
Two-parameter 
transseries for Painlevé I

Marcel Vonk (University of Amsterdam)
Resurgence in Gauge and String Theoriesg g g

Lisbon, 21 July 2016



Very much work in progress!y p g

160x.xxxx On the modularity of Painlevé y
Resurgent Transseries (R. Schiappa, MV)

Our earlier work on resurgence, transseries 
and (among other things) Painlevé I:( g g )

1106.5922 The resurgence of instantons in1106.5922 The resurgence of instantons in 
string theory (I. Aniceto, RS, MV) 

Influenced by work by Costin et al. 
(transasymptotics), David / Eynard / Mariño
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(transasymptotics), David / Eynard / Mariño
et al. (theta functions) and many others.
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1. The Painlevé I equation



The Painlevé I equationThe Painlevé I equation

Paul Painlevé (1863-1933) studied second ( )
order ODEs whose only moveable 
singularities are poles.g p

6 classes found: Painlevé transcendants.
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The Painlevé I equationThe Painlevé I equation
We study the Painlevé I equation:We study the Painlevé I equation:

Studied extensively by mathematiciansStudied extensively by mathematicians.

Many applications in physics:Many applications in physics:
• 2d quantum gravity

Mi i l t i th i• Minimal string theories
• Double scaling limits of matrix models
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• …



The Painlevé I equationThe Painlevé I equation
Boutroux investigated solutions in detailBoutroux investigated solutions in detail.

Some properties:Some properties:

1) The equation has the symmetry1) The equation has the symmetry

As a result, there is a Z5-action on the , 5
space of solutions. Moreover, the z-plane 
can be divided into five sectors where the 
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solutions may have different asymptotics.



The Painlevé I equationThe Painlevé I equation

2) All poles are double poles with the same 
leading coefficient:

Note the second parameter, h.

Generic solution has infinitely many poles
throughout the complex z plane
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throughout the complex z-plane.



The Painlevé I equationThe Painlevé I equation

In physics, one is often interested in the 
associated free energy and partition 
function:

Note: double pole of u ↔ zero of Z.
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The Painlevé I equationThe Painlevé I equation

3) Special solutions: tronquées and 
tritronquée.
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The Painlevé I equationThe Painlevé I equation

4) In the pole-free sectors, the solutions 
behave asymptotically as u ~ √z
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The Painlevé I equationThe Painlevé I equation
So far for generics how do we constructSo far for generics – how do we construct 
specific solutions?

Host of methods:
• Numerical• Numerical
• Transseries
• Transasymptotics
• …

Can we relate those, and how do we 
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incorporate the second parameter?



2. Numerical solutions



Numerical solutionsNumerical solutions
Standard methods:Standard methods:
• Forward Euler: calculate u(z+ε) using

Note: can get u’’(z) from Painlevé I.

• Taylor method: obtain further derivatives 
of u by taking further derivatives of PI useof u by taking further derivatives of PI, use
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Numerical solutionsNumerical solutions
Problem with these: don’t work well in theProblem with these: don t work well in the 
pole fields.

We use a two-trick procedure found by 
Fornberg and Weideman (2011).
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Numerical solutionsNumerical solutions
Trick 1: instead of Taylor series use PadéTrick 1: instead of Taylor series, use Padé
approximants.

Plug into Painlevé I in the form

and equate powers of ε to find the 
coefficients in terms of u(z) and u’(z)
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coefficients in terms of u(z) and u (z).



Numerical solutionsNumerical solutions
Trick 2: Follow paths in the complex zTrick 2: Follow paths in the complex z-
plane that initially stay away from the 
poles (Coarse grained solution )poles. (Coarse-grained solution.)

Finally, do a fine-grained approximation
around each point using the Padé
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around each point using the Padé
approximant.
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Numerical solutionsNumerical solutions
Results (1): generic solutionResults (1): generic solution
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Numerical solutionsNumerical solutions
Results (2): tronquée solutionResults (2): tronquée solution
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Numerical solutionsNumerical solutions
Results (3): tritronquée solutionResults (3): tritronquée solution

21/56



3. Transseries solution



Transseries solutionTransseries solution
In the pole free regions Painlevé IIn the pole-free regions, Painlevé I 
solutions behave asymptotically as u ~ √z.

Perturbative asymptotic expansion:

C ffi i t (2 )! Ph i lCoefficients grow as (2g)! Physical 
interpretation: z-5/4 is the string coupling gs.
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Transseries solutionTransseries solution
As usual the asymptotic growth indicatesAs usual, the asymptotic growth indicates 
that we should extend the perturbative
series to a resurgent transseriesseries to a resurgent transseries.

Naïve way (use x=z-5/4):

This does provide a 1-parameter family of 
f l l ti b t t ll!
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formal solutions, but not all!



Transseries solutionTransseries solution
Indications that there should be more:Indications that there should be more:
• Instanton action can be A=±8√3/5
• Borel plane has positive and negative 
branch points at these values

• Painlevé I is a 2nd order ODE, so we 
expect two constants of integrationexpect two constants of integration
So at least formally, we expect to have a 2-

t t i l ti
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parameter transseries solution.



Transseries solutionTransseries solution
Since the two instanton actions areSince the two instanton actions are 
opposite, there will be resonance, as first 
shown by Garoufalidis Its Kapaev Mariñoshown by Garoufalidis, Its, Kapaev, Mariño
[2010].

The equation for the transseries cannot be 
solved unless one includes log(x) as ansolved unless one includes log(x) as an 
additional transmonomial.

In 1106.5922, we constructed the full 
resonant 2 parameter transseries solution
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resonant 2-parameter transseries solution.



Transseries solutionTransseries solution

C ffi i t f l t lti l f• Coefficients of log terms are multiples of 
the coefficients of non-log terms
• At given order in σ1, σ2 there is only a 
finite number of logs.
• Logs can be formally summed:

27/56



Transseries solutionTransseries solution
In 1106 5922 we computed manyIn 1106.5922, we computed many 
coefficients and checked the resurgent 
large order relations between sectorslarge order relations between sectors.
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4 Transasymptotics: beyond4. Transasymptotics: beyond 
first polesp



TransasymptoticsTransasymptotics
For now let’s go back to the 1 parameterFor now, let s go back to the 1-parameter 
transseries:

The g-sums are asymptotic, but if weThe g sums are asymptotic, but if we 
exchange summation order, the n-sums 
have finite radius of convergence.have finite radius of convergence.

What if we do the n-sums first?
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What if we do the n sums first? 



TransasymptoticsTransasymptotics
It was pointed out by Costin/Costin (2002)It was pointed out by Costin/Costin (2002)
and worked out in detail for Painlevé I in 
Costin/Costin/Huang (2013) that the nCostin/Costin/Huang (2013) that the n-
sums can often be done exactly. This goes 
under the name of transasymptoticsunder the name of transasymptotics.

For example:For example:

with the exceptional case u (0)=1
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with the exceptional case u0
(0)=1.



TransasymptoticsTransasymptotics

Using this, we can sum over all n:

where
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TransasymptoticsTransasymptotics

Crucial observation: doing the infinite 
sum, poles appear in the expression!

The equation τ=1 has an array of solutions 
in terms of the Lambert W function:in terms of the Lambert W-function:
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Transasymptotics
Costin et al prove (and one can check

Transasymptotics
Costin et al. prove (and one can check 
numerically) that these approximate the 
first array of poles in the region where u~√zfirst array of poles in the region where u~√z
no longer holds.
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Transasymptotics
Including subleading orders in g (again

Transasymptotics
Including subleading orders in g (again 
summed over all n) gives corrections in x to 
these positionsthese positions.

In practice, it turns out to be easier to go to p ac ce, u s ou o be eas e o go o
the partition function Z. Recall: 

pole of u ↔ zero of Z

One finds:One finds:
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Transasymptotics
Consider the sum of the first two terms:

Transasymptotics
Consider the sum of the first two terms:

Making the Ansatz τ=1+cx and setting theMaking the Ansatz τ 1 cx and setting the 
leading two orders two zero we find the 
corrected solutioncorrected solution

Next order obtained by including Z2 etc
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Next order obtained by including Z2, etc.



Transasymptotics
Note: this gives corrections for the first

Transasymptotics
Note: this gives corrections for the first 
array of poles.

However,

h t !has two zeroes!
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Transasymptotics
The second zero which is absent when

Transasymptotics
The second zero, which is absent when 
x=0, is

Corrections are again
obtained by includingy g
Z2, etc.

U i ll l ti fUsing all solutions for
the cubic polynomial Z1+Z2+Z3 gives a third 

l ti li 2 d
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solution scaling as x-2, and so on.



Transasymptotics
So does this work? We leave a complete

Transasymptotics
So… does this work? We leave a complete 
proof to the mathematicians, but the 
numerics is very convincing:numerics is very convincing:
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TransasymptoticsTransasymptotics

Unfortunately, the fifth sector seems hard 
t h i thi th d (B t thto reach using this method. (But see the 
remarks that follow.)
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5. The second parameter



The second parameter
As mentioned the two parameter

The second parameter
As mentioned, the two-parameter
transseries solution was completely 
determined in 1106 5922 (Cf questiondetermined in 1106.5922. (Cf. question 
after Takei’s talk.)

Side remark: the Painlevé II case was 
analogously treated by Schiappa and Vazg y y pp
in 1302.5138.

Can we do a similar transasymptotic
analysis? How to deal with the fact that 
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e+A/x is large?



The second parameter
Schematic depiction of how we want to

The second parameter
Schematic depiction of how we want to 
sum:

Integers give the order in xβ at which a 
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certain sector starts.



The second parameter
Recall that τ contained a factor of xβ which

The second parameter
Recall that τ contained a factor of xβ, which 
allowed us to sum ‘horizontally’.

T b bl t l di t dTo be able to sum leading terms, we need 
to define a second parameter ρ without

h f t
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such a factor.



The second parameterThe second parameter

Now, the leading and subleading terms 
become:

Finite number of e+A/x lines!
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Finite number of e+A/x-lines!



The second parameter
Amazingly the summation can be done:

The second parameter
Amazingly, the summation can be done:
• Closed expressions for the coefficient at 

h d i b f deach order in x can be found,
• The log-terms can be summed over,
• The remaining sum over n and m can be 
done.
Leading term:
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The second parameter
Subleading term:

The second parameter
Subleading term:

The expressions get complicated fast, but 
of course the computer doesn’t care.of course the computer doesn t care.

C thi t t h i lCan we use this to match every numerical 
solution? Optimistic, but work in progress…

47/56



The second parameter
The hope is (and we have indications that)

The second parameter
The hope is (and we have indications that)
• One can now match pole fields also for 

t é l ti (1 t inon-tronquées solutions (1-parameter is 
always tronquée), at least in some near-
t é i f ttronquée region of parameter space.
• One can see the poles ‘coming in from 
infinity’.
• This allows one to see the ‘fifth sector’ 
using the Z5-symmetry.

48/56



6. Modularity



Modularity
Several indications that modularity plays an

Modularity
Several indications that modularity plays an 
important role:

F f 0 P i l é I i ll• Far from x=0, Painlevé I is well 
approximated by a Weierstrass equation.
• Transasymptotic terms satisfy degenerate 
Weierstrass equations (Costin et al.)
• Exact sums over instanton number in 
matrix models lead to Jacobi theta 
functions. (David/Eynard/Marino/…)
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Modularity
Very much work in progress but as a

Modularity
Very much work in progress, but as a 
teaser: when we organize the 1-parameter
transasymptotic expansion by powers of τtransasymptotic expansion by powers of τ, 
we get expressions of the form

where G2(n) is the Barnes function, andwhere G2(n) is the Barnes function, and
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ModularityModularity

Smells like a theta function, but what about 
( di t!) B i ti ?(very divergent!) Barnes-insertions? 

In a much simpler example (‘grandIn a much simpler example ( grand 
canonical Gaussian’) we were able to show 
that the Barnes factors can be rewritten asthat the Barnes factors can be rewritten as 
a well-behaved sum of derivative operators 
acting on a ‘true’ Jacobi theta function
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acting on a true  Jacobi theta function.



Conclusion and outlook



Conclusion
• Improved transasymptotics allows us to

Conclusion
• Improved transasymptotics allows us to 
match formal transseries expressions to 
honest solutions even deep inside the polehonest solutions even deep inside the pole 
fields.

All thi t k l i th t• All this seems to work also in the two-
parameter case, and therefore away from 
t é l titronquées solutions.
• Interesting links to modularity exist, which 
can hopefully made precise in terms of 
theta function (re)summations of the 
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transseries.



Outlook
• To do: show that all of this works as

Outlook
• To do: show that all of this works as 
nicely as expected in the 2-parameter
case and make theta functioncase, and make theta function 
(re)summations precise.

O i i l ti ti t i d l• Original motivation: matrix models = 
string equations = discrete Painlevé. (Cf. 
T k i’ t lk)Takei’s talk)
• For these, the full two-parameter 
transseries was also constructed in 
1106.5922.
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Outlook
• Here the locations of the poles tell us

Outlook
• Here, the locations of the poles tell us 
about the different phases of the model. 
(Compare to Lee Yang zeroes ) These(Compare to Lee-Yang zeroes.) These 
techniques allow us to get a much deeper 
understanding of the phases of matrixunderstanding of the phases of matrix 
models. (Long-term work in progress with 
Ines Aniceto and Ricardo Schiappa )Ines Aniceto and Ricardo Schiappa.)
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