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Introduction
Understanding the microscopic origin of Black Hole entropy remains a central question in 
Quantum Gravity.


                 


Address it in  supersymmetric String Theory. Concretely: study the microscopic 
degeneracies of a special type ( ) of BPS dyons in CHL models.


Rich interplay between Physics and Number Theory.


Inspired by [Chowdhury, Kidambi, Murthy, Reys, Wrase ’19]. Here we propose a new 
systematic way to tackle these issues.

Sstat(Q) = ln d(Q) ↔ SBH(Q)

𝒩 = 4
Δ < 0 1/4−

Microscopic Macroscopic



Dyonic degeneracies


Siegel modular forms

Mock Jacobi forms
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Setup
Heterotic string theory on .


duality group is  

duality group, 

duality group is 

T6

S− SL(2,ℤ)
T− SO(22,6; ℤ)
U− SL(2,ℤ) × SO(22,6; ℤ)

duality invariants      ,      ,     
T− m = P2/2 ∈ ℤ n = Q2/2 ∈ ℤ ℓ = P ⋅ Q ∈ ℤ

d( ⃗P , ⃗Q) = d(m, n, ℓ)

 supersymmetry and 

28  gauge groups
𝒩 = 4

U(1)

-BPS states carry electric  and magnetic  charges: Dyons1/4 ⃗Q ⃗P

Relevant duality invariant: 


 

U−

Δ = Q2P2 − (Q ⋅ P)2 = 4mn − ℓ2 Area  ∼ Δ



Siegel modular forms
The generating function for BPS dyonic degeneracies is a modular 
form of the genus-2 modular group 





 is the Igusa cusp form, invariant under .


 

1/4−
Sp(2,ℤ)

1
Φ10(ρ, σ, v)

= ∑
m, n ≥ − 1
m, n, ℓ ∈ ℤ

(−1)ℓ+1d(m, n, ℓ)e2πi(mρ+nσ+ℓv)

Φ10 SL(2,ℤ)

d(m, n, ℓ) = (−1)ℓ+1 ∫C
dρdσdv p−mq−ny−ℓ 1

Φ10(ρ, σ, v)
C : 0 ≤ ρ1, σ1, v1 ≤ 1

[Dijgkraaf, Verlinde,  
Verlinde ’96]

Problem: Meromorphic fixed,  ρ2, σ2, v2 ρ2σ2 − v2
2 ≫ 0


p = e2πiρ

q = e2πiσ

y = e2πiv



Two types of BPS dyons:


Single centre dyonic black holes with finite or zero horizon area in two-derivative gravity


Two-centred bound states of -BPS constituents


Single centre -BPS black holes with finite horizon area have . 


We will focus on

 


 are always two-centred states

1/4−

1/2

1/4 Δ > 0

Δ = 4mn − ℓ2 < 0

Δ < 0

Immortal

Can decay
[Cheng, Verlinde ’07]

Dyon spectrum



Wall-crossing

Changing  in contour   

 can jump 
ρ2, σ2, v2 C

d(m, n, ℓ)

Pole in the Siegel 

modular form

d(m, n, ℓ) = (−1)ℓ+1 ∫C
dρdσdv p−mq−ny−ℓΦ−1

10

Ex: 
1

1 − x
= ∑

n≥0

xn or  − ∑
n≥1

x−n

|x | > 1|x | < 1

[Sen, ’07]
[Dabholkar, Gaiotto 

Nampuri ’07]

Single centre

Two-centred bound state

Wall of marginal

 stability

C : 0 ≤ ρ1, σ1, v1 ≤ 1
 fixed,  ρ2, σ2, v2 ρ2σ2 − v2

2 ≫ 0
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Poles and walls
 has an infinite family of second order poles in the  space


             


Represent walls in the  plane by lines joining    and  

1
Φ10

(ρ, σ, v)

pqσ2 + rsρ2 + (ps + qr)v2 = 0, (p q
r s) ∈ PSL(2,ℤ)

( v2

σ2
,

ρ2

σ2 ) p
r

q
s

[Sen, ’07]

-chamberℛ



Dyonic decay
Decay mode at the wall of marginal stability corresponding to the identity matrix 


  


Wall crossing contribution given by the residue at the pole


 :      


where   counts BPS states

γ = (1 0
0 1) : (Q

P) → (Q
0) + (0

P), v2 = 0

1
Φ10(ρ, σ, v)

v → 0 1
v2

1
η24(ρ)

1
η24(σ)

(−1)ℓ+1ℓd(m)d(n)

1
η24(ρ)

=
∞

∑
n=−1

d(n) e2πinρ 1/2− [Sen, ’07]

0
1

i∞



Wall-crossing formula

Δγ d(m, n, ℓ) = (−1)ℓγ+1 |ℓγ | d(mγ) d(nγ) .

p
r

0
1

i∞

q
s

[Sen, ’11]

[Cheng, Verlinde ’07]

[Sen, ’07]

Using  invariance, the generic contribution at  

will be given in terms of the transformed charge bilinears 

SL(2,ℤ) γ = (p q
r s) ∈ SL(2,ℤ)

(mγ, nγ, ℓγ)

,


mγ = r2 n + p2 m − pr ℓ

nγ = s2 n + q2 m − qs ℓ

ℓγ = − 2rs n − 2pq m + (ps + qr) ℓ



Compute    with   and    in -chamber

  Two centred-states only


The solution must have the form


d(m, n, ℓ) Δ = 4mn − ℓ2 < 0 0 ≤ ℓ ≤ m ℛ

Δ < 0 ⟹

Q: How can we characterize ?

d(m, n, ℓ) =
k

∑
i=1

Δi = (−1)ℓ+1
k

∑
i = 1

γi ∈ W(m, n, ℓ)

|ℓγi
| d(mγi

) d(nγi
)

W(m, n, ℓ)

Dyon counting problem

[Sen, ’11]
[Chowdhury, Kidambi,  
Murthy, Reys, Wrase ’19]
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Solution

 determines all : Only need to determine 

W(m, n, ℓ) = {U, U2, …, Us1, Us1 T, …, Us1Ts2, Us1 Ts2 U, …, Us1 Ts2 Us3, …, γ*}
γ* si γ*

Downward: 


left-right choice associated to


 ,  U = (1 0
1 1) T = (1 1

0 1)



The continued fraction of   yields   

.

ℓ
2m

= [a0; a1, …, ar] = a0 +
1

a1+
1

a2+
1

⋱ +
1
arγ* = ( ℓ/g q

2m/g s) = ( 1 0
a1 1) (1 a2

0 1 ) ( 1 0
a3 1)⋯(1 0

ar 1)

Look for  such that   

Solved by


,      with 

γ* = (p q
r s) mγ*

< 0 ⟹

(p
r) = ( ℓ/g

2m/g) γ* = ( ℓ/g q
2m/g s) g = gcd(ℓ,2m)

ℓ
2 m

−
−Δ

2 m
<

p
r

<
ℓ

2 m
+

−Δ
2 m

0 ≤
ℓ

2m
−

q
s

≤
1
rs



Result
Given  with   and  ,


     defines    

in the -chamber,


m, n, ℓ Δ = 4mn − ℓ2 < 0 0 ≤ ℓ ≤ m

ℓ/2 m = [a0, a1, …, ar] W(m, n, ℓ)

ℛ

d(m, n, ℓ) = d* + (−1)ℓ+1
k

∑
i = 1

γi ∈ W(m, n, ℓ)

|ℓγi
| d(mγi

) d(nγi
)
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Diagrammatic representation

(1 0
1 1), (1 0

2 1), (1 0
3 1), (1 1

3 4), (1 2
3 7)

γ* = (1 0
3 1) (1 2

0 1) = (1 2
3 7)Take   ℓ/2m = 2/7 = [0; 3,2] =

1

3+
1
2



Jacobi forms
 has a Fourier-Jacobi expansion





where  are Jacobi forms of weight  and index 


 ,  


 , 


Φ−1
10

1
Φ10(ρ, σ, v)

= ∑
m≥−1

ψm(σ, v)e2πimρ

ψm(σ, v) −10 m

ψm ( aσ + b
cσ + d

,
v

cσ + d ) = (cσ + d)−10 e
2πimcv2
cσ + d ψm(σ, v) (a b

c d) ∈ PSL(2,ℤ)

ψm(σ, v + λσ + μ) = e−2πim(λ2σ+2λv) ψm(σ, v) λ, μ ∈ ℤ



   …      


split into mock Jacobi forms: a finite and a polar part. 


 has no poles in    Immortal


Modularity can be restored at the expense of holomorphicity.


In , for ,                  

ψm(σ, v) = ψF
m(σ, v) + ψP

m(σ, v)

ψF
m(σ, v) = ∑

n,ℓ

cF
m(n, ℓ)qnyℓ (σ, v)

ℛ 0 ≤ ℓ < 2m d(m, n, ℓ) = (−1)ℓ+1cF
m(n, ℓ)
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Mock Jacobi forms [Dabholkar, Murthy, 
Zagier ’12]

[Ramanujan ’1920]
[Zwegers ’2001]

Ex:   ψ0(σ, v) ∼
E2(σ)
η24(σ)

+
1

η24(σ) ∑
s∈ℤ

qsy
(1 − qsy)2
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Rademacher expansion
1

η24(ρ)
=

∞

∑
n=−1

d(n) e2πinρ

d(n) =
2π

n13
2 ∑

c>0

K(−1,n, c)
c

I13 (
4π n

c )

d(n) = ∫
z+1

z
dρ e2πinρ 1

η24(ρ)



computes the coefficients  with  in terms of  with .
cF
m(n, ℓ) Δ > 0 cF

m(n′￼, ℓ′￼) Δ < 0

4mn − ℓ2 > 0

[Ferrari, Reys, ’17]

Generalized Rademacher expansion



Macroscopic entropy
Sen’s Quantum Entropy Function


     


Supersymmetric localization in supergravity to compute QEF


For BPS dyons [Murthy, Reys ’15] [Gomes ’15]


 


dMicro( ⃗q ) = ⟨exp [−iqi ∮ dθ A(i)
θ ]⟩

finite

AdS2

= dMacro( ⃗q )

1/4−

d(m, n, ℓ) ∼ ∑
0 ≤ ℓ̃ ≤ m

Δ̃ < 0

(ℓ̃ − 2n)d(m + ñ − ℓ̃)d(ñ) ( | Δ̃ |
Δ )

23/4

I23/2 ( π
m

| Δ̃ |Δ)

[Sen ’08]

[Dabholkar, Gomes,  
    Murthy ’10 ’11 ’14]

[Gupta, Murthy ’12]

[Murthy, Reys ’13  ’14]

[Gupta, Ito, Jeon ’15]

[de Wit, Murthy, Reys ’18]

[Jeon, Murthy ’18]

cF
m(ñ, ℓ̃) small mismatch



For  with , use  obtain


,            ,                    

 


Therefore


(m, n, ℓ) 4mn − ℓ2 = 0 ℓ/2m = [0; a1, …, ar]

mγ*
= 0 ℓγ*

= 0 nγ*
= gcd(m, n, ℓ) ≡ g̃ d(0,g̃,0)?

ψF
0 (σ) = 2

E2(σ)
η24(σ)

= − 2 ∑
n ≥ −1

n d(n) qn

d(m, n, ℓ) = 2 g̃ d(g̃) − ∑
γ ∈ W(m,n,ℓ)

|ℓγ | d(mγ) d(nγ)

New relevant 

discrete invariant:


gcd(m, n, ℓ)Extra: Δ = 0

Note For  the immortal degeneracy is only a function of :     Δ = 0 g̃ dimmortal(m, n, ℓ)Δ=0 = 2g̃d(g̃)



Extra: CHL models  N > 1
Heterotic string theory on  with 


Generating functions . The poles


The logic is the same, but the details more intricate.


Proceed as earlier, build set  from the 
continued fraction of  but now select the 
matrices in .


T5 × S1/ℤN N = 2,3,5,7

Φk(ρ, σ, v)−1

(p q
r s) ∈ Γ0(N)

W(m, n, ℓ)
ℓ/2m

Γ0(N)

N = 1

N = 7

N = 5

N = 3

N = 2



Summary
We use continued fractions to set up an arithmetic of decay walls which we used 
to explicitly compute all the polar coefficients of


The appearance of continued fractions is naturally explained by the theory of 
Binary Quadratic Forms . 

1
Φk(ρ, σ, v)

(m, n, ℓ) ↔ mx2 − ℓxy + ny2

[Benjamin, Kachru, Ono, Rolen ’18], [Banerjee, Bhand, Dutta, Sen, Singh ’20], [Borsten, Duff, Marrani ’20] …

Consistent with [Moore ’98]
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Thank you


