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SEMI-CLASSICS AND GROUND 
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INCONSISTENCY WITH SUSY
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Perturbative corrections are vanishing, implying that if the 
classical semi-classics is true, no non-perturbative semi-
classical contributions can exist.

But we know non-perturbative contributions can and do 
exist in SUSY theories (e.g. spontaneous SUSY breaking). So 
what is going on?



RESOLUTION: PICARD-
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“QUASI-ZEROMODE THIMBLES”
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“QUASI-ZEROMODE THIMBLES”

Dx(t) ! Dx

0
(t)⇥ (quasi-)zeromodes

small fluctuations Treated by PL theory

I I
τ

Sint = �e
A
g e�!⌧

τωπ τ0

Seff (⌧) =
A

g
e�!⌧ �Nf!⌧

S0
eff (⌧0) = 0

C

e�⇣!⌧ζ flavors ENP ⇡ �Ce�2Sinst

Z
d(!⌧)e

A
g e�!⌧

ENP ⇡ �Ce�2Sinst�(⇣)
⇣ g

A

⌘⇣
e�i⇣⇡

The Balitsky-Yung 
Cycle

HTA



COMPLEX SADDLES IN SUSY
N=1 quantum mechanics
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See also talk by Tatsuhiro Misumi



COMPLEX SADDLES IN SUSY 
CONTINUED
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N=2 SUSY QM
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THE SUPER YANG-MILLS THEORY

The gluon condensate is zero due to SUSY

[RB] = C

Z
dr e�

1
�r�2 log(r)

[CB] = C

Z
dr e

1
�r�2 log(r)

r0

r0

⌦
tr F 2

µ⌫

↵
/ [RB] + [CB] = 0



COMMENDT ON THE 
BOGOMOLNY-ZINN-JUSTIN PERSCRIPTION
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THE BEHAVIOR OF PERTURBATION 
THEORY AND QUASI-EXACT SOLVABILITY

The integer ζ theories are special

The perturbation theory is CONVERGENT for the first ζ states

In the case of Double Sine Gordon, a part of a spectrum is exactly solvable 
(Turbiner 1988), and the exact solution is reproduced by the perturbation theory

In the case of the Tilted Double Well potential, the perturbation theory, although 
convergent for lowest ζ states, does not give the correct answer, i.e. it is missing 
the non-perturbative contribution which is unambiguous. 
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THE INTEGER ζ THEORY

asymptotic

First ζ states/bands 

convergent for ζ∈ℕ  and 
asymptotic otherwise 
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THE BenderWu PACKAGE: 
STUDYING LARGE ORDERS
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CONSTRUCTIVE RESURGENCE

Due to real saddle
“The Real Bion”

Due to complex saddle
“The Complex Bion”
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Asymptotic growth of PT required by resurgence:
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CONSTRUCTIVE RESURGENCE

• a version of Dünne-Unsal (or Dün relation) 2014—  
(see Chris Howls’ and Gokçe Basar’s talk.)

• relates petrubation theory around trivial vacuum to the 
“complex bion” (instanton—anti-instanton) fluctuation

• But a complex bion dictates late orders of perturbation 
theory

• Hence we have a relation between early terms of PT and 
late terms of PT
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CONSTRUCTIVE RESURGENCE
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CONCLUSIONS

The nature of semi-classics is inextricably linked to the complexification of the path-
integrals 

The machinery of resurgence guarantees the reality of all real physical observables

Fascinating early-terms—late-terms relation in the same saddle-sector

SUSY and integer ζ-deformed theories are special, with resurgent cancellation not 
needed for certain observables (i.e. energy-levels)

The resurgence mechanism is not lost, and is restored with slight deformation of such 
theories

Potential connection with emergent symmetries in QCD(adj) (Ask Aleksey Cherman!)


