Lattice Geometry Dependence and Independence: Important Applications of a Simple Law

Steven H. Simon and Mark S. Rudner, Phys. Rev. B 102, 165148, 2020
EPSRC

UNIVERSITY OF
OXFORD

Tight Binding Models

$$
H=\sum_{i, j} t_{i j} c_{i}^{\dagger} c_{j} \quad \begin{array}{ll}
\text { Eigenenergies: } \epsilon_{\alpha} \\
& \text { Eigenfunctions: }|\alpha\rangle=\sum_{i} \psi_{i}^{(\alpha)}|i\rangle
\end{array}
$$

We have still not specified any geometry! = "real space embedding"

Two ordered and one disordered geometry: Can all share the same H

Geometry Independent:

Eigenenergies, Eigenfunctions
Current along a bond i to j

$$
j_{i j}^{(\alpha)}=\frac{-i}{2}\left(t_{i j} \psi_{i}^{(\alpha) *} \psi_{j}^{(\alpha)}-h . c .\right)
$$

Geometry Dependent:

Charge distribution of an eigenstate

$$
q_{\alpha}(\mathbf{r})=\sum_{i} \delta\left(\mathbf{r}-\mathbf{r}_{\mathbf{i}}\right)\left|\psi_{i}^{(\alpha)}\right|^{2}
$$

SUMMARY OF TALK

Crucial to keep track of which quantities are geometry independent and which are geometry dependent!

Analogous to gauge invariance, quantities which should be geometry indep must behave this way in any calculation.

Many "established" results in the literature fail this test!

Two ordered and one disordered geometry: Can all share the same H

Geometry Independent:
Eigenenergies, Eigenfunctions
Current along a bond i to j
$j_{i j}^{(\alpha)}=\frac{-i}{2}\left(t_{i j} \psi_{i}^{(\alpha) *} \psi_{j}^{(\alpha)}-h . c.\right)$

Geometry Dependent:

Charge distribution of an eigenstate

$$
q_{\alpha}(\mathbf{r})=\sum_{i} \delta\left(\mathbf{r}-\mathbf{r}_{\mathbf{i}}\right)\left|\psi_{i}^{(\alpha)}\right|^{2}
$$

Example 1: Hall Response

Apply a bias in x -direction, measure current in y -direction

Approach B:
Measure current this way

These look similar but
... are entirely different
A is geometry independent B is geometry dependent

They cannot act the same!
Both can be measured in cold atoms

Example 1: Hall Response

Apply a bias in x-direction, measure current in y-direction

Observation of quantized conductance in neutral matter
Sebastian Krinner ${ }^{1}$, David Stadler ${ }^{1}$, Dominik Husmann ${ }^{1}$, Jean-Philippe Brantut ${ }^{1}$ \& Tilman Esslinger ${ }^{1}$
NATURE | VOL 517 | 1 JANUARY 2015

Both can be measured
in cold atoms

Example 1: Hall Response

Apply a bias in x-direction, measure current in y-direction

Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms

M. Aidelsburger ${ }^{1,2 \star}$, M. Lohse ${ }^{1,2}$, C. Schweizer ${ }^{1,2}$, M. Atala ${ }^{1,2}$, J. T. Barreiro ${ }^{1,2 \dagger}$, S. Nascimbène ${ }^{3}$, N. R. Cooper ${ }^{4}$, I. Bloch ${ }^{1,2}$ and N. Goldman ${ }^{3,5}$

QUANTUM SIMULATION

Experimental reconstruction of the Berry curvature in a SCIENCE
Floquet Bloch band ${ }_{27}$ MAY 2016 - vol 352 ISSUE $6289 \quad 1091$

K. Sengstock, ${ }^{1,2,3} \dagger$ C. Weitenberg ${ }^{1,2}$

Approach B:
Measure current this way

Both can be measured in cold atoms

Approach B:

Apply E field this way

$\mathbf{E}(\mathbf{r})=\nabla \phi(\mathbf{r})$
E may be uniform, but ϕ is not

$$
H=\sum_{i j} t_{i j} c_{i}^{\dagger} c_{j}+\sum_{i} \phi\left(\mathbf{r}_{i}\right) c_{i}^{\dagger} c_{i}
$$

Approach B:
Measure current this way

Explicit geometry dependence

Nowhere do we need to specify the position of any orbitals!
Hall current must be geometry indep!

Example 1a: Thermal Hall Response (Righi-Leduc Effect)

Apply thermal bias in x-direction, measure heat current in y-direction

Isolated system Heated only from ends

Similar story

 ... and also similar for other transport coefficients tooCoupling to (ex) Phonon Heat Bath everywhere
Apply $\nabla \mathrm{T}$ this way
Geometry dependent

Approach A: Geometry Independent

Reservoir 1	System	Reservoir 2
chem pot	chem pot	
μ_{1}	μ_{2}	

Approach B: Geometry Dependent

But could there be a conspiracy?... could (B) end up being unexpectedly geometry indep?

You're Living in the Golden Age of Conspiracy Theories

Periodic crystal / no disorder / no interaction / 2D / Remove edges:
Calculations can be done exactly
Approach A: Geometry Independent velocity

Fermi occupancy

$$
\mathbf{j}=\int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{2}} \nabla_{\mathbf{k}} \epsilon(\mathbf{k}) n(\mathbf{k})
$$

$$
n(\mathbf{k})= \begin{cases}n_{F}\left(\varepsilon(\mathbf{k})-\mu_{1}\right) & v_{x}(\mathbf{k})>0 \\ n_{F}\left(\varepsilon(\mathbf{k})-\mu_{2}\right) & v_{x}(\mathbf{k})<0\end{cases}
$$

Right movers carry μ_{1} Left movers carry μ_{2}

Approach B: Geometry Dependent (Kubo Formula [strictly ω to 0 limit])

$$
\mathbf{j}_{\text {Hall }}=e \mathbf{E} \times \hat{z} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{2}} \Omega(\mathbf{k}) n(\mathbf{k})
$$

Berry Curvature

But could there be a conspiracy?... could (B) end up being unexpectedly geometry indep?

You're Living in the Golden Age of Conspiracy Theories

Detour: What is Berry Curvature?

$$
\begin{aligned}
\dot{\mathbf{r}} & =\nabla_{\mathbf{k}} \epsilon(\mathbf{k})-\dot{\mathbf{k}} \times \boldsymbol{\Omega}(\mathbf{k}) \\
\dot{\mathbf{k}} & =-e \mathbf{E}-e \dot{\mathbf{r}} \times \mathbf{B}
\end{aligned}
$$

Semiclassical dynamics in Bloch Bands
$H=\sum_{i, j} t_{i j} c_{i}^{\dagger} c_{j}$
B, E must be small - large B put into band structure WLOG we drop B

Filled Bloch band (2D):

$$
\mathbf{j}=\int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{2}} \dot{\mathbf{r}}_{\mathbf{k}}=e \mathbf{E} \times \hat{z} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{2}} \Omega(\mathbf{k})
$$

Chern Number (integer) = quantized Hall conduction of filled band ("Chern-Insulator")

Gauss-Bonnet Theorem

$$
\frac{1}{2 \pi} \int_{M} K d A=\chi(M)
$$

Quantized Hall Conductance in a Two-Dimensional Periodic Potential
D. J. Thouless, M. Kohmoto, ${ }^{(a)}$ M. P. Nightingale, and M. den Nijs Department of Physics, University of Washington, Seattle, Washington ${ }^{5} 5$ (Received 30 April 1982)

Landau Level:

$$
\begin{aligned}
\epsilon(\mathbf{k}) & =\text { constant } \\
\Omega(\mathbf{k}) & =\text { constant }
\end{aligned}
$$

Bloch function

Periodicity of unit cell

Bloch's theorem: Geometry indep

$$
|\psi(\mathbf{k})\rangle=\sum_{\mathbf{R}, \alpha} e^{i \mathbf{k} \cdot \mathbf{R}} \psi_{\alpha}(\mathbf{k})|\alpha, \mathbf{R}\rangle \underset{\substack{\text { Unit cell reference point } \\ \text { Orbital within unit cell }}}{e^{i \mathbf{k} \cdot \hat{\mathbf{r}}}|u(\mathbf{k})\rangle}
$$

$$
\begin{gathered}
|u(\mathbf{k})\rangle=\sum_{\mathbf{R}, \alpha} u_{\alpha}(\mathbf{k})|\alpha, \mathbf{R}\rangle \\
u_{\alpha}(\mathbf{k})=e^{-i \mathbf{k} \cdot \mathbf{x}_{\alpha}} \psi_{\alpha}(\mathbf{k})
\end{gathered}
$$

$$
\begin{array}{ll}
\mathbf{A}(\mathbf{k})=i\langle u(\mathbf{k})| \nabla_{\mathbf{k}}|u(\mathbf{k})\rangle & \text { Berry Connection } \\
\Omega(\mathbf{k})=\nabla_{\mathbf{k}} \times \mathbf{A}(\mathbf{k}) & \text { Berry Curvature }
\end{array}
$$

$$
\begin{aligned}
& \mathbf{x}_{\alpha} \rightarrow \mathbf{x}_{\alpha}+\delta \mathbf{x}_{\alpha} \\
& \Omega(\mathbf{k}) \rightarrow \Omega(\mathbf{k})+\nabla_{\mathbf{k}} \times\left(\delta \mathbf{x}_{\alpha}\left|u_{\alpha}(\mathbf{k})\right|^{2}\right)
\end{aligned}
$$

$$
C=\int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{2}} \Omega(\mathbf{k})
$$

$$
\langle\delta \mathbf{x}\rangle_{\mathbf{k}}
$$

Periodic crystal / no disorder / 2D / Remove edges: Calculations can be done exactly
Approach A: Geometry Independent
velocity

Fermi occupancy

$$
\begin{aligned}
& \mathbf{j}=\int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{2}} \nabla_{\mathbf{k}} \epsilon(\mathbf{k}) n(\mathbf{k}) \\
& n(\mathbf{k})= \begin{cases}n_{F}\left(\varepsilon(\mathbf{k})-\mu_{1}\right) & v_{x}(\mathbf{k})>0 \\
n_{F}\left(\varepsilon(\mathbf{k})-\mu_{2}\right) & v_{x}(\mathbf{k})<0\end{cases}
\end{aligned}
$$

Approach B: Geometry Dependent (Kubo Formula [strictly ω to 0 limit])

$$
\begin{aligned}
& \mathbf{j}_{\text {Hall }}=e \mathbf{E} \times \hat{z} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{2}} \Omega(\mathbf{k}) n(\mathbf{k}) \\
& \mathbf{x}_{\alpha} \rightarrow \mathbf{x}_{\alpha}+\delta \mathbf{x}_{\alpha} \\
& \Omega(\mathbf{k}) \rightarrow \Omega(\mathbf{k})+\nabla_{\mathbf{k}} \times\langle\delta \mathbf{x}\rangle_{\mathbf{k}}
\end{aligned}
$$

But could there be a conspiracy?... could (B) end up being unexpectedly geometry indep?

You're Living in the Golden Age of Conspiracy Theories

What about experiments in solid state?

(1) Electrons are charged, so typically one cannot apply chemical potential difference without electric field (although it is not impossible, at least in 2D)

Typically, one measures geometry dependent response.
(2) In spin systems with thermal transport, if the phonons decouple at low T, one will have geometry independent physics that violates Kubo!

Example 2: Fractional Chern Insulators and The Geometric Stability Conjecture

$$
\mathbf{j}=e \mathbf{E} \times \hat{z} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{2}} \Omega(\mathbf{k})
$$

Chern Number (integer) = quantized Hall conduction of filled band ("Chern-Insulator")

Landau Level:

$$
\begin{aligned}
\epsilon(\mathbf{k}) & =\text { constant } \\
\Omega(\mathbf{k}) & =\mathrm{constant}
\end{aligned}
$$

More Generally
$\epsilon(\mathbf{k}) \quad$ Arbitrary
$\Omega(\mathbf{k}) \quad$ Arbitrary subject to integral being an integer

What happens with a partially filled band?
With no/weak interactions: Fermi sea fills lowest $\epsilon(\mathbf{k})$
With strong interactions: might form fractional quantum Hall state
"Fractional Chern Insulator"
How do we design a hopping/interaction model to get FQHE

Example 2: Fractional Chern Insulators and

 The Geometric Stability ConjectureFQHE is favored by band structures that "look" like Landau levels
$\Omega(\mathbf{k})$ should be constant in the Brillouin zone
Many authors (but in most detail by Jackson, Moller, Roy, Nat Comm 2015)
Observe correlation between size of FQH gaps and flatness of $\Omega(\mathbf{k})$

Landau Level:

$$
\begin{aligned}
\epsilon(\mathbf{k}) & =\text { constant } \\
\Omega(\mathbf{k}) & =\text { constant }
\end{aligned}
$$

More Generally
$\epsilon(\mathbf{k}) \quad$ Arbitrary
$\Omega(\mathbf{k}) \quad$ Arbitrary subject to integral being an integer

What happens with a partially filled band?
With no/weak interactions: Fermi sea fills lowest $\epsilon(\mathbf{k})$
With strong interactions: might form fractional quantum Hall state
"Fractional Chern Insulator"
How do we design a hopping/interaction model to get FQHE

Example 2: Fractional Chern Insulators and The Geometric Stability Conjecture

FQHE is favored by band structures that "look" like Landau levels
$\Omega(\mathbf{k})$ should be constant in the Brillouin zone
Many authors (but in most detail by Jackson, Moller, Roy, Nat Comm 2015)
Observe correlation between size of FQH gaps and flatness of $\Omega(\mathbf{k})$

This statement can't be correct!

Every example studied used a particularly symmetric geometry of orbitals that happened to maximized flatness of Ω given the particular hopping/interaction model

Counter Example: Boson FQHE $\quad H=\sum_{i, j} t_{i j} c_{i}^{\dagger} c_{j}+\sum_{i} U n_{i}^{2}$
Geometry Independent Hamiltonian: FQH gaps indep of orbital positions
But $\Omega(\mathbf{k})$ changes with orbital positions!

Example 2: Fractional Chern Insulators and

 The Modified Geometric Stability ConjectureFor each hopping/interaction model, one should first vary over geometry (ie., orbital positions) before measuring flatness of $\Omega(\mathbf{k})$

Conjecture: correlation between FQH gaps and this flatness of $\Omega(\mathbf{k})$ (given fixed [flat] dispersion)

Observe correlation between size of FQH gaps and flatness of $\Omega(\mathbf{k})$
Every example studied used a particularly symmetric geometry of orbitals that happened to maximized flatness of Ω given the particular hopping/interaction model

Counter Example: Boson FQHE $\quad H=\sum_{i, j} t_{i j} c_{i}^{\dagger} c_{j}+\sum_{i} U n_{i}^{2}$
Geometry Independent Hamiltonian: FQH gaps indep of orbital positions
But $\Omega(\mathbf{k})$ changes with orbital positions!

Summary

Some quantities are geometry independent...
... others are geometry dependent

One cannot make geometry independent statements about geometry independent quantities and vice versa

Some objects (like Hall response) can be either geometry dependent or geometry independent depending on "details" of how they are probed.

Steven H. Simon and Mark S. Rudner, Phys. Rev. B 102, 165148, 2020

