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Motivation

Wald showed that for a gravitational theory invariant
under diffeomorphisms, entropy is the Noether charge of
the invariance

Difficult to determine entropy when matter terms are
added

Iyer-Wald formalism assumes all terms are tensors. What
about non-tensor cases?

Gauge-covariant Lie derivatives are required
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Motivation

We study the use of momentum maps, which arise when
symmetries have to be related to gauge transformations

Interesting relationships between zeroth law and
momentum map can be found

Momentum maps will allow us to construct forms which
are closed on the bifurcation surface
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Heterotic string Framework

S [ea,B, φ,AI , φx ] =
g

(d) 2
s

16πG
(d)
N

∫
e−2φ

[
(−1)d−1 ? (ea ∧ eb) ∧ Rab

−4dφ ∧ ?dφ− 1
8dMIJ ∧ ?dM IJ

+(−1)d 1
2MIJF I ∧ ?FJ + 1

2H ∧ ?H
]

≡
∫

L .

(1)

Levi-Civita curvature Rab ≡ dωab − ωa
c ∧ ωcb (2)

KK/winding vector F I ≡
(

Fm

Gm

)
,Fm = dAm ,Gm = dBm ,

H ≡ dB − 1
2AI ∧ dAI , AI ≡

(
Am

Bm

)
. (3)
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Equations of motion

δS =

∫ {
Ea ∧ δea + EB ∧ δB + Eφδφ+ (ẼI +

1

2
EB ∧ AI ) ∧ δAI

+ Exδφ
x + dΘ(ϕ, δϕ)

}
.

(4)
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Variation under diffeomorphism

Only the dilaton φ and the O(n, n)/(O(n)×O(n)) scalars φx

transform as a tensor under diffeomorphisms. The rest require
compensating gauge transformations. These can be determined
by

1 Requiring gauge-covariance of the complete transformation
law (which can then be interpreted as a gauge-covariant
Lie derivative) and

2 Imposing that, for diffeomorphisms which are symmetries
of the field configuration that we are considering (in
particular, for isometries), the complete transformation
(covariant Lie derivative) vanishes.

We will use k to denote the Killing vector of the metric.
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Lie-Maxwell derivative

The transformation of the Abelian vector fields AI under
diffeomorphisms can be defined as

δξAI = −LξAI , (5)

where
LξAI ≡ ıξF I + dPξ I . (6)

Here Pξ I is a gauge-invariant O(n, n) vector of functions that
depends on AI .

dPk I = −ıkF I . (7)
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Lorentz derivatives

For the Vierbein,

Lξea = Dξa + Pξ
a
be

b , (8)

where
Pξ

ab ≡ ∇[aξb] , (9)

leading us once more to a Momentum map

ıkR
ab = −DPk

ab. (10)

The curvature and spin connection likewise have a
Lie-Lorentz derivative.

In asymptotically-flat stationary black-hole spacetimes with
bifurcate horizon

Pk
ab = ∇[akb] BH= κnab . (11)
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Kalb-Ramond

Using the Bianchi identity, one finds

δξH = −d
(
ıkH + Pk IF I

)
= 0 , (12)

which can be defined as a momentum map

− ıkH − Pk IF I = dPk . (13)

Using this, it is possible to determine the variation of B

δξB = −
(
ıξH + Pξ IF I + dPξ

)
− 1

2AI ∧ δξAI . (14)
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Covariant derivative summary

δξφ = −ıξdφ , (15a)

δξφ
x = −ıξdφx , (15b)

δξAI = −
(
ıξF I + dPξ I

)
, (15c)

δξe
a = −

(
Dξa + Pξ

a
be

b
)
, (15d)

δξω
ab = −

(
ıξR

ab +DPξab
)
, (15e)

δξB + 1
2AI ∧ δξAI = −

(
ıξH + Pξ IF I + dPξ

)
. (15f)
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Wald-Noether charge

Substituting in our transformations, the new variation takes the
form

δξS = −
∫ {

Ea ∧ Dıξea + EB ∧ ıξH + ẼI ∧ ıξF I + Eφıξdφ

+Ex ıξdφ
x − d

[
Θ(ϕ, δξϕ)− Pξ ∧ EB + (−1)dPξ I ẼI

]}
.

(16)
Integrating by parts and applying the Noether identity leaves us
with

δξS =

∫
dΘ′(ϕ, δξϕ) , (17)

where

Θ′(ϕ, δξϕ) = Θ(ϕ, δξϕ) + (−1)dEaξ
a−Pξ ∧EB + (−1)dPξ I ẼI .

(18)
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Wald-Noether Charge

Under the combined transformations,

δξS = −
∫

dıξL , (19)

which, combined with Eq. (17), leads to the identity

dJ = 0, (20)

where J is given by

J ≡ Θ′(ϕ, δξϕ) + ıξL . (21)

As J is closed, there exists a (d − 2) form such that.

J = dQ[ξ] . (22)

Up to total derivatives and an overall factor, the Noether
Charge can be found to be

Q[ξ] = (−1)d ? (ea ∧ eb)
[
e−2φPξ ab − 2ıade

−2φξb

]
+ (−1)d−1Pξ I

(
e−2φMIJ ? FJ

)
− Pξ ∧

(
e−2φ ? H

)
.

(23)
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Zeroth law

States that surface gravity is constant over the horizon
Restricting ourselves to only the bifurcation surface, we
can arrive at “restricted generalized zeroth laws”
Generalized zeroth laws states the closedness of the
electostatic potential and similar higher-rank forms
If all field strengths are regular on the horizon,

ıkF I BH= 0 , (24a)

ıkH
BH
= 0 . (24b)

The first equation implies closedness of the components of
the momentum map P I

k on BH
The second equation implies

0
BH
= −ıkH = dPk + Pk IF I H= d

(
Pk + Pk IAI

)
. (25)
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First Law

We start by defining the pre-symplectic (d − 1)-form

ω(ϕ, δ1ϕ, δ2ϕ) ≡ δ1Θ(ϕ, δ2ϕ)− δ2Θ(ϕ, δ1ϕ) , (26)

and the symplectic form relative to the Cauchy surface Σ

Ω(ϕ, δ1ϕ, δ2ϕ) ≡
∫

Σ
ω(ϕ, δ1ϕ, δ2ϕ) . (27)

If δ1ϕ = δϕ is an arbitrary variation of the fields and
δ2ϕ = δξϕ is variation under diffeomorphism,

ω(ϕ, δϕ, δξϕ) = δJ + dıξΘ
′ = δdQ[ξ] + dıξΘ

′ , (28)

For ξ = k, integrating and using Stokes’ theorem yields∫
δΣ

(
δQ[k] + ıkΘ′

)
= 0 . (29)

For asymptotically flat, stationary, black-hole spacetimes

kµ = tµ + Ωnφµn . (30)
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First Law

If we choose Σ to be the space between infinity and the
bifurcation sphere (BH) on which k = 0, then

δ

∫
BH

Q[k] =

∫
Sd−2
∞

(
δQ[k] + ıkΘ′

)
. (31)

Right hand side is simply δM − ΩmδJn
Restoring the overall factor g

(d) 2
s (16πG

(d)
N )−1, and adding

and subtracting Pk IAI ∧
(
e−2φ ? H

)
yields

δ

∫
BH

Q[k] =
(−1)d−1g

(d) 2
s

16πG
(d)
N

δ

∫
BH
Pk I e−2φ

[
MIJ ? FJ + ?H ∧ AI

]
− g

(d) 2
s

16πG
(d)
N

δ

∫
BH

(
Pk + Pk IAI

)
∧
(
e−2φ ? H

)
+

(−1)dg
(d) 2
s

16πG
(d)
N

δ

∫
BH

e−2φ ? (ea ∧ eb)Pk ab .

(32)
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First Law

The first two integrals are simply ΦI δQI and ΦiδQi

respectively, where Qi ≡ Q[Λh i ], and Λh,i are the harmonic
1-forms on BH, and Φi can be interpreted as the potential
for a given charge of the KR field

The final integral is given as

(−1)dκ

16πG
(d)
N

δ

∫
BH

e−2(φ−φ∞) ? (ea ∧ eb)nab

= − κ

16πG
(d)
N

δ

∫
BH

e−2(φ−φ∞)nabnab

= T δ
AH

4G
(d)
N

AH ≡
∫
B
dd−2Se−2(φ−φ∞)
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First Law

Combined, we finally achieve

δM = T δ
AH

4G
(d)
N

+ ΩmδJm + ΦiδQi + ΦI δQI , (33)
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Conclusion

We have introduced the notion of Momentum maps, which
allow for easier computation of the first law and producing
a generalized zeroth law

We have derived the first law of black hole mechanics in
the context of the effective action of the Heterotic
Superstring compactified on a torus at leading order in α′

Applying momentum map formalism to other more
complex cases should be interesting (has been applied to
higher order α′ corrections and Black Ring example)

How can the definition of the potential Φi be applied to
cases not on the bifurfaction surface?
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