Prym fibrations 0000 singularities and primitivity 0000

dual fibrations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lagrangian fibrations by Prym varieties

Justin Sawon¹

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Geometria em Lisboa Seminar 19th January, 2021

¹Supported by NSF award DMS-1555206.

Prym fibrations

singularities and primitivity 0000

dual fibrations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Overview

- Lagrangian fibrations
- fibrations by Prym varieties
- singularities and primitivity
- dual fibrations

Joint work with Chen Shen, PhD 2020 (on ProQuest).

singularities and primitivity 0000 dual fibrations

Holomorphic symplectic manifolds

Let X be a compact Kähler manifold with $c_1 = 0$.

Thm (Bogomolov): \exists finite étale cover \tilde{X} of X with

$$\tilde{X} = T \times \prod_{i} CY_{i} \times \prod_{j} IHS_{j},$$

T =torus, $CY_i =$ (strict) Calabi-Yau manifolds, and $IHS_j = ...$

Def: A compact Kähler manifold X is a holomorphic symplectic manifold if it admits a non-degenerate holomorphic two-form σ In addition if $\pi_1(X) = 0$ and $\mathrm{H}^0(\Omega^2)$ is generated by σ then we say X is an *irreducible holomorphic symplectic (IHS) manifold*.

dual fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Examples of IHS manifolds

- **1.** K3 surfaces *S*.
- **2.** Hilbert schemes of points on K3 surfaces, $\operatorname{Hilb}^n S \to \operatorname{Sym}^n S$.
- **3.** Generalized Kummer varieties, $\operatorname{Hilb}^{n+1} A = A \times K_n(A)$.
- 4. Fano variety of lines in a cubic four-fold.
- 5. Mukai moduli spaces of stable sheaves on K3/abelian surfaces.

$$\mathrm{Ext}^{1}(\mathcal{E},\mathcal{E})\times\mathrm{Ext}^{1}(\mathcal{E},\mathcal{E})\to\mathrm{Ext}^{2}(\mathcal{E},\mathcal{E})\overset{\mathrm{tr}}{\longrightarrow}\mathrm{H}^{2}(\mathcal{O})\cong\mathbb{C}$$

6. O'Grady's spaces, OG6 and OG10.

Up to deformation, just 2 or 3 examples known in each dimension.

Prym fibrations

singularities and primitivity 0000

dual fibrations

Fibrations

Let X be an IHS manifold of dimension 2n.

Thm (Matsushita): If $X \rightarrow B$ is a proper fibration then

- 1. $\dim B = n = \dim F$,
- 2. F is Lagrangian wrt the holomorphic symplectic form σ ,

3. generic fibre is a complex torus.

Rmk: Lagrangian means $TF \subset TX$ is maximal isotropic wrt σ . Integrable means $T^*B \subset T^*X$ is maximal isotropic wrt σ^{-1} . Thus Lagrangian fibrations are equivalent to integrable systems.

Rmk: Hodge theory \implies generic fibre is an abelian variety.

Thm (Hwang): B is isomorphic to \mathbb{P}^n if it is smooth.

singularities and primitivity 0000

dual fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples

1. Elliptic K3 surfaces $S \to \mathbb{P}^1$.

Lagrangian fibrations are like higher-dimensional elliptic K3s:

2. If S is an elliptic K3 surface then the Hilbert scheme

$$\operatorname{Hilb}^{n} S \to \operatorname{Sym}^{n} S \to \operatorname{Sym}^{n} \mathbb{P}^{1} = \mathbb{P}^{n}$$

is a Lagrangian fibration. Its fibres look like

$$E_1 \times E_2 \times \cdots \times E_n$$
.

singularities and primitivity 0000

dual fibrations

Examples

Lagrangian fibrations are also like compact Hitchin systems:

The GL-Hitchin system is an integrable system whose fibres are Jacobians of spectral curves $C \subset T^*\Sigma$.

3. Beauville-Mukai system: Let *C* be a genus *g* curve in a K3 *S*, with $|C| \cong \mathbb{P}^g$ and C/\mathbb{P}^g the family of curves linearly equivalent to *C*.

$$X := \overline{\operatorname{Jac}}^d(\mathcal{C}/\mathbb{P}^g) \longrightarrow \mathbb{P}^g$$

is a Lagrangian fibration.

Rmk: $0 \longrightarrow TX_t \longrightarrow TX|_{X_t} \longrightarrow \pi^* T_t \mathbb{P}^g \longrightarrow 0$ $TX_t = \mathrm{H}^0(C, \Omega^1)^*$ is dual to $T_t \mathbb{P}^g = \mathrm{H}^0(C, N_{C \subseteq S}) = \mathrm{H}^0(C, \Omega^1).$

Or $X \cong$ moduli space M(0, [C], 1 - g + d) of stable sheaves on S.

Prym fibrations 0000 singularities and primitivity 0000 dual fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Fibrations by Jacobians

Conj: Let \mathcal{C}/\mathbb{P}^n be a family of genus *n* curves. If $X = \overline{\text{Jac}}^d(\mathcal{C}/\mathbb{P}^n)$ is an IHSM then it must be a Beauville-Mukai integrable system.

Thm (Markushevich): True for genus n = 2.

Thm (S-): True in the following cases:

- genus *n* = 3,
- genus n = 4, 5 and non-hyperelliptic curves,
- arbitrary genus *n* and degree of $\Delta \subset \mathbb{P}^n$ is > 4n + 20.

singularities and primitivity 0000 dual fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(Generalized) Prym varieties

Let $\pi: C \to D$ be a double cover of curves with covering involution τ . Then

$$\operatorname{Fix}^{\mathsf{0}}(\tau^*) = \pi^* \operatorname{Jac}^{\mathsf{0}} D \subset \operatorname{Jac}^{\mathsf{0}} C.$$

Def: The Prym variety of C/D is

$$\operatorname{Prym}(C/D) := \operatorname{Fix}^{0}(-\tau^{*}),$$

an abelian variety of dimension $g_C - g_D$ and polarization type

$$(\underbrace{1,\ldots,1}_{g_C-2g_D},\underbrace{2,\ldots,2}_{g_D}).$$

 $\operatorname{Prym}(C/D)$ is principally polarized iff $\pi : C \to D$ has zero or two branch points.

singularities and primitivity

dual fibrations

Families of Prym varieties

Let $\pi : S \to T$ be a K3 double cover of another surface with *anti-symplectic* covering involution τ . A curve $D \subset T$ has a double cover $C \subset S$,

$$\begin{array}{ccc} C & \subset & S \\ {}_{2:1} \downarrow & & {}_{2:1} \downarrow \\ D & \subset & T. \end{array}$$

Let $\mathcal{D} \to |D|$ be the complete linear system in T, $\mathcal{C} = \pi^* \mathcal{D}$.

Thm (Markushevich-Tikhomirov, Arbarello-Saccà-Ferretti, Matteini): We can construct a relative Prym variety

$$\operatorname{Prym}(\mathcal{C}/\mathcal{D}) := \operatorname{Fix}^{0}(\mathcal{E} \mapsto \mathcal{E}xt_{\mathcal{S}}^{1}(\tau^{*}\mathcal{E}, \mathcal{O}(-\mathcal{C}))) \subset \overline{\operatorname{Jac}}^{0}(\widetilde{\mathcal{C}}/|\mathcal{C}|).$$

This is a symplectic variety and a Lagrangian fibration over |D|.

singularities and primitivity 0000 dual fibrations

Examples

1. Markushevich-Tikhomirov system: S/T a K3 double cover of a degree two del Pezzo, C/D a genus three cover of an elliptic curve, Prym(C/D) an abelian surface of type (1, 2).

Then $\operatorname{Prym}(\mathcal{C}/\mathcal{D}) \to \mathbb{P}^2$ is an *irreducible* symplectic orbifold of dimⁿ four, with 28 isolated singularities that look like $\mathbb{C}^4/\pm 1$.

2. Arbarello-Saccà-Ferretti system: S/T a K3 double cover of an Enriques surface, D genus g, Prym(C/D) principally polarized.

Then $\mathrm{Prym}(\mathcal{C}/\mathcal{D}) \to \mathbb{P}^{g-1}$ is a symplectic variety, which is

- birational to $\operatorname{Hilb}^{g-1}K3$ if D is hyperelliptic,
- simply connected, no symplectic resolution, otherwise,
- and irreducible if g is odd.

singularities and primitivity 0000

dual fibrations

Examples

3. Matteini system: S/T a K3 double cover of a cubic del Pezzo, C/D a genus four cover of an elliptic curve, Prym(C/D) an abelian threefold of type (1, 1, 2).

 $\operatorname{Prym}(\mathcal{C}/\mathcal{D}) \to \mathbb{P}^3$ is an *irreducible* symplectic orbifold of dimⁿ six, with singularities that look like $\mathbb{C}^2 \times (\mathbb{C}^4/\pm 1)$ and $\mathbb{C}^6/\mathbb{Z}_2 \times \mathbb{Z}_2$.

4. Other systems (Matteini): K3 covers of other del Pezzo and Hirzebruch surfaces, give symplectic varieties with Lagrangian fibrations

$$\operatorname{Prym}(\mathcal{C}/\mathcal{D}) \to |D|.$$

Questions:

- What are the structure of the singularities?
- Are these varieties simply connected? Are they irreducible?

singularities and primitivity •000 dual fibrations

An example of dimension six

S/T a K3 double cover of a degree one del Pezzo, $D \in |-2K_T|$, C/D a genus five cover of a genus two curve. Then

$$\operatorname{Prym}(\mathcal{C}/\mathcal{D}) := \operatorname{Fix}^{0}(-) \subset \overline{\operatorname{Jac}}^{0}(\widetilde{\mathcal{C}}/|\mathcal{C}|) \leftarrow \operatorname{OG10}$$

is a symplectic variety of dimⁿ six and a Lagrangian fibration with abelian fibres of type (1, 2, 2) over $|D| \cong \mathbb{P}^3$.

Lemma (Arbarello et al.): If $C = C_1 \cup C_2$ with $C_1.C_2 = 2k$ then $\operatorname{Prym}(\mathcal{C}/\mathcal{D})$ looks locally like $\mathbb{C}^{N-2k} \times (\mathbb{C}^{2k}/\pm 1)$ at $[\mathcal{F}_1 \oplus \mathcal{F}_2]$.

Thm (S-Shen): Prym(C/D) contains 120 isolated singularities that look like $\mathbb{C}^6/\pm 1$ (and thus there is no symplectic resolution).

Prym fibrations

singularities and primitivity $0 \bullet 00$

dual fibrations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A birational model

The del Pezzo T is a double cover of the quadric cone Q. The covering involution lifts to another anti-symplectic involution on S:

$$\begin{array}{cccc} S & \longrightarrow & \mathbb{P}^2 & & \widetilde{S} = \text{resolution of } \overline{S} \\ \downarrow & \searrow & \swarrow \\ T & & \overline{S} & \\ \downarrow & & \\ Q & & \end{array}$$

The anti-symplectic involutions commute and their composition gives a symplectic involution on S, with quotient a singular K3 surface \overline{S} with 8 A_1 -singularities.

Prym fibrations

singularities and primitivity $00 \bullet 0$

dual fibrations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A birational model

$$\begin{array}{cccc} C \subset S & \longrightarrow & \mathbb{P}^2 & \widetilde{C} \subset \widetilde{S} \\ \downarrow & \searrow & \swarrow \\ D \subset T & \overline{C} \subset \overline{S} \\ \downarrow \\ Q \end{array}$$

A generic τ -invariant $C \subset S$ is an étale double cover of a genus three curve $\overline{C} \subset \overline{S}$, which is isomorphic to $\widetilde{C} \subset \widetilde{S}$.

Pull-back induces a map

$$\operatorname{Jac}^{0}\widetilde{C} = \operatorname{Jac}^{0}\overline{C} \longrightarrow \operatorname{Jac}^{0}C$$

which is two-to-one onto its image Prym(C/D).

Prym fibrations

singularities and primitivity $000 \bullet$

dual fibrations

A birational model

Let $\widetilde{\mathcal{M}} := \overline{\operatorname{Jac}}^0(\widetilde{\mathcal{C}}/\mathbb{P}^3)$ be the Beauville-Mukai system of $\widetilde{\mathcal{C}} \subset \widetilde{\mathcal{S}}$. Then there is a rational dominant generically two-to-one map

 $\widetilde{\mathcal{M}} \dashrightarrow \operatorname{Prym}(\mathcal{C}/\mathcal{D}).$

Moreover, $\widetilde{\mathcal{M}}$ is deformation equivalent to $\mathrm{Hilb}^3 \widetilde{\mathcal{S}}$.

Thm (S-Shen): For $Prym(\mathcal{C}/\mathcal{D})$ we have

- the symplectic structure is unique up to a scalar, $h^{2,0} = 1$,
- π_1 is trivial or $\mathbb{Z}/2\mathbb{Z}$, and thus $h^{1,0} = 0$.

Rmk: We say that $Prym(\mathcal{C}/\mathcal{D})$ is a *primitive* symplectic variety.

singularities and primitivity

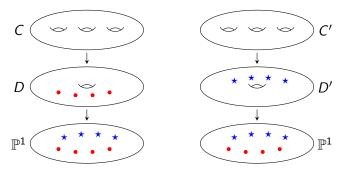
dual fibrations

Pantazis's bigonal construction

Given a tower $C \xrightarrow{2:1} D \xrightarrow{2:1} \mathbb{P}^1$ we can construct $C' \xrightarrow{2:1} D' \xrightarrow{2:1} \mathbb{P}^1$

$$C' := \{ \text{pairs of lifts } (c_1, c_3), (c_1, c_4), (c_2, c_3), (c_2, c_4) \}.$$

This interchanges the branch points of the double covers.



Thm (Pantazis): Prym(C'/D') is dual to Prym(C/D).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲ ●

Dual of the Markushevich-Tikhomirov system

A K3 double cover S/T of a degree two del Pezzo is given by two quartics Δ and Δ' in \mathbb{P}^2 that are tangent at eight points.

- $f: T \to \mathbb{P}^2$ is a double cover branched over Δ
- $S \to T$ is branched over one component of $f^{-1}(\Delta')$

Applying the bigonal construction gives $S' \xrightarrow{2:1} T' \xrightarrow{2:1} \mathbb{P}^2$, with the roles of the quartics Δ and Δ' switched.

Thm (Menet): $\operatorname{Prym}(\mathcal{C}'/\mathcal{D}')$ over \mathbb{P}^2 is dual to $\operatorname{Prym}(\mathcal{C}/\mathcal{D})$.

Thus the dual of a Markushevich-Tikhomirov system is another Markushevich-Tikhomirov system.

Question: What is the dual of our fibration in dimension six?

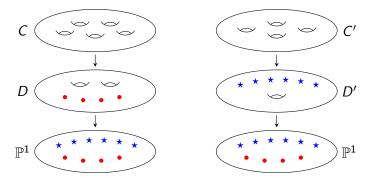
Prym fibrations 0000 singularities and primitivity 0000

dual fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dual of our fibration

Fibres are Prym(C/D) with $g_C = 5$ and $g_D = 2$. Pantazis gives:



Thus Prym(C'/D') look like fibres of the Matteini system.

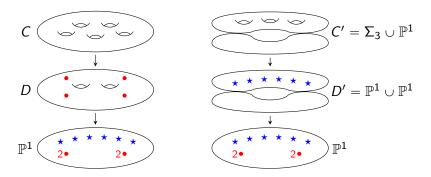
Questions: How to go from $S \xrightarrow{2:1} T \xrightarrow{2:1} Q$ to $S' \xrightarrow{2:1} T' \xrightarrow{???} Q$.

Prym fibrations 0000 singularities and primitivity 0000

(日) (四) (日) (日) (日)

dual fibrations

Dual of our fibration



The dual of the abelian threefold Prym(C/D) is

$$\begin{array}{rcl} \operatorname{Prym}(\mathcal{C}'/D') & \longleftrightarrow & \operatorname{Jac}^0\mathcal{C}' & \subset & \overline{\operatorname{Jac}}^0\mathcal{C}' \\ & & & \downarrow \\ & & & Jac^0\Sigma_3. \end{array}$$

Prym fibrations

singularities and primitivity 0000 dual fibrations

Dual of our fibration

Start with $S \xrightarrow{2:1} T \xrightarrow{2:1} Q$, a K3 double cover of a degree one del Pezzo cover of a quadric cone. The bigonal construction gives

$$\mathcal{S}' = \overline{\mathcal{S}} \cup \mathbb{P}^2 \stackrel{2:1}{\longrightarrow} \mathcal{T}' = \mathcal{Q} \cup \mathcal{Q} \stackrel{2:1}{\longrightarrow} \mathcal{Q}.$$

Thm (S-Shen): $\operatorname{Prym}(\mathcal{C}'/\mathcal{D}')$ over \mathbb{P}^3 is dual to $\operatorname{Prym}(\mathcal{C}/\mathcal{D})$.

Rmk: $\operatorname{Prym}(\mathcal{C}'/\mathcal{D}')$ is a double cover of the same Beauville-Mukai system that $\operatorname{Prym}(\mathcal{C}/\mathcal{D})$ is a $\mathbb{Z}/2\mathbb{Z}$ quotient of.

Question: Is S'/T' a degeneration of a K3 double cover of a cubic del Pezzo? Is Prym(C'/D') a degeneration of the Matteini system?