

Multi-mouth traversable wormholes

MARIJA TOMASEVIC

UNIVERSITY OF BARCELONA

2012.07821

W/ EMPARAN, GRADO-WHITE AND MAROLF

Outline

Wormhole timeline

1916	1957	1973	2010	2016/8	2018/9
 Flamm finds the first solution: the ER bridge (1935) 	 Wheeler coins the term wormhole before: one- dimensional tubes 	 Independent work by Ellis and Bronnikov on (exotic) traversable possibilities today: Morris- Thorne wormholes (1988) 	 Wall rules out short wormholes using GSL AANEC established by Graham and Olum (2007) 	 Gao, Jafferis and Wall: first non-exotic traversable wormhole (short-lived) Maldacena <i>et</i> <i>al</i>: first non- exotic traversable wormhole (long-lived) 	 Grado-White et al: perturbative construction of traversable wormholes Maldacena et al: non- perturbative construction of traversable wormholes

Wormholes 101

General relativity allows any smooth Lorentzian manifold to be a spacetime: given a spacetime geometry, one simply solves Einstein's equations in order to determine the stress-energy tensor needed to produce it.

Any restrictions on non-trivial phenomena, such as wormholes, must be given in terms of **energy conditions** that constrain the set of possible stress-energy tensors.

Energy conditions

Classical physics:

Null Energy Condition

energy has to be positive at every point

Quantum physics:

Achronal Average Null Energy Condition average energy along the fastest* null geodesic has to be positive

*no points along the null geodesic are connected by a timelike curve

Current status

What is the set of all allowed wormholes?

Classical physics: only non-traversable wormholes (Einstein-Rosen bridge)

Quantum physics: allows traversable wormholes, but only if they are *long* + supported by *negative energy*

Traversable wormholes in 4D

Review of Maldacena, Milekhin and Popov 1807.04726

Key features: it must have a long throat and supporting negative energy

Long throat: for example, near-extremal RN black holes have long throats

Negative energy: Casimir, but it's a tiny quantum effect

However, if we could amplify the effect in some way, the wormhole mouth could be bigger

Magnetic traversable wormholes

So, put together two near-extremal RN black holes – connect their throats

Throat needs to be longer than the distance between the mouths in ambient space

Black holes are magnetically charged – magnetic field lines go in and out of mouths

Fermions on a loop give Casimir energy – put N>>1 of them

→ Traversable wormhole!

Single magnetically charged black hole The theory is Einstein-Maxwell + Dirac fermions

$$ds^{2} = -\left(1 - \frac{2MG_{N}}{r} + \frac{r_{e}^{2}}{r^{2}}\right) dt^{2} + \left(1 - \frac{2MG_{N}}{r} + \frac{r_{e}^{2}}{r^{2}}\right)^{-1} dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
$$A = \frac{q}{2}\cos\theta d\phi , \qquad r_{e}^{2} \equiv \frac{\pi q^{2} l_{p}^{2}}{g^{2}} , \qquad l_{p} \equiv \sqrt{G_{N}}$$

Near horizon geometry of a near-extremal bh

$$ds^2 = r_e^2 \left[-d\tau_r^2 (\rho_r^2 - 1) + \frac{d\rho_r^2}{\rho_r^2 - 1} + (d\theta^2 + \sin^2\theta d\phi^2) \right]$$

 $AdS_2 \times S^2$

Horizon

Two-sided traversable wormhole

The wormhole metric

$$ds^{2} = r_{e}^{2} \left[-(1+\rho^{2}+\gamma)d\tau^{2} + \frac{d\rho^{2}}{1+\rho^{2}+\gamma} + (1+\varphi)(d\theta^{2}+\sin^{2}\theta d\phi^{2}) \right]$$

We replaced *Rindler*-AdS₂ with a *global* AdS₂ metric

Properties

They are in 4D, asymptotically flat spacetime

The physics used is entirely contained within the **Standard Model**

These wormholes are **small** – only low energy particles can traverse it (unless we deviate from SM)

(size of the systems smaller than electroweak scale)

They are **fragile**: quantum fluctuations can destroy the wormhole if it becomes too long!

They are **long-lived**: we can put them into a binary orbit, and they will radiate EM and gravitational waves, leading to a collision (can be made far in the future)

Can we generalize them?

Yes! And in the simplest way possible

Consider a small black hole deep in the throat – that's it

The small black hole should have similar structure as the original bhs, so as to develop a throat on its own and connect to the same ambient spacetime

Construction manual

Small black hole as a perturbation of the throat – no backreaction needed at the lowest order

Stability and traversability: several options, depending on the toolbox

- can charge the mouths with a different U(1)
- stabilize with cosmic strings which also provide negative energies
- hybrid of the above two options
- maybe one can utilize the 5D dark sector [2008.06618]

How big can the small black hole be?

The bigger it is, the less negative energy we have in the throat – need defocusing to exit the tube

There's an upper bound on M_{sbh}: it cannot exceed the binding energy of the wormhole

$$m < \frac{N_f Q}{8\pi r_e} \qquad \qquad E_{bh} < |E_{min}|$$

Nor can it be bigger than the throat itself: $G_N m < r_e$

Signals

Traversable wormholes are also discussed in the context of quantum teleportation

How does adding a third mouth change the protocol, if at all?

In general, there are two effects:

- Leaky pipeline: information goes down the C drain
- Shapiro time delay: takes longer to traverse the throat

Leaky pipeline

Area of C and angular position important

These effects will have counterparts in a qudit toy model of the three-mouth wormhole.

Area prop to # of dofs, but what does angular position correspond to?

Having information about this angular position is essential for A and B if they intend to communicate efficiently with C

Need better understanding!

Shapiro time delay

Signals passing near a massive object take slightly longer to travel

Same happens with our small black hole

What is the dual of Shapiro time delay?

Conjecture: the increased travel-time can be correlated with an increased *complexity* in decoding the teleported message

$ER+\epsilon = EPR+\epsilon?$

While two-mouth traversable wormholes are associated with **Bell-pair-like entanglement**, our three-mouth wormholes will require a **new entanglement structure** – a concept that can be made precise by embedding our construction in the AdS/CFT context*

*still in progress

How can we see the entanglement structure?

One way of telling is by looking at the *positions of extremal surfaces* [1406.2663, 1506.04128]

If the separation between two surfaces is small w.r.t. the 3rd – mostly *bipartite* entanglement

If the separation between two surfaces is similar in size of the 3rd – *tripartite* entanglement

Our case

Recall that we have a small black hole in a big throat

Before we add the small bh C, A and B extremal surfaces coincide and lie at the bottom of the throat

When C is really small, its effect is also very small on the A and B surfaces – mostly bipartite

The large bipartite entanglement between A and B is consistent with the idea that C has little effect on signals being sent between A and B

Conclusions

Understanding wormholes is leading to many insights in quantum gravity Studying their properties can shed light on the black hole interiors And multi-mouth wormholes can shed light on the holographic dictionary So far, we have mostly focused only on the bipartite notions in AdS/CFT But entanglement is inherently a multipartite concept We constructed the bulk picture – holographic dual should come next!

Thank you!

Entanglement structure

Balasubramanian *et al* [1406.2663] focused on CFT₂ states defined by the Euclidean path integral over Riemann surfaces with n asymptotic boundaries (n=2 example is the TFD state)

For some values of the moduli, the bulk solution is a connected, multiboundary wormhole (non-traversable)

When all the boundaries are connected in the bulk, one might expect multipartite entanglement to play the main role

But, what they found is more complicated: in some regions of the moduli space, the entanglement is entirely multipartite and in some others, entirely bipartite,

even though the bulk geometry is **completely connected**!

Cosmic string setup

In this construction, we start with a classical background containing a pair of charged, RN-like black holes

These black holes are held apart by the tension of a cosmic string that threads the wormhole and stretches to infinity

A second cosmic string wraps the non-contractible compact cycle through the wormhole

The quantum fluctuations of this compact string generate the negative Casimir energy needed for traversability

This wormhole will generally be strongly time-dependent and can be traversed by curves only if they leave past null infinity at sufficiently early times

This leads to a more stringent bound on the size of the smaller wormhole mouth