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Resurgence for QFT

Belief: QF T observables are resurgent transseries in the couplings

Lots of evidence:
Integrals with saddles Stokes, Dingle, Berry, Howls ...

matrix models Marino, Schiappa, Weiss ...

topo|ogica| strings Aniceto, Hatsuda, Marino, Schiappa, Vonk, ...

Basar, Dunne, Kawai, Misumi, Nitta,

QM (d=1 QFT) Sakai, Takei, Unsal, Zinn-Justin ...

Aniceto, Dorigoni, Hatsuda,
Honda, Russo, Schiappa, ...

some SUSY theories

More generic/realistic d > 1 QFTs, with asymptotic freedom?



Resurgence in asymptotically-free QFTs

Most explicit checks: 1+1D asymptotically-free QFTs
CPN-1 "principal chiral, O(N), and Grassmannian non-linear sigma models
To the extent it’s been checked, resurgence works!
Dunne, Unsal, AC, Dorigoni; Fujimori, Misumi, Nitta, Sakai, ...
Why the weasel words?
In d > 1 QFT, very difficult to precisely characterize large-order behavior

Strong coupling in IR in asymptotically-free theories
—c/ A 2
Ar e ) N =¢?N

All work so far used idea of adiabatic
compactification from RZ2 to RxST



Tiny boxes as tools

Compactify asymptotically-free QFT from RP to RP-1xS?

ldea: when S size L << A1, theory becomes = weakly-coupled

RD-1
S

Simplest circle is a thermal one. Trouble: physics at
small-L and large-L can look totally different

Examples:
Large N phase transitions as a function of L

Dependence of gap A on 2D strong scale A is
power law at large L, only logarithmic at small L.



Adiabatic small circle limit

For a smooth L << A-1 limit, use special non-thermal boundary conditions.

|dea is actually quite general, very closely
related to constructions in 4D gauge theory

Unsal and collaborators, 2012-onward

4D gauge theory: adiabatic small-L limit obtained with Zn-
invariant S holonomy for the dynamical gauge field

2D sigma models: adiabatic small-L limit obtained with Zn-
invariant S’ holonomy for the background flavor’ gauge field

With such compactifications, effective KK scale is 1/(NL), not 1/L.

Large N and small L limits do not commute
- tied to large N volume independence!



Coupling flow with adiabatic compactification

A
large N
L
1 volume \
iIndependence \\
\

Semiclassically
calculable
regime
A(1/NL)

A (N L)
NLA >> 1 regime is strong

The NLA << 1 regime gives a wea

y coupled

Kly-coupled theory

Physics is very rich - mass gap, renormalons present at small N L!



Resurgence in a box

In perturbation theory 2D sigma models like O(N), CPN-1 etc are gapless.
What about non-perturbatively, in the small NLA limit?
Need to know about non-perturbative saddle points!

The Zn-invariant holonomies make instantons fractionalize into ~ N
constituent ‘fractons’ (or ‘monopole-instantons’, etc.)

Dabrowski, Dunne;

Without instantons, what fractionalizes are unitons’ - gfr;nzoggngi
finite-action, non-BPS saddle-point solutions. F;jimorg l\ﬁisurﬁi,
itta, Sakai,...

Very common in 2D: relevant homotopy group is .
O(N) model: 1t2[O(N)] = 0; SU(N) Principal chiral model i 2[SU(N)] =0

The fractons, or composites built from them, drive appearance of mass gap!

(Fl~e X, A=¢g’N,c~ O(1)



Fractionalization of unitons

Uniton action Fracton action
density density

SU(2)

SU(3)




Resurgence in a box

To obtain results, use small NLA 1D effective
field theory. EFT UV cutoff u ~ 1/(NL).

At small NLA, mass gap ends up looking like
A= e an)\n te X Zb AT

Fracton FFF
(F) effect effect
Fluctuations

Very schematic expression: really there’s log(A) factors, and
sometimes gap starts with contributions from two fractons, etc

All existing studies indicate these series are resurgent transseries.



Resurgence in a box

So, seems resurgence applies to 2D QFTs.

But the explicit checks use the small-L EFT, which is QM.

Is this ok?

Could it be that QM is too special?

In QM 3 powerful arguments for resurgence from e.g. ‘quantum
geometry/exact WKB’. Generalization to QFT not obvious.

No regularization/renormalization needed in QM with
non-singular potentials, but needed ind >1 QFT

Interplay between resurgence, regularization and renormalization?



(Witten 2009) Dunne, Unsal,

ReSU rgenCe fOr QFT? AC, Dorigoni, Basar, ...

2013-now

Why should the d = 1 results generalize tod > 17

Path integral perspective?

“Lefshetz thimble”
ZN) =Y CuZsy (N e
k Integration cycles
k \_/

One ‘thimble’ per critical point of classical action, defined by steepest descent.

Z\) =

perturbation theory non-perturbative contributions

{set of thimbles} = complete basis for
convergent QM phase-space path integrals

Resurgence relations = jumps in Ck as arg[A] varies.



Resurgence for QFT?

Thimble perspective might sound taylor-made for generalization to QFT...
... but this isn’t yet obvious!
Witten proved thimble decomposition works in d = 1
No proof that set of critical-point cycles is a basis if d > 1!

Several possibly-related issues.
What counts as a critical point? How to perform decomposition? ...

Even in d = 1 discontinuous saddle-point-field Behtash, Dunne,

Schafer, Sulejmanpasic,

configurations must be taken into account! Unsal, 2015
Construction in d > 1 may be sensitive to regularization of integral.

Shouldn’t be too shocking: regularization always importantind > 1!



AC, Dorigoni, Unsal: coming soon

ReSU rgence in fU ” Q FT 1980s: F. David; Novikov, Shifman,

Vainshtein, Zakharov; Beneke,...

Use large N expansion to get around strong-coupling issues on R?

ldea: work perturbatively in 1/N, but exactly in 't Hooft
coupling, then explore 't Hooft coupling expansion structure.

Example for this talk: 2D O(N) model

N

= —— a=1.---,N.
47T)\’a ’ ’

S :/ d*r 0, 0n®, nen®
RZ

Model is asymptotically free, with dynamical mass gap m ~ 1 e-1/2A
Expectation: ‘IR renormalon’ ambiguities in resummation of perturbation theory

2 4 6

s LTI, TN, . .

Size: T2

Borel plane singularities: ¢, =1,2,3,- -



Resurgence in large N O(N) model

Integrate in a Lagrange multiplier o to make life easier:

N
> = /RQ @z |0un"0"nq — 0 (nng — )

Questions: what’s the mass gap A? Resurgence as a function of A?

Perturbation theory: theory of N - 1 massless particles, A = 0.
To define theory, must regularize UV. We’'ll use momentum cutoff u .
A\ i 2 23
= 21— —=|+0|=
dlog u N N

_ 1
Aone—loop ~ e 22

Mass gap A ~ A far outside any semiclassical regime on R?!



Resurgence in large N O(N) model

Large N solution is textbook material - see e.g. Peskin & Schoeder

Integrate out n2 fields, giving

1
S = N/ &2z | -2 2Tr log(0° — o)
R2

471\

At large N, physics captured by saddle-point for o, which satisfies

p|<p d2 1 1
—O :>/ ;o -

+ o A7\

Want o in terms of g and A.
Non-zero o is a mass-squared for na2 fields!



Resurgence in large N O(N) model

[p|<p d2 1 1
—O :>/ ;o -

+ o 47\

The textbooks (e.g. Peskin and Schroeder) give

/p<u " : = ilo ’UQ
(2m)% p? 4+ 0  Am “\ o

— g — M2€_1//\

Spectrum has N massive particles, with m2=o0

Jo O\
=0 = — —2)\?
0 log 1 0 log 1

Celebrated result: O(N) beta function is one-loop exact at large N



Resurgence in large N O(N) model

The textbooks (e.g. Peskin and Schroeder) give

/p<u d2p : :ilo 'u—z
(2m)2 p*+0  Anw *\ o

Bizarre fact: the equal sign above is wrong.

(27)? p24+o0 A 5 %

Consequences:
1
—1/A
o= e
- 1 —e /A non-perturbative
corrections!
O\

= —2(1 — e /M)A
0 log 1 (1—e )




Coupling constant flow

One-loop coupling diverges at A = 1 e 1721 ;
Ao
Nl
20 log (uo) + 1

Ap ) =

Exact large N coupling only diverges at |1 = O:

A() = :
= B2 o1/ X0 _
log |1+ 2 (e 1)




AC, Dorigoni,

Coupling constant flow Unsal

coming soon

ALY]

51 |

3 — one-loop A
— large N A

1

o 2 4 & s oM

The large N coupling is infrared-finite.

In QCD literature, phenomenological construction Dokshitzer,
@ . : 5 = Webber, ... 1990s
of “IR-finite couplings” is well-explored.

Here exact large N solution gives such a coupling automatically.



Exact large N mass gap & coupling

Only first two coefficients of series expansion of beta
functions invariant under renormalization scheme changes.

Perturbative coupling and large N coupling
related by non-perturbative scheme change:

A = fp()\p) one-loop coupling
A\ K\\\_////
1+ Aplog(l + e—1/2P)
Ay [1 C VAR (Ap) 4+ e 2P (Lap 4 A2) +}

fr(Ap)

Still exploring: is there some extra universal
data in beta functions non-perturbatively?



O(N) model at large N A0, Dorert, Lnsa

also F. David 1984

The QFT is giving a transseries but no resurgence, due to
suppression of fluctuations by large N

1 1 _ o 3
A‘N:OO :Me_ﬁ (]__|_§62>\ —|—§6_% _|_>

To see resurgent behavior, need to look at 1/N corrections.

To be specific, we’ll continue to examine < o >

(o) = <%8 ng0"n® > = A?



O(N) model at order 1/N

Large N theory consists of N massive fields with mass m = A

5ab

b Gab( ) p2 —

and a field "o’ describing fluctuations around VEV, 0 = <0 > + 0/N1/2

B —47T\/p2 2 + 4m?)

/P2 +4m2+\/_
/P2 +4m?—/p?

with an interaction vertex

log

_________ gab  Dependence on A only

v/ N enters through m!



O(N) model at order 1/N A oo

also F. David 1984

Leading correction to < 0 > comes from

X
1

(o) = m? + - T(,m) + O(1/N?)

The 1/N correction is UV-divergent. Put cutoff at 4, assume  ~ NO

Go(p)Gap (k)G (k)G (p + k).

| <p d2p / A2k
(2m)2 ¢

Hem) = 5600 [ 55



O(N) model at order 1/N A oming soom

also F. David 1984

Evaluating the integrals, get ugly but (eventually!) instructive result:

1 1
I(p,m) = m? (—Ei {5 log A(,u,m)} + F4 {5 log A(,u,m)} + 2vg+

4m

A(u,m)—<\/1 | 47‘;2 | #)

The 1/N correction is entirely unambiguous at this stage. Statement
almost trivial: Given a regulator, path integral will be unambiguous.

1 | 1
2 log §logA(,u,m) — 2log |1+ 5

4

Where’s the resurgence?



O(N) model at order 1/N AG, Dorigon, U

Interested in resurgence properties in A - so define

Cn = central trinomial

L oo —n/\ coefficients’; series
1 A xn—l Cng;_// converges.

Expansions of the exponential-integral functions in A are asymptotic:

(

—im + el/A S It 0 < arg()) <

— ~
~ ~

E (=
(A) \—I—Z'Tl' + el/A ZZO:O nIA?L —7T < arg()\)

1 - — -
E. (2] = 1/A —1)pI\ntl
1 (A) nEZO:( )




O(N) model at order 1/N

Plug these expansions back into < ¢ >, to find

I(Maj‘) ~ Zn!j'\wrl Fime X 4+
n=0

Factorial growth leads to renormalon ambiguity, which
Is cancelled by non-perturbative contribution.

—1/X .2

size ~ p“e m

Are there further renormalon ambiguities?

Behavior in terms of the standard perturbative coupling?



Renormalon ambiguities A o

Full expression for spin-wave condensate:

5 ~ -9 o
(@) = (@) N=co = p* {— Zn!)\”H + e /A <ii7r + 27 — 2log \ — 3 +4log2 — 2 Zn!)\nH)

n=0 n=0

> e H/A (—(k + 1)) T (k= 1)) (—1) AT 4

k=2 n=0 n=0
+k(2v —2log A tim) + (1 — (—=1)%) — + (k+ 1) log(2) p + 4px
2\
<
complicated rational
numbers

Full set of IR renormalon ambiguities of size e-V/A | e2/A | g3/A .
UV renormalons also present!
Only singularities in Borel plane t conjugate to A are att =-1, +1.

Probably a large N accident, but we do not know for sure.



Behavior in perturbative coupling #¢ s unsa

Pass to perturbative one-loop coupling

~

4
A= \p [1 — 2 \pe VAP L \pe /AP (3 4 ANp) — AP (54 9Ap + 673) e73/AP .. ] .

Then transseries looks like

1 > 1 >
() — () Neoo = N/ﬂ [Z n!)\}”_fﬁl 4 e~ 1/AP (ZFiﬂ' — 2 [ny + log (E)] 1+ 10 Z n!)\vl”?tl) 4. ]
n=0

n=0

Key point: all perturbative coefficients are rational!

With a canonically-normalized 't Hooft coupling, rational*(4rr)-(n+1)

But this is sum of Feynman diagrams to all loop orders. Diagram by
diagram, increasing transcendentality with loop order

Transcendentals all cancel. Consequence of integrability?

A'=4 SYM: Kotikov, Lipatov; Bern, Kosower...; Beisert,...; ...

ladder diagrams: Kreimer,....



O(N) model at order 1/N ™ coming soon:

At this point you could ask, if<o>=m? + I(4,A)/N + ..., and

I(,u,)\) ~ ,uz Zn!)\”+1 ::iﬂ'e_% 4.
n=0

(1) What happens if we subtract all’ divergences by counter-terms?
Does < 0 > then become ambiguous?

No: counter-terms pick up ambiguities, but < o > stays unambiguous.

(2) If dim-reg is used, no power divergences. Ambiguous result? pemse.ses.

No. “Dimensional regularization” is not
a valid regulator non-perturbatively.



Dimensional regularization

ldea of dim-reg:

dp  (p*)" Coan [ d'p (p7)"
/(%)d P2 +m2)p " /(ZW)” (p* +m?)"

(1) Find "n’ where integral from Ipl=0 to Ipl = © converges, then do it:

1 pt=m T(a+d/2)T(b—a—d/2)
(47)d/2 Ab—a—d/2 ['(b)I'(d/2)

(2) Expand near desired dimension d, discard poles like 1/(n-d) = 1/e

(3) Profit from remaining log(m?2/u2) terms!

No explicit power divergences.

Recipe works to any fixed order in perturbation theory.



Failure of dimensional regularization

In the large N O(N) model, dim-reg fails at step 1. Example:

2 2 1 > d*p
<O- > o <O- >N:OO — .‘ : — NGU(O) (27’(’)2 GJ(p)
p— 00, Gy ~ P
"7 log(p?/m?) (Using Go(p,n)

e 5 doesn’t help!)
p— U, o ™~ MM

In dimension n, need Re[n] < -3 in UV and Re[n] > 0 in IR for convegence.

No choice of n gives finite result.
‘Dimensional regularization’ is not a regularization non-perturbatively.

Perhaps not so shocking, but amusing to see explicit illustration.

(Problem persists in correlation functions.)



Conclusions

Not obvious that resurgence should apply ind > 1.

But it does, as illustrated using large N solution of 2D models!

“We know much more than we can prove...”

Peculiarity of vector-like QFTs: need 1/N effects to see resurgence.
Expect resurgence at leading order in matrix-like QFTs.

1/N: Fu

_arge N B-function of 2D sigma models is not one-
oop exact - there are non-perturbative corrections.

| set of renormalons, but only a couple Borel singularities.

Interesting rationality of all-loop perturbation theory.

Regqularization is subtle at non-perturbative level.
Dimensional regularization isn’t regularization.

Privileged role for cut-off regulators?

The end



