixed with logs.

We define resurgent “elements” to be resurgent functions with only one singularity
and algebraic decay.

Theorem (Resurgent version of Mi�ag-Le�ler…)

L (resurgent function) =
∑
L( resurgent elements) + Analytic at∞.

Proof.
Decomposition in suitably modified Riemann-Hilbert problems.

M V Berry, O Costin, R D Costin & C Howls Resurgence 22 / 31



Dyadic series of general resurgent functions

The dyadic expansion, used in the Cauchy formula,

F (p) =
1

2πi

∮
|p−s|<r

F (s)
s − p

ds

allows for arranging the necessary analyticity in exponentials for quite general
F . Resurgent function (in the sense of Écalle) is a function which is endlessly
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Let ωk be the singularities of the resurgent function F of the type arising, say
in nonlinear ODEs. Then:

1 Each ωi is of the form jλk , with j ∈ Z+ and λk ∈ {λ1, . . . , λn} (the eigenvalues
of the linearization at∞ of the ODE assumed to be linearly independent over Z
and of di�erent complex arguments);

2 there is a ν s.t ‖F‖ν = supp∈A |F (p)e
−ν|p|| < ∞ where A is the complement of

the union of thin strips Si containing exactly one singularity ωk ; we let Ci = ∂Si .

Let

Fi(p) =
exp(µip)

2πi

∫
Ci

F (s) exp(−µis)
s − p

ds (11)

and G(p) = F (p)−
∑
ωi

Fi
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Fi(p) =
exp(µip)

2πi

∫
Ci

F (s) exp(−µis)
s − p

ds

where:
Ci are non-intersecting Hänkel contours around the ωi , traversed anticlockwise;
|µi| = µ > ν
arg(µi) = − angle of the contour Ci , i.e., µis ∈ R+ for large s.

For the Proof

Step (1)
On the first Riemann sheet, each Fi has 1 singularity, ωi , and F − Fi is analytic at ωi .

Indeed, the contour can be deformed past p collecting a residue,

Fi(p) =
exp(µip)

2πi

∫
C̃i

F (s) exp(−µis)
s − p

ds + 2πiF (p) exp(−µip)


= F (p) +

exp(µip)

2πi

∫
C̃i

F (s) exp(−µis)
s − p

ds

where now p sits inside C̃i , and the new integral is again manifestly analytic.

Thus Fi is singular only at p = ωi , and F − Fi is analytic at ωi .
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Step (2)

In any compact set inA,
∑
ωi
Fi converges at least as fast as

∑
j∈Z+,k=1,...,n e

−j|λk |(µ−ν).

Step (3)
The function G(p) = F (p)−

∑
i Fi is entire and ‖G‖µ′ <∞ for any µ′ > µ.

Step (4)
g = LG has a convergent asymptotic series at infinity which sums to g.

Step (5)

Each function e−µipFi =

∫
Ci

F (s) exp(−µis)
s − p

ds decays like 1/p as p→∞.

Step (6)

The change of variable x̃ = x − µi leads to L[Fi](x) = L[F̃i](x̃) where F̃i decays like
1/p as p→∞.
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Ai (again!)

A�er normalization, the Airy function is brought to

h(x) =

∫ ∞
0

e−pxF (p)dp (12)

where F (p) = 2F1(1/6, 5/6; 1,−p) = P−1/6(1 + 2p) is analytic except for a
logarithmic singularity at −1. To improve decay we integrate by parts

h(x) =
F (0)

x
+

1
x

∫ ∞
0

e−pxF ′(p)dp (13)

F ′(p) =
1

2πi

∮
|p−s|<r

F (s)
(s − p)2 ds =

1
2πi

∫ −1

−∞

∆F (s)
(p− s)2 ds (14)

A�er the change of variables s = −1− t we get

h(x) =
F (0)

x
− 1

2πx

∫ ∞
0

e−xp
∫ ∞

0

F (t)
(1 + p + t)2 dt (15)

since ∆F (−1− t) = −iF (t).
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A�er normalization, the Airy function is brought to

h(x) =

∫ ∞
0

e−pxF (p)dp (12)

where F (p) = 2F1(1/6, 5/6; 1,−p) = P−1/6(1 + 2p) is analytic except for a
logarithmic singularity at −1. To improve decay we integrate by parts
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1
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∮
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The identity, di�erentiated:

1
(s − p)2 =

e−s−p

(e−s − e−p)2 +
∞∑
k=1

4−k
e2−k(−p−s)

(e−2−k s + e−2−kp)2

Used with s = −1− t this yields∫ ∞
0

F (t)dt
(1 + p + t)2 =

∫ ∞
0

e1−p+tF (t)dt
(e1+t − e−p)2 +

∞∑
k=1

∫ ∞
0

4−ke2−k(1−p+t)F (t)dt
(e2−k(1+t) + e−2−kp)2

The factorial expansion of h is

h(x) =
F (0)

x
−
∞∑
m=2

(−1)mΓ(m)

2π(x)m
dm +

∞∑
k=1

2−ke2−k
∞∑
m=2

(−1)mΓ(m)

2π(2kx)m
dkm

where

dm :=

∫ ∞
0

F (t)et+1dt
(et+1 − 1)m

; dkm :=

∫ ∞
0

e2−k tF (t)dt
(e2−k(1+t) + 1)m
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Figure: Relative accuracy for Ai (le�), and number of exact digits (right) as func-
tions of x . The total number of terms used in this calculation ranges from about
150 for small x to 30 terms at x = 20, found as explained in Fig. 3. The right
graph plateaus at 16 digits for all x ≥ 4, an artefact due to calculations being
made in Mathematica’s machine precision; thus the right graph was stopped
at x = 4.
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PDEs? Dyadic resolvent identities

Proposition

1 Let A be self-adj., 0 /∈ σ(A), λ > 0, Ut := e−itA be the assoc. the unitary evolution.

(A− iλ)−1 = i(1− e−λU1)−1 − i
∞∑
k=1

(1 + e−λ/2kU2−k )−1

= i
∞∑
k=0

e−kλUk − i
∞∑
k=1

∞∑
j=0

2−k(−1)je−jλ/2kUj2−k (16)

and a similar sum for λ < 0. All sums are operator-norm convergent.

2 Let A be positive, 0 /∈ σ(A). Let Tt = e−tA be the semigroup generated by A. Then

A−1 = (1−T1)−1−
∞∑
k=1

2−k(1+T1/2k )−1 =
∞∑
j=1

Tj−
∞∑
k=1

∞∑
j=1

2−k(−1)jTj/2k (17)
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Proposition
More generally, for s < 1,

πAs−1 = Γ(s) sin(πs)

[
Lis (T1)−

∞∑
k=1

2−k(1−s)Lis
(
−T1/2k

)]
(18)

where for |z| < 1 the polylog is defined by

Lis(z) =
∞∑
k=1

k−szk (19)

(More general identities can be obtained from the Cauchy kernel and analytic functional
calculus.)

TBA and to be explored in the context of PDEs.
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Conclusions: TBD

Thank you
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