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m Wald showed that for a gravitational theory invariant
under diffeomorphisms, entropy is the Noether charge of
the invariance
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Motivation

m Difficult to determine entropy when matter terms are
added

m lyer-Wald formalism assumes all terms are tensors. What
about non-tensor cases?

m Gauge-covariant Lie derivatives are required
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m We study the use of momentum maps, which arise when
symmetries have to be related to gauge transformations

Motivation

m Interesting relationships between zeroth law and
momentum map can be found

m Momentum maps will allow us to construct forms which
are closed on the bifurcation surface
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KK /winding vector F' = ( > ,F™ = dA™ . G, = dB,,

H=dB— 14, ndA, A’E(é ) (3)
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Framework

~ 1
Hetrotic-String 0S = / {Ea Noe’ +Eg ANOB + E¢(5¢ + (E/ + EEB NA A SA!

+ Exd¢* + dO(¢, 5g0)}.
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Variation under diffeomorphism
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PRES  Only the dilaton ¢ and the O(n, n)/(O(n)x0O(n)) scalars ¢*
Bl transform as a tensor under diffeomorphisms. The rest require
Zach Elgood compensating gauge transformations. These can be determined
by

Requiring gauge-covariance of the complete transformation
Vst urar law (which can then be interpreted as a gauge-covariant

diffeomor- Lle deriVatiVe) and

phisms

Imposing that, for diffeomorphisms which are symmetries
of the field configuration that we are considering (in
particular, for isometries), the complete transformation
(covariant Lie derivative) vanishes.

We will use k to denote the Killing vector of the metric.
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The transformation of the Abelian vector fields A’ under

el Eljzaed diffeomorphisms can be defined as
seAl = —LeAl (5)
Variation under Where
diffeomor- ]Lé.AI = Z&.Fl + d’])sl X (6)

phisms
Here 735’ is a gauge-invariant O(n, n) vector of functions that
depends on A’.

deI = —Zk]:l . (7)



Lorentz derivatives
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Pt = Vit (9)
leading us once more to a Momentum map

Variation under

T wR™® = —DP. (10)

m The curvature and spin connection likewise have a
Lie-Lorentz derivative.

m In asymptotically-flat stationary black-hole spacetimes with
bifurcate horizon

P = Vlagh B pab, (11)
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which can be defined as a momentum map

V_ariation under — ZkH — Pk [fl - de . (13)
diffeomor-
phisms

Using this, it is possible to determine the variation of B

5£B = — (lgH +7D§/.FI + dPg) — %.A/ A 55.,4’ . (14)
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Sed” = —1¢dg” | (15b)
ol —— 5+ ) (150

Variation under
e dee? = — (D + Py’ (154)
Sew? = — (lgRab + DPgab> ; (15e)
5€B+%AI/\5§_A’:—(15H+73§/fl+dp§> . (15f)
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VAEEEE  |ntegrating by parts and applying the Noether identity leaves us

diffeomor-

phisms W|th

5es = [ d'(ebeg). (17)

where

O (¢, 6¢) = O, 6¢0) + (—1)9Ea&” — Pe AEg + (—1)9P,'E, .
(18)



Wald-Noether Charge
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AR which, combined with Eq. (17), leads to the identity

dJ =0, (20)
where J is given by

Variation under

diffeomor- J= @/(SO, 66@) + Z%‘L . (21)
phisms
As J is closed, there exists a (d — 2) form such that.

J=dQ[¢]. (22)
Up to total derivatives and an overall factor, the Noether
Charge can be found to be

QE] = (—1)? x (e A €?) [e’z‘z’Pg ab — Qzade’wfb]



Zeroth law

Ui i (e &f States that surface gravity is constant over the horizon

heterotic

sifriigy (Hd m Restricting ourselves to only the bifurcation surface, we
hole mechanics X N . . Y
e can arrive at “restricted generalized zeroth laws

m Generalized zeroth laws states the closedness of the
electostatic potential and similar higher-rank forms

m If all field strengths are regular on the horizon,
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wr Zo, (242)
;I;t;rmodynamic ZkH B:,H 0 . (24b)

m The first equation implies closedness of the components of
the momentum map P/ on BH
m The second equation implies

02—y H=dP +P,F Ld (Pk + Pk/A’) . (25)
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ot order w(p, d1p, 62¢0) = 610(¢p, d2p) — 020(p, d10),  (26)
o and the symplectic form relative to the Cauchy surface &
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Qp, b1, b2) = / w(ep, 01, 629) . (27)
pN

m If 610 = dp is an arbitrary variation of the fields and
d2¢p = O¢(p is variation under diffeomorphism,

w(p, 8, 0cp) = 6J + die® = 5dQ[€] + die®’,  (28)
m For £ = k, integrating and using Stokes' theorem yields
/ (6Q[K] +%©") =0. (29)
0x
m For asymptotically flat, stationary, black-hole spacetimes

ki = th 4 Qg (30)

Thermodynamic
WS
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m Right hand side is simply M — Q™§J,

m Restoring the overall factor g(d) (167TG,(Vd))_1, and adding
and subtracting Py 1A' A (€72? x H) yields

(— )d 1,(d)2

| Q[k]:—w)é Pile2? [I\/IU*]-"JJr*H/\A/}
Thermodynamic BH 16 G BH

WS
(d) 2

] (et (e

_ (d)2
7( 1)%: 1) e_2¢*(e"’/\eb)Pkab.

+
167G\"  Jsu

{29
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by m The first two integrals are simply ®'59; and ¢'6Q;
respectively, where Q; = Q[Ap;], and Ap,; are the harmonic
1-forms on BH, and ®' can be interpreted as the potential
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m The final integral is given as
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(=1)% 70 e 2P=%) & (&2 A eP)nyp
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Combined, we finally achieve

An

SM=Ts
464"

+ Q"5+ D6Q +0'5Q,,  (33)

Thermodynamic
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Conclusion
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o allow for easier computation of the first law and producing

a generalized zeroth law
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m We have derived the first law of black hole mechanics in
the context of the effective action of the Heterotic
Superstring compactified on a torus at leading order in o’

m Applying momentum map formalism to other more
complex cases should be interesting (has been applied to
Conclusion higher order o' corrections and Black Ring example)

m How can the definition of the potential ®' be applied to
cases not on the bifurfaction surface?
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