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Dyson-Schwinger equations I: Schwinger’s approach

Identities for correlators

Idea: derive from∫
Dφ

δ

δφ(x)

[
e−S(φ,λ)φ(x1) · · ·φ(xn)

]
= 0

identities for correlators; S(φ, λ) euclidean action of scalar field

Example n = 1: relates different correlators∫
Dφ

[
δS(φ, λ)

δφ(x)
φ(y) + δd(x − y)

]
= 0,

where, eg δS(φ,λ)
δφ(x) = (−∆ + m2)φ(x) + 4λφ(x)3
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Dyson-Schwinger equations I: Schwinger’s approach, cont.

Reformulate using external current

∫
Dφ

[
δS(φ, λ)

δφ(x)

(
δ

δJ

)
δ

δJ(y)
+ δd(x − y)

]
e−S(φ,λ)+

∫
J·φ = 0

or [
δS(φ, λ)

δφ(x)

(
δ

δJ

)
δ

δJ(y)
+ δd(x − y)

]
Z [J] = 0

with partition function

Z [J] =

∫
Dφ e−S(φ,λ)+

∫
J·φ = e−G [J]

or write in terms of free energy G [J] = − log Z [J]
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Example: QED fermion propagator

Feynman path integral of QED

same strategy applied to QED∫
D(A, ψ, ψ)

δ

δψ(x)
e iS(A,ψ,ψ)+i

∫
[Jµ·Aµ+η·ψ+ψ·η] = 0

and after applying δ
iδη(y) , this leads to[

δd(x − y) +

{
i /∂x −m − eγµ

δ

iδJµ(x)

}
δ

iδη(y)

δ

iδη(x)

]
Z [J, η, η] = 0

where

Z [J, η, η] =

∫
D(A, ψ, ψ) e iS(A,ψ,ψ)+i

∫
[Jµ·Aµ+η·ψ+ψ·η]

(partition function of QED)
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Example: QED fermion propagator, cont.

Using

fermion propagator and self-energy[
i /∂ −m − Σ(x , y)

]
S(x , y) = δd(x − y)

with full fermion propagator

S(x , y) =
δ

iδη(x)

δ

iδη(y)
Z [J, η, η]

∣∣∣∣
J,η,η=0

one ends up with

Dyson-Schwinger equation for fermion self-energy

Σ(x , y) = ie

∫
ddz ddx ′ γµΠµν(x , z)S(x , x ′)Λν(z , x ′, y)
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Example: QED fermion propagator, cont.

Graphical representation

x y = x y

involves vertex function

Λν(z , x ′, y) = ν

We need additional Dyson-Schwinger equations (DSEs) for

photon propagator

vertex function (3-pt function)

Problem: DSE for vertex function involves 4-pt fermion function
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DSEs in QED: coupled system of integral equations

= (photon propagator)

= (fermion propagator)

= + + + . . .

(vertex function)

Combinatorial cheat to make them self-consistent:

DSE for vertex function involves fermion 4-pt function

Leads to infinite tower of coupled equations

price to pay for truncation: infinite skeleton expansion
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Single self-consistent DSE: combinatorial truncation

self-consistent DSE for photon propagator

= + + +

+ + + . . .

Clever combinatorial truncation

truncation leads again to combinatorially complete Feynman
diagram series

price again: infinite skeleton expansion (divergent)

But: possible source of resurgence

since amenable to transseries analysis
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Dyson-Schwinger equations II: Dyson’s approach

Identities from self-similiarity of Feynman diagram series.

example: rainbow approximation in Yukawa theory Y4

RB := + + + . . .

stands for perturbative series

Σ = a

∫
K + a2

∫
K

∫
K + a3

∫
K

∫
K

∫
K + . . .

a coupling, K integral kernel of Feynman integral :

=

∫
K =

∫
d4k

2π2

{
1

k2(q − k)2
− 1

k2(q̃ − k)2

}
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Self-similiarity of Feynman diagram series

rainbow Dyson-Schwinger equation

Σ = a

∫
K(1 + a

∫
K + a2

∫
K

∫
K + . . . ) = a

∫
K(1 + Σ)

diagrammatically:

RB = + RB

concretely, (euclidean, massless, renormalised)

Σ(q2, a) = a

∫
d4k

2π2

{
1

k2(q − k)2
− 1

k2(q̃ − k)2

}[
1 + Σ(k2, a)

]
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Exact solution of rainbow DSE and transseries

Solution of rainbow DSE (massless case exactly solvable)

1 + Σ(q2, a) =

(
q2

µ2

)−γ(a)

where we call

γ(a) =
1−
√

1 + 2a

2
=
∑
n≥1

(−1)n
(2n − 3)!!

2 · n!
an

the anomalous dimension.

Transseries viewpoint

Convergent series, ie trivial transseries
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Self-consistent DSE in Yukawa theory Y4

Kilroy DSE for self-energy (nontrivial)

Σ(q2, a) = a

∫
d4k K(k, q, q̃)

[
1− Σ(k2, a)

]−1

where
K(k , q, q̃) =

1

2π2

{
1

k2(q − k)2
− 1

k2(q̃ − k)2

}
,

diagrammatically:

K = K
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Anomalous dimension of Kilroy model

anomalous dimension

γ(a) = q2 ∂

∂q2
Σ(q2, a)

∣∣∣∣
q2=µ2

=
∑
n≥1

cna
n

Numerical results (Broadhurst & Kreimer, 2009)

growth behaviour of perturbative coefficients (n ≤ 30)

cn ∼ 2n−1Γ(n + 1/2)

model has renormalons

Question: perturbative solution known (in principle)

Transseries representation of γ(a)?

Lutz Klaczynski, Humboldt University Berlin Resurgence through Dyson-Schwinger equations



Review of Dyson-Schwinger equations
Negative results in Y4 and QED4

Signs of resurgence
Renormalisation

Nonperturbative transmonomials

Approximate fermion propagator in Yukawa theory Y4
Photon propagator in QED4

Higher RG functions

perturbation theory suggests

Σ(q2, a) =
∑
k≥1

γk(a)

k!
Lk

with momentum parameter L = ln(q2/µ2) and γ1(a) = γ(a).

Callan-Symanzik (renormalisation group) equation implies:

Recursion relation for higher RG functions

γn(a) = γ(a)[2a∂a − 1]γn−1(a)

and hence

γn(a) = (γ(a)[2a∂a − 1])n−1γ(a)
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Result Ia: fixed-point equation from DSE

Derive fixed point equation from Kilroy DSE

DSE for anomalous dimension

γ(a) = C0a + C1aγ(a) + a
∑
r≥2

∑
n≥r

Cn(γ?r• )n(a),

where C0,C1,C2, ... are constants and

(γ?r• )n(a) :=
∑

n1+...+nr=n

γn1(a)

n1!
. . .

γnr (a)

nr !

rhs of above DSE has an infinite # of differential operators!
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Topical transseries ansätze

Currently used ansätze of the form

Height-1, depth-1 transseries

f =
∑
σ∈Nr

0

zc·σe−(b·σ)zPσ(log z)
∑
s≥0

c(σ,s)z
−s

c , b ∈ Cr , Pσ(log z) ∈ C[log z ] polynomial, z = (coupling)−1

in QM, (toy model, SUSY) QFTs, string theories
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Result Ib: ansatz wrong

Transseries ansatz: an ill fit

plug

γ(z) =
∑
σ≥0

∑
s≥0

c(σ,s)z
σce−σ(b1z+b2z2)z−s

into fixed point equation and get c(σ,s) = 0 for all σ ≥ 1.

Kilroy ODE from DSE

insert ansatz with b1z + . . .+ bmz
m upstairs into

γ(a) + γ(a)[2a∂a − 1]γ(a) = a/2

and find the same for all m ≥ 1.

Logarithmic transmonomials expedient? No.
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Result II: photon DSE in QED
renormalised self-consistent DSE for photon propagator

= + + +

+ + + . . .

leads to

γ = αA0+
∑
`≥1

α`+1
∑

r1≥0,n1≥r1

. . .
∑

r`≥0,n`≥r`

C(n1,...,n`)(γ?r1
• )n1 . . . (γ

?r`
• )n`

for anomalous dimension.

Result

transseries ansatz yet again ill fit
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Sector cross-talk: tracking down coefficients

Finding: how sectors of RG functions communicate

γn

γ1

0

0 1

1 k

k

should in principle be true as long as sectors are defined via
exponential transmonomials

e−T (z)

with T (z) some large transseries, where z = α−1
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Resurgence from sector cross-talk?

Idea

Use perturbative QFT and let DSEs make those series resurge.

Obstructions

infinite tower of DSEs need to be truncated

yet another truncation: truncate divergent skeleton series

transseries unknown, renormalisation might complicate things

Conjecture for renormalisable theories

transseries not of the type currently topical with transmonomials

z−1, e−z , log z
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Renormalisation of (φ4)d

Jump in complexity:

General form of (super)renormalised action in dimension d

Rd [S ](φ, λ) =
1

2

∫ {
φ[Z (λ)(−∆) + m2Zm(λ)]φ+ λZv (λ)φ4

}
ddx

1 d = 2: Z (λ) = 1 , Zm(λ) = 1 + c1λ , Zv (λ) = 1

2 d = 3: Z (λ) = 1 , Zm(λ) = 1 + c1λ+ c2λ
2 , Zv (λ) = 1

3 d = 4: asymptotic power series

Z (λ) =
∑
s≥0

asλ
s , Zm(λ) =

∑
s≥0

csλ
s , Zv (λ) =

∑
s≥0

bsλ
s
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Formal semi-classical expansion of (φ4)d

’usual’ coupling dependence

partition function, rescaled

Z (I, λ) =

∫
Dϕ e−

1
λ
S(ϕ,1)+

∫
I·ϕ

Semi-classical expansion around critical points

Z (I, λ) ∼=
∑
ϕc

e−
1
λ
S(ϕc ,1)Fϕc (I, λ)︸ ︷︷ ︸

transseries

∈
∑
ϕc

e−
1
λ
SΓ(ϕc ,1)C[[λ]]

connection to transseries: z = λ−1
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Semi-classical expansion of (φ4)d , renormalised case

Rescaling hopeless for d = 4 due to Z factors:

partition function

Z (J, λ) =

∫
Dφ e−Rd [S](φ,λ)+Z(λ)1/2

∫
Γ J·φ

Semi-classical expansion around critical points

Z (J, λ) ∼=
∑
φc

e−Rd [S](φc ,λ)Fφc (J, λ)︸ ︷︷ ︸
transseries?

∈ transseries class ?

Not grid-based? Or superexponentials like e−e
z
, e−e

z (z−1+z−2)?
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Renormalisation of sine-Gordon model

sine-Gordon scalar field theory in d = 2

action with 2 coupling constants:

S(φ, α, β) =

∫
d2x

{
1

2
∂µϕ∂

µϕ− Z (β)
α

β2
[1− cos(βϕ)]

}
Renormalisation Z factor (Faber & Ivanov, 2003)

Z (β) =

(
Λ2

µ2

)β2

8π

= e
β2

8π
log(Λ2/µ2) convergent series!

Λ: UV cutoff, µ: renormalisation subtraction point

nontrivial coupling dependence (transseries?)
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Energy regimes and transmonomials

Logarithmic transmonomials l = z−n(log z)m

contribute at weak coupling (large z)

low-energy states (abelian gauge theories)

high-energy states (nonabelian gauge theories?)

Exponential transmonomials m = e−kzz−n

contribute at strong coupling (small z)

high-energy states (abelian gauge theories)

low-energy states (nonabelian gauge theories)
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Abelian vs. nonabelian theories

Conclusion

1 renormalisation complicates matters by rendering coupling
dependence of action nontrivial

2 for renormalised quantum field theories, we (probably) need
fancier transseries ansätze,

γ(z) =
∑

(σ,t,j)≥(0,0,0)

c(σ,t,j)z
−σce−σ(b1z+...+bmzm)z−t(log z)j

is not elaborate enough

3 future transseries may involve superexponentials m = e−e
z

4 worth investigating DSEs for lower-dimensional models
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