Arithmetic of decay walls through continued fractions

A new exact dyon counting solution in $\mathcal{N}=4 \mathrm{CHL}$ models

Martí Rosselló

with Gabriel Cardoso and Suresh Nampuri, arXiv:2007.10302

Introduction

Understanding the microscopic origin of Black Hole entropy remains a central question in Quantum Gravity.

$$
S_{\text {stat }}(Q)=\ln d(Q) \quad \leftrightarrow \quad S_{B H}(Q)
$$

Microscopic
Macroscopic
Address it in $\mathcal{N}=4$ supersymmetric String Theory. Concretely: study the microscopic degeneracies of a special type $(\Delta<0)$ of $1 / 4$-BPS dyons in CHL models.

Rich interplay between Physics and Number Theory.
Inspired by [Chowdhury, Kidambi, Murthy, Reys, Wrase '19]. Here we propose a new systematic way to tackle these issues.

Introduction

Dyonic degeneracies

Siegel modular forms
Mock Jacobi forms

Wall-crossing

Continued fractions

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ddots}}}
$$

Setup

Heterotic string theory on T^{6}.
S-duality group is $S L(2, \mathbb{Z})$
T-duality group, $S O(22,6 ; \mathbb{Z})$
$\mathcal{N}=4$ supersymmetry and $28 U(1)$ gauge groups U-duality group is $S L(2, \mathbb{Z}) \times S O(22,6 ; \mathbb{Z})$
1/4-BPS states carry electric \vec{Q} and magnetic \vec{P} charges: Dyons
T-duality invariants $\quad m=P^{2} / 2 \in \mathbb{Z}, \quad n=Q^{2} / 2 \in \mathbb{Z}, \quad \ell=P \cdot Q \in \mathbb{Z}$

$$
d(\vec{P}, \vec{Q})=d(m, n, \ell)
$$

Relevant U-duality invariant:

$$
\Delta=Q^{2} P^{2}-(Q \cdot P)^{2}=4 m n-\ell^{2} \quad \text { Area } \sim \sqrt{\Delta}
$$

Siegel modular forms

The generating function for $1 / 4-\mathrm{BPS}$ dyonic degeneracies is a modular form of the genus-2 modular group $\operatorname{Sp}(2, \mathbb{Z})$
[Dijgkraaf, Verlinde,

$$
\begin{aligned}
\frac{1}{\Phi_{10}(\rho, \sigma, v)}= & \sum_{m, n \geq-1}(-1)^{\ell+1} d(m, n, \ell) e^{2 \pi i(m \rho+n \sigma+\ell v)} \\
& m, n, \ell \in \mathbb{Z}
\end{aligned}
$$

$$
p=e^{2 \pi i \rho}
$$

$$
d(m, n, \ell)=(-1)^{\ell+1} \int_{C} d \rho d \sigma d v p^{-m} q^{-n} y^{-\ell} \frac{1}{\Phi_{10}(\rho, \sigma, v)} \quad \begin{aligned}
& q=e^{2 \pi i \sigma} \\
& y=e^{2 \pi i v}
\end{aligned}
$$

$$
C: 0 \leq \rho_{1}, \sigma_{1}, v_{1} \leq 1
$$

$$
\rho_{2}, \sigma_{2}, v_{2} \text { fixed, } \rho_{2} \sigma_{2}-v_{2}^{2} \gg 0
$$

Problem: Meromorphic

Dyon spectrum

Two types of $1 / 4-$ BPS dyons:
Immortal
Single centre dyonic black holes with finite or zero horizon area in two-derivative gravity
Two-centred bound states of 1/2-BPS constituents
Can decay
[Cheng, Verlinde '07]
Single centre $1 / 4$-BPS black holes with finite horizon area have $\Delta>0$.
We will focus on

$$
\Delta=4 m n-\ell^{2}<0
$$

$\Delta<0$ are always two-centred states

Wall-crossing

Pole in the Siege modular form

$$
\begin{gathered}
d(m, n, \ell)=(-1)^{\ell+1} \int_{C} d \rho d \sigma d v p^{-m} q^{-n} y^{-\ell} \Phi_{10}^{-1} \\
C: 0 \leq \rho_{1}, \sigma_{1}, v_{1} \leq 1 \\
\rho_{2}, \sigma_{2}, v_{2} \text { fixed, } \rho_{2} \sigma_{2}-v_{2}^{2} \gg 0
\end{gathered}
$$

Changing $\rho_{2}, \sigma_{2}, v_{2}$ in contour C

Wall of marginal Single centre stability

Two-centred bound state
$d(m, n, \ell)$ can jump

$$
\begin{aligned}
\mathrm{Ex}: \frac{1}{1-x}= & \sum_{n \geq 0} x^{n} \text { or }-\sum_{n \geq 1} x^{-n} \\
& |x|<1 \quad|x|>1
\end{aligned}
$$

[Sen, '07]
[Dabholkar, Gaiotto Nampuri '07]

Poles and walls

has an infinite family of second order poles in the (ρ, σ, v) space

$$
p q \sigma_{2}+r s \rho_{2}+(p s+q r) v_{2}=0, \quad\left(\begin{array}{cc}
p & q \\
r & s
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z})
$$

Represent walls in the $\left(\frac{v_{2}}{\sigma_{2}}, \frac{\rho_{2}}{\sigma_{2}}\right)$ plane by lines joining $\frac{p}{r}$ and $\frac{q}{s}$

Dyonic decay

Decay mode at the wall of marginal stability corresponding to the identity matrix

$$
\gamma=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right):\binom{Q}{P} \rightarrow\binom{Q}{0}+\binom{0}{P}, v_{2}=0
$$

Wall crossing contribution given by the residue at the pole

$$
\frac{1}{\Phi_{10}(\rho, \sigma, v)} \xrightarrow{v \rightarrow 0} \frac{1}{v^{2}} \frac{1}{\eta^{24}(\rho)} \frac{1}{\eta^{24}(\sigma)}: \quad(-1)^{\ell+1} \ell d(m) d(n)
$$

where $\frac{1}{\eta^{24}(\rho)}=\sum_{n=-1}^{\infty} d(n) e^{2 \pi i n \rho}$ counts $1 / 2-\mathrm{BPS}$ states

Wall-crossing formula

Using $S L(2, \mathbb{Z})$ invariance, the generic contribution at $\gamma=\left(\begin{array}{cc}p & q \\ r & s\end{array}\right) \in S L(2, \mathbb{Z})$
will be given in terms of the transformed charge bilinears $\left(m_{\gamma}, n_{\gamma}, l_{\gamma}\right)$

$$
\Delta_{\gamma} d(m, n, \ell)=(-1)^{\ell_{\gamma}+1}\left|\ell_{\gamma}\right| d\left(m_{\gamma}\right) d\left(n_{\gamma}\right)
$$

$$
\begin{aligned}
& m_{\gamma}=r^{2} n+p^{2} m-p r \ell \\
& n_{\gamma}=s^{2} n+q^{2} m-q s \ell \\
& \ell_{\gamma}=-2 r s n-2 p q m+(p s+q r) \ell
\end{aligned}
$$

Dyon counting problem

Compute $d(m, n, \ell)$ with $\Delta=4 m n-\ell^{2}<0$ and $0 \leq \ell \leq m$ in \mathscr{R}-chamber

$$
\Delta<0 \Longrightarrow \text { Two centred-states only }
$$

[Sen, '11]
The solution must have the form
[Chowdhury, Kidambi,
Murthy, Reys, Wrase '19]

$$
d(m, n, \ell)=\sum_{i=1}^{k} \Delta_{i}=(-1)^{\ell+1} \sum_{\substack{i=1 \\ \gamma_{i} \in W(m, n, \ell)}}^{k}\left|\ell_{\gamma_{i}}\right| d\left(m_{\gamma_{i}}\right) d\left(n_{\gamma_{i}}\right)
$$

Q: How can we characterize $W(m, n, \ell)$?

Solution

Downward:
left-right choice associated to

$$
U=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

$$
W(m, n, \ell)=\left\{U, U^{2}, \ldots, U^{s_{1}}, U^{s_{1}} T, \ldots, U^{s_{1}} T^{s_{2}}, U^{s_{1}} T^{s_{2}} U, \ldots, U^{s_{1}} T^{s_{2}} U^{s_{3}}, \ldots, \gamma_{*}\right\}
$$

γ_{*} determines all s_{i} : Only need to determine γ_{*}

Look for $\gamma_{*}=\left(\begin{array}{cc}p & q \\ r & s\end{array}\right)$ such that $m_{\gamma_{*}}<0 \Longrightarrow \frac{\ell}{2 m}-\frac{\sqrt{-\Delta}}{2 m}<\frac{p}{r}<\frac{\ell}{2 m}+\frac{\sqrt{-\Delta}}{2 m}$ Solved by

$$
0 \leq \frac{\ell}{2 m}-\frac{q}{s} \leq \frac{1}{r s}
$$

$$
\binom{p}{r}=\binom{\ell / g}{2 m / g}, \quad \gamma_{*}=\left(\begin{array}{cc}
\ell / g & q \\
2 m / g & s
\end{array}\right) \text { with } g=\operatorname{gcd}(\ell, 2 m)
$$

The continued fraction of $\frac{l}{2 m}=\left[a_{0} ; a_{1}, \ldots, a_{r}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{1}}}$ yields

$$
\gamma_{*}=\left(\begin{array}{cc}
\ell / g & q \\
2 m / g & s
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
a_{1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
a_{3} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
1 & 0 \\
a_{r} & 1
\end{array}\right)
$$

Result

Given m, n, ℓ with $\Delta=4 m n-\ell^{2}<0$ and $0 \leq \ell \leq m$,

$$
\ell / 2 m=\left[a_{0}, a_{1}, \ldots, a_{r}\right] \quad \text { defines } W(m, n, \ell)
$$

in the \mathscr{R}-chamber,

$$
d(m, n, \ell)=d_{*}+(-1)^{\ell+1} \sum_{\substack{i=1 \\ \gamma_{i} \in W(m, n, \ell)}}^{k}\left|\ell_{\gamma_{i}}\right| d\left(m_{\gamma_{i}}\right) d\left(n_{\gamma_{i}}\right)
$$

Diagrammatic representation

Take $\ell / 2 m=2 / 7=[0 ; 3,2]=\frac{1}{3+\frac{1}{2}} \quad \gamma_{*}=\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right)$

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
3 & 7
\end{array}\right)
$$

Jacobi forms

Φ_{10}^{-1} has a Fourier-Jacobi expansion

$$
\frac{1}{\Phi_{10}(\rho, \sigma, v)}=\sum_{m \geq-1} \psi_{m}(\sigma, v) e^{2 \pi i m \rho}
$$

where $\psi_{m}(\sigma, v)$ are Jacobi forms of weight -10 and index m

$$
\begin{gathered}
\psi_{m}\left(\frac{a \sigma+b}{c \sigma+d}, \frac{v}{c \sigma+d}\right)=(c \sigma+d)^{-10} e^{\frac{2 \pi i m c v^{2}}{c \sigma+d}} \psi_{m}(\sigma, v),\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z}) \\
\psi_{m}(\sigma, v+\lambda \sigma+\mu)=e^{-2 \pi i m\left(\lambda^{2} \sigma+2 \lambda v\right)} \psi_{m}(\sigma, v), \lambda, \mu \in \mathbb{Z}
\end{gathered}
$$

Mock Jacobi forms

$$
\psi_{m}(\sigma, v)=\psi_{m}^{F}(\sigma, v)+\psi_{m}^{P}(\sigma, v)
$$

split into mock Jacobi forms: a finite and a polar part.
[Ramanujan '1920]
[Zwegers '2001]

$$
\psi_{m}^{F}(\sigma, v)=\sum_{n, \ell} c_{m}^{F}(n, \ell) q^{n} y^{\ell} \text { has no poles in }(\sigma, v) \text { Immortal }
$$

Modularity can be restored at the expense of holomorphicity.

$$
\mathrm{Ex}: \psi_{0}(\sigma, v) \sim \frac{E_{2}(\sigma)}{\eta^{24}(\sigma)}+\frac{1}{\eta^{24}(\sigma)} \sum_{s \in \mathbb{Z}} \frac{q^{s} y}{\left(1-q^{s} y\right)^{2}}
$$

In \mathscr{R}, for $0 \leq \ell<2 m$,

$$
d(m, n, \ell)=(-1)^{\ell+1} c_{m}^{F}(n, \ell)
$$

Rademacher expansion

$$
\begin{gathered}
\frac{1}{\eta^{24}(\rho)}=\sum_{n=-1}^{\infty} d(n) e^{2 \pi i n \rho} \\
d(n)=\int_{z}^{z+1} d \rho e^{2 \pi i n \rho} \frac{1}{\eta^{24}(\rho)} \\
d(n)=\frac{2 \pi}{n^{\frac{13}{2}}} \sum_{c>0} \frac{K(-1, n, c)}{c} I_{13}\left(\frac{4 \pi \sqrt{n}}{c}\right)
\end{gathered}
$$

Generalized Rademacher expansion

$$
\begin{align*}
& \begin{array}{l}
c_{m}^{\mathrm{F}}(n, \ell)=2 \pi \sum_{k=1}^{\infty} \sum_{\tilde{\ell} \in \mathbb{Z} / 2 m \mathbb{Z}} c_{m}^{\mathrm{F}}(\tilde{n}, \tilde{\ell}) \frac{K l\left(\frac{\Delta}{4 m}, \frac{\widetilde{\Delta}}{4 m} ; k, \psi\right)_{\tilde{\ell}}\left(\frac{|\widetilde{\Delta}|}{\Delta}\right)^{23 / 4} I_{23 / 2}\left(\frac{\pi}{m k} \sqrt{|\widetilde{\Delta}| \Delta}\right)}{4 m n-\ell^{2}>0} \\
4 m \tilde{n}-\tilde{\ell}^{2}<0
\end{array} \\
& +\sqrt{2 m} \sum_{k=1}^{\infty} \frac{K l\left(\frac{\Delta}{4 m},-1 ; k, \psi\right)_{\ell 0}}{\sqrt{k}}\left(\frac{4 m}{\Delta}\right)^{6} I_{12}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta}\right) \tag{A.12}\\
& -\frac{1}{2 \pi} \sum_{k=1}^{\infty} \sum_{\substack{j \in \mathbb{Z} / 2 m \mathbb{Z} \\
g \in \mathbb{Z} / 2 m k \mathbb{Z} \\
g \equiv j(\bmod 2 m)}} \frac{K l\left(\frac{\Delta}{4 m},-1-\frac{g^{2}}{4 m} ; k, \psi\right)_{\ell j}}{k^{2}}\left(\frac{4 m}{\Delta}\right)^{25 / 4} \times \\
& \times \int_{-1 / \sqrt{m}}^{+1 / \sqrt{m}} f_{k, g, m}(u) I_{25 / 2}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta\left(1-m u^{2}\right)}\right)\left(1-m u^{2}\right)^{25 / 4} \mathrm{~d} u, \\
& \text { [Ferrari, Reys, '17] }
\end{align*}
$$

computes the coefficients $c_{m}^{F}(n, \ell)$ with $\Delta>0$ in terms of $c_{m}^{F}\left(n^{\prime}, \ell^{\prime}\right)$ with $\Delta<0$.

Macroscopic entropy

Sen's Quantum Entropy Function

$$
d_{\text {Micro }}(\vec{q})=\left\langle\exp \left[-i q_{i} \oint d \theta A_{\theta}^{(i)}\right]\right\rangle_{A d S_{2}}^{\text {finite }}=d_{\text {Macro }}(\vec{q})
$$

Supersymmetric localization in supergravity to compute QEF
For 1/4-BPS dyons [Murthy, Reys '15] [Gomes '15]
[Dabholkar, Gomes, Murthy '10 '11 '14]

$$
d(m, n, \ell) \sim \sum_{\substack{0 \leq \tilde{\ell} \leq m \\ \tilde{\Delta}<0}}(\tilde{\ell}-2 n) d(m+\tilde{n}-\tilde{\ell}) d(\tilde{n})\left(\frac{|\tilde{\Delta}|}{\Delta}\right)^{23 / 4} I_{23 / 2}\left(\frac{\pi}{m} \sqrt{|\tilde{\Delta}| \Delta}\right)
$$

Extra: $\Delta=0$

For (m, n, ℓ) with $4 m n-\ell^{2}=0$, use $\ell / 2 m=\left[0 ; a_{1}, \ldots, a_{r}\right]$ obtain

$$
\begin{array}{r}
m_{\gamma_{*}}=0, \quad \ell_{\gamma_{*}}=0, \quad n_{\gamma_{*}}=\operatorname{gcd}(m, n, \ell) \equiv \tilde{g} \\
\psi_{0}^{F}(\sigma)=2 \frac{E_{2}(\sigma)}{\eta^{24}(\sigma)}=-2 \sum_{n \geq-1} n d(n) q^{n}
\end{array}
$$

Therefore

$$
d(m, n, \ell)=2 \tilde{g} d(\tilde{g})-\sum_{\gamma \in W(m, n, \ell)}\left|\ell_{\gamma}\right| d\left(m_{\gamma}\right) d\left(n_{\gamma}\right)
$$

Note For $\Delta=0$ the immortal degeneracy is only a function of $\tilde{g}: \quad d_{\text {immortal }}(m, n, \ell)_{\Delta=0}=2 \tilde{g} d(\tilde{g})$

Extra: CHL models $N>1$

Heterotic string theory on $T^{5} \times S^{1} / \mathbb{Z}_{N}$ with $N=2,3,5,7$
Generating functions $\Phi_{k}(\rho, \sigma, v)^{-1}$. The poles

$$
\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \in \Gamma_{0}(N)
$$

The logic is the same, but the details more intricate.

Proceed as earlier, build set $W(m, n, \ell)$ from the continued fraction of $\ell / 2 \mathrm{~m}$ but now select the
 matrices in $\Gamma_{0}(N)$.

Summary

We use continued fractions to set up an arithmetic of decay walls which we used to explicitly compute all the polar coefficients of

The appearance of continued fractions is naturally explained by the theory of Binary Quadratic Forms $(m, n, \ell) \leftrightarrow m x^{2}-\ell x y+n y^{2}$.

Thank you

