Entanglement in semi-classical black hole evolution

Lárus Thorlacius

Outline

- Introduction
- Average entropy of a subsystem - Page curve
- Generalized entropy
- 1+1-dimensional dilaton gravity (CGHS/RST model)
- Black hole solutions
- Hawking effect and semi-classical back-reaction
- Page curves for RST black holes
- evaporating black hole
- two-sided eternal black hole
- Holographic complexity of semi-classical bh's (if time permits)

Black hole evolution Hawking (1976)

matter in a pure quantum state

Unitary black hole evolution

Assumptions: Suskind, LT, Uglum (1993)
(1) A black hole is a quantum system with discrete energy levels and finite density of states
(2) The dimension of the subspace of states that describe a black hole of mass M is $\exp S_{\mathrm{BH}}(M)$
(3) If the initial state of collapsing matter is a pure quantum state then the system as a whole remains in a pure state at all times
(4) After BH forms, the full system can be divided into subsystems

A - (distant) outgoing Hawking radiation
B - everything else (including BH)

Average entropy of a subsystem
D.N. Page (1993), S. Sen (1996)

Consider a quantum system with Hilbert space of dimension $m \times n$ in a random pure state.

A subsystem of dimension $m<n$ has average entanglement entropy

$$
S_{m, n}=\sum_{k=n+1}^{m n} \frac{1}{k}-\frac{m-1}{2 n}
$$

For $n \geq m \gg 1$

$$
S_{m, n} \approx \log m-\frac{m}{2 n}+\mathcal{O}\left(\frac{1}{n^{2}}\right)
$$

Information contained in subsystem:

$$
I_{m, n}=\log m-S_{m, n}
$$

figure from Page (1993)

Page curve for unitary BH evolution

Entanglement between outgoing Hawking radiation and remaining black hole

Can semi-classical results for $S_{\mathrm{EE}}(\mathrm{rad})$ be reconciled with unitary BH evolution?

Answer is "yes" if a correction motivated by holographic duality is included

Generalised entropy: $\quad S_{\text {gen }}=\frac{\operatorname{Area}(I)}{4 G_{N}}+S_{\mathrm{Bulk}}\left[\mathcal{S}_{A I}\right]$
Area term dominates after Page time and gives a result consistent with unitarity
The semi-classical theory is surprisingly effective!

Semi-classical Page curves

I: Black holes in AdS coupled to external CFT
Penington (2019)
Almheiri, Engelhardt, Marolf, Maxfield (2019)
Almheiri, Mahajan, Maldacena (2019)
Almheiri, Mahajan, Santos (2019)

Extract Hawking radiation via coupling to external CFT Rocha (2008)

Subsystems: rad - external CFT containing Hawking radiation bh — CFT dual of AdS containing evaporating BH

Full system is in a pure state: $S_{\mathrm{EE}}(\mathrm{rad})=S_{\mathrm{EE}}(\mathrm{bh})$
Use (quantum corrected) holographic entanglement entropy to evaluate S_{EE} (bh)

II: Black holes in asymptotically flat spacetime Gautason, Schneiderbauer, Sybesma, LT (2020)
Anegawa, Iizuka (2020)
Hashimoto, Iizuka, Matsuo (2020)
Hartman, Shagoulian, Strominger (2020)
Gautason et al.
Adapt semi-classical entropy prescription to two-dimensional dilaton gravity model
Explicit analytic results for semi-classical RST black holes

Quantum corrected holographic entanglement entropy of boundary region A

$$
S_{\mathrm{gen}}(A)=\min _{A_{s}}\left\{\operatorname{ext}_{A_{s}}\left[\frac{\operatorname{Area}\left(A_{s}\right)}{4 G_{N}}+S_{\mathrm{bulk}}\left(A_{b}\right)\right]\right\}
$$

figure from Faulkner et al. (2013)

For a black hole in AdS coupled to external CFT: Penington (2019)

- A is the entire spatial boundary (where dual CFT is defined)
- A_{s} is a co-dimension two surface inside the bulk geometry

For a black hole in asymptotically flat spacetime: Gautason et al. (2019)

- A is a spatial boundary outside black hole (in asymptotic region)
- A_{s} is a co-dimension two surface inside the bulk geometry

When there is more than one quantum extremal surface A_{s} we are instructed to choose the one that gives the smallest entropy

Page curve for evaporating RST black holes

i) work with solvable 2 d semi-classical model
ii) adapt generalised entropy to asymptotically flat background (with linear dilaton)
iii) 2d matter described by strongly coupled CFT
\longrightarrow use AdS_3 holography to calculate $S_{\text {Bulk }}$ cf. Almheiri, Mahajan, Maldacena, Zhao (2019)
iv) coupling to an external bath is unnecessary 'inside' and 'outside' separated by anchor curve
v) explicit analytic result for generalised entropy

CGHS model

Callan, Giddings, Harvey, Strominger (1991)

$$
S_{0}=\frac{1}{2 \pi} \int d^{2} y \sqrt{-g}\left[e^{-2 \phi}\left(R+4(\nabla \phi)^{2}+4 \lambda^{2}\right)-\frac{1}{2} \sum_{i=1}^{N}\left(\nabla f_{i}\right)^{2}\right]
$$

Effective action for radial modes of near-extremal magnetically charged black holes in $D=4$ dilaton gravity.

Length scale λ^{-1} set by magnetic charge of $4 D$ extremal black hole,

$$
\begin{array}{ll}
\text { conformal gauge: } & \partial_{+} \partial_{-} f_{i}=0, \\
d s^{2}=-\frac{1}{2} e^{2 \rho} d y^{+} d y^{-} & \partial_{+} \partial_{-}\left(e^{-2 \phi}\right)=-e^{2(\rho-\phi)}, \\
& \partial_{+} \partial_{-}(\rho-\phi)=0 .
\end{array}
$$

Conformal reparametrisation to Kruskal gauge: $\rho=\phi$
$-\partial_{+} \partial_{-} e^{-2 \phi\left(x^{+}, x^{-}\right)}=1, \quad-2 \partial_{ \pm}^{2} e^{-2 \phi\left(x^{+}, x^{-}\right)}=\sum_{i=1}^{N} \partial_{ \pm} f_{i} \partial_{ \pm} f_{i}$
More general matter sector leads to the same black hole geometries
We'll assume a strongly coupled CFT with large central charge: $c \gg 24$

Two-sided classical black hole

Linear dilaton vacuum:

$$
e^{-2 \phi}=e^{-2 \rho}=-x^{+} x^{-} \longleftarrow \quad \begin{aligned}
& \text { Kruskal } \\
& \text { coordinates }
\end{aligned}
$$

Static black hole solution:

$$
e^{-2 \phi}=e^{-2 \rho}=M-x^{+} x^{-}
$$

Rescaled coordinates:

$$
x^{+}=\sqrt{M} v, \quad x^{-}=\sqrt{M} u
$$

$$
\begin{array}{r}
e^{-2 \phi}=M(1-v u) \quad d s^{2}=-\frac{d v d u}{1-v u} \longleftarrow \quad \text { 2d 'cigar' in Lorentzian signature } \\
\text { Mandal, Sengupta, Wadia (1991) } \\
\text { Witten (1991) }
\end{array}
$$

Asymptotically flat coordinates:
Penrose diagram

$$
v=e^{t+\sigma}, \quad u=-e^{-t+\sigma}
$$

Thermodynamic variables:

$$
\begin{aligned}
\mathcal{M} & =\frac{\lambda}{\pi} M \\
T & =\frac{\lambda}{2 \pi} \\
S & =\left.2 e^{-2 \phi}\right|_{\text {horizon }}=2 M=\frac{2 \pi \mathcal{M}}{\lambda}
\end{aligned}
$$

singularity

Dynamical black hole

$$
\begin{aligned}
& e^{-2 \phi}=e^{-2 \rho}=M\left(x^{+}\right)-x^{+}\left(x^{-}+P_{+}\left(x^{+}\right)\right) \\
& M\left(x^{+}\right)=\int_{0}^{x^{+}} d y^{+} y^{+} T_{++}\left(y^{+}\right) \\
& P_{+}\left(x^{+}\right)=\int_{0}^{x^{+}} d y^{+} T_{++}\left(y^{+}\right)
\end{aligned}
$$

Penrose diagram

Shock wave solution in rescaled Kruskal coordinates:

$\mathrm{e}^{-2 \rho(v, u)}=\frac{1}{M} \mathrm{e}^{-2 \phi(v, u)}= \begin{cases}-v u & \text { if } v<1 \\ (1-v(u+1)) & \text { if } v>1\end{cases}$

Manifestly flat coordinates in linear dilaton region:

$$
v=e^{\omega^{+}}, \quad u=-e^{-\omega^{-}}
$$

Asymptotically flat coordinates:

$$
v=e^{\sigma^{+}}, \quad u=-1-e^{-\sigma^{-}}
$$

Asymptotic time: $\quad t=\frac{1}{2}\left(\sigma^{+}+\sigma^{-}\right)$

Hawking effect from conformal anomaly

CGHS (1991), Christensen \& Fulling (1977)

$$
\begin{aligned}
&\left\langle T_{\mu}^{\mu}\right\rangle=\frac{c}{12} R \longrightarrow\left\langle T_{+-}\right\rangle=-\frac{c}{6} \partial_{+} \partial_{-} \rho \\
& 0=\partial_{-}\left\langle T_{++}\right\rangle+\partial_{+}\left\langle T_{-+}\right\rangle-2 \partial_{+} \rho\left\langle T_{-+}\right\rangle \\
& 0=\partial_{+}\left\langle T_{--}\right\rangle+\partial_{-}\left\langle T_{+-}\right\rangle-2 \partial_{-} \rho\left\langle T_{+-}\right\rangle \longrightarrow\left\langle T_{ \pm \pm}\right\rangle=\frac{c}{12}\left(2 \partial_{ \pm}^{2} \rho-2\left(\partial_{ \pm} \rho\right)^{2}-t_{ \pm}\right)
\end{aligned}
$$

Conformal reparametrization: $\quad x^{ \pm} \rightarrow y^{ \pm}\left(x^{ \pm}\right) \quad \longrightarrow \quad \rho\left(y^{+}, y^{-}\right)=\rho\left(x^{+}, x^{-}\right)-\frac{1}{2} \log \frac{\mathrm{~d} y^{+} \mathrm{d} y^{-}}{\mathrm{d} x^{+}} \frac{\mathrm{d} x^{-}}{}$

$$
\begin{aligned}
& \left(\frac{d y^{ \pm}}{d x^{ \pm}}\right)^{2} T_{ \pm \pm}\left(y^{ \pm}\right)=T_{ \pm \pm}\left(x^{ \pm}\right)-\frac{c}{12}\left\{y^{ \pm}, x^{ \pm}\right\}, \quad\{y, x\}=\frac{y^{\prime \prime \prime}}{y^{\prime}}-\frac{3}{2} \frac{\left(y^{\prime \prime}\right)^{2}}{\left(y^{\prime}\right)^{2}} \\
& \left(\frac{d y^{ \pm}}{d x^{ \pm}}\right)^{2} t_{ \pm}\left(y^{ \pm}\right)=t_{ \pm}\left(x^{ \pm}\right)+\left\{y^{ \pm}, x^{ \pm}\right\}
\end{aligned}
$$

No outgoing radiation in linear dilaton vacuum:

$$
\rho\left(\omega^{+}, \omega^{-}\right)=0, \quad t_{-}\left(\omega^{-}\right)=0
$$

Outgoing energy flux at $\sigma^{+} \rightarrow+\infty$:

$$
T_{--}\left(\sigma^{-}\right)=-\frac{c}{12} t_{-}\left(\sigma^{-}\right)=\frac{c}{24}\left(1-\frac{1}{\left(1+\mathrm{e}^{\sigma^{-}}\right)^{2}}\right)
$$

Semi-classical back reaction

Add Polyakov-Liouville term to action and take the limit $c \gg 24$

$$
\begin{aligned}
S_{\mathrm{Q}} & =-\frac{c}{96 \pi} \int d^{2} y \sqrt{-g(y)} \int d^{2} y^{\prime} \sqrt{-g\left(y^{\prime}\right)} R(y) G\left(y, y^{\prime}\right) R\left(y^{\prime}\right) \\
& =-\frac{c}{12 \pi} \int d^{2} y \partial_{+} \rho \partial_{-} \rho
\end{aligned}
$$

Add RST term to make semiclassical model solvable

$$
S_{\mathrm{RST}}=-\frac{c}{96 \pi} \int d^{2} y \sqrt{-g} R \phi=-\frac{c}{12 \pi} \int d^{2} y \phi \partial_{+} \partial_{-} \rho
$$

Introduce new field variable: $\quad \Omega=\mathrm{e}^{-2 \phi}+\frac{c}{24} \phi$
Semi-classical field equations in Kruskal coordinates: $\quad \partial_{+} \partial_{-} \Omega+1=0, \quad-\partial_{ \pm}^{2} \Omega=\frac{c}{24} t_{ \pm}$
Linear dilaton vacuum: $\quad \Omega=-x^{+} x^{-}-\frac{c}{48} \log \left(-x^{+} x^{-}\right)$

Semi-classical black holes

(i) Two-sided eternal black hole solution:

$$
\Omega=M(1-v u)+\Omega_{\mathrm{crit}}
$$

Equilibrium with thermal bath at $T=T_{\mathrm{H}}$

(ii) Dynamical black hole from shock wave collapse:

$$
\Omega=M(1-v(u+1)-\epsilon \log (-M v u))
$$

Assume initial black hole mass M is large compared to scale set by central charge:

$$
\epsilon \equiv \frac{c}{48 M} \ll 1
$$

Generalised entropy in $1+1$ dimensions

$$
S_{\text {gen }}=\frac{\operatorname{Area}(I)}{4 G_{N}}+S_{\text {Bulk }}\left[\mathcal{S}_{A I}\right]
$$

Adapt prescription to $1+1$ dimensional theory:
AdS boundary \longrightarrow anchor curve

$$
\begin{aligned}
\mathcal{A} & \longrightarrow \text { point on anchor curve } \\
\mathcal{I} & \longrightarrow \text { point 'inside' anchor curve } \\
\mathcal{S}_{\mathcal{A I}} & \longrightarrow \text { spacelike curve connecting } \mathcal{A} \text { and } \mathcal{I}
\end{aligned}
$$

Area term: Recall higher-dimensional origin of $1+1$ dimensional theory

$$
\text { area of transverse } 2 \text {-sphere } \longleftrightarrow 8 e^{-2 \phi(I)}
$$

Semi-classical theory: $\frac{\operatorname{Area}(I)}{4 G_{N}}=2\left(\Omega(I)-\Omega_{\text {crit }}\right)$
Bulk term: Use $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ and standard RT prescription

$$
\begin{aligned}
& S_{\text {Bulk }}\left[\mathcal{S}_{A I}\right] \simeq \frac{\text { Length }}{4 G_{(3)}} \text { length of 3d geodesic connecting endpoints } \\
& \text { AdS3 scale determined by 2d central charge: } \quad c=\frac{3 L_{3}}{2 G_{(3)}}
\end{aligned}
$$

Embedding into AdS_{3}

(1) Look for light-cone coordinates $\mathrm{d} s^{2}=-\mathrm{e}^{2 \rho} \mathrm{~d} y^{+} \mathrm{d} y^{-}$such that $t_{ \pm}\left(y^{ \pm}\right)=0$
(2) Do a Weyl rescaling to $d \tilde{s}^{2}=-d y^{+} d y^{-}$so that $\left\langle\widetilde{T}_{ \pm \pm}\right\rangle=0$

Then the matter CFT is in vacuum state and 3d dual geometry is pure AdS_{3}

$$
\mathrm{d} s_{3}^{2}=\frac{L_{3}^{2}}{z^{2}}\left(\mathrm{~d} z^{2}-\mathrm{d} y^{+} \mathrm{d} y^{-}\right)
$$

The Weyl transformation in (2) can be implemented as a coordinate transformation in 3d
\longrightarrow regulated holographic boundary at

Length of AdS_{3} geodesic gives:

$$
S_{\text {Bulk }}\left[\mathcal{S}_{A I}\right]=\left.\frac{c}{6} \log \left[d(A, I)^{2} \mathrm{e}^{\rho(A)} \mathrm{e}^{\rho(I)}\right]\right|_{t_{ \pm}=0}
$$

Page curve for evaporating black hole

Consider a dynamical solution of RST model with incoming matter shock wave into vacuum
$\longrightarrow \quad t_{-}\left(\omega^{-}\right)=0 \quad$ in manifestly flat coordinates in initial linear dilaton vacuum
but energy of incoming shock gives $\quad t_{+}\left(\omega^{+}\right) \neq 0$

Take infalling matter to be in a coherent state built on the $\left(\omega^{+}, \omega^{-}\right)$vacuum
Fiola, Preskill, Strominger, Trivedi (1994)
Then $S_{\text {Bulk }}\left[\mathcal{S}_{A I}\right]$ is the same as in the vacuum
\longrightarrow standard Ryu-Takayanagi prescription for $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ using $\left(\omega^{+}, \omega^{-}\right)$coordinates

Island configuration

$$
\begin{aligned}
S_{\text {gen }}^{\text {island }}= & 2 M\left(1-v_{I}\left(1+u_{I}\right)-\epsilon \log \left(-M v_{I} u_{I}\right)\right) \\
& +\frac{c}{12} \log \left[\left(\log \frac{v_{A}}{v_{I}} \log \frac{u_{A}}{u_{I}}\right)^{2} \frac{v_{A} u_{A}}{\left(1-v_{A}\left(1+u_{A}\right)\right)} \frac{v_{I} u_{I}}{\left(1-v_{I}\left(1+u_{I}\right)\right)}\right]
\end{aligned}
$$

Extremise over location of inside point: $\left(v_{I}, u_{I}\right)$

$$
\begin{aligned}
& 0=-2 M\left(1+u_{I}\right)+\frac{c}{12 v_{I}} \frac{1+u_{I}}{\left(1-v_{I}\left(1+u_{I}\right)\right)}+\frac{c}{24 v_{I}}-\frac{c}{6 v_{I} \log \left(\frac{v_{A}}{v_{I}}\right)} \\
& 0=-2 M v_{I}+\frac{c}{12 u_{I}} \frac{v_{I}}{\left(1-v_{I}\left(1+u_{I}\right)\right)}+\frac{c}{24 u_{I}}-\frac{c}{6 u_{I} \log \left(\frac{u_{A}}{u_{I}}\right)} .
\end{aligned}
$$

Solution for $M \gg c \gg 1$

$$
S_{\text {gen }}^{\text {island }}=2 M-\frac{c}{24}\left(t_{A}-\sigma_{A}\right)+\ldots
$$

No-island configuration

$$
\left(v_{I}, u_{I}\right) \longrightarrow\left(v_{0}, u_{0}\right) \quad \text { on boundary curve } \Omega=\Omega_{\text {crit }}
$$

$$
\begin{aligned}
S_{\text {gen }}^{\text {no-island }} & =\frac{c}{12} \log \left[\left(\log \frac{v_{A}}{v_{0}} \log \frac{u_{A}}{u_{0}}\right)^{2} \frac{v_{A} u_{A}}{\left(1-v_{A}\left(1+u_{A}\right)\right)}\right] \\
& =\frac{c}{12}\left(t_{A}-\sigma_{A}\right)+\ldots,
\end{aligned}
$$

Page curve for evaporating black hole

Figure 5. The Page curve for the dynamical RST black hole.

Location of island

Extremisation problem for time t_{A} on anchor curve is solved by
$v_{I}\left(t_{A}\right)>1, \quad u_{I}\left(t_{A}\right)=-1+\frac{\epsilon}{v_{I}\left(t_{A}\right)}+O\left(\epsilon^{2}\right)$
i.e. the island QES is inside black hole (very close to event horizon)

Light signal emitted from anchor curve at time $t_{A}^{\text {obs }}$ is received at QES

$$
\text { if } t_{A}-t_{A}^{\mathrm{obs}}=2 \sigma_{a}+t_{s} \text { where } t_{s} \equiv \log \left(\frac{1}{4 \epsilon}\right) \quad \text { scrambling time }
$$

Valid island solution exists for all $t_{A}-\sigma_{A} \gtrsim t_{s}$
i.e. within a scrambling time after the first Hawking particle being emitted

Entanglement wedges

Initial data on A is sufficient to determine bulk fields inside the causal diamond of A.
A^{\prime} has the same causal diamond as A and the same entanglement entropy.

Black hole entanglement wedge at time t_{A} is the causal diamond of a spatial region between point t_{A} on anchor curve and its QES.

Radiation entanglement wedge at time t_{A} is formed from the causal diamonds of the complement of the spatial region.

Bulk fields in black hole interior

figure from Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini (2020)

Old black hole: $\left(\mathrm{t}_{\mathrm{A}}>\mathrm{t}_{\text {Page }}\right)$
Bulk fields on island no longer contribute to generalised entropy of black hole DOF's on black hole horizon can describe only small part of black hole interior

Do we have enough DOF's to encode observations made by an infalling observer?

- regulate transplanckian modes using infalling lattice Corley, Jacobson (1997)
- infalling observers only encounter modes that originate from a scrambling time or less before they enter Lowe, LT (2015)
- only need to reconstruct bulk fields in the black hole entanglement wedge.

Page curve for eternal RST black hole

Two-sided eternal black hole solution: $\quad \Omega=M(1-v u)+\Omega_{\text {crit }}$

Equilibrium with thermal bath at $T=T_{\mathrm{H}}$
$t_{ \pm}\left(x^{ \pm}\right)=0$ in Kruskal coordinates in eternal black hole background

Symmetric anchor points: $\quad\left(v^{m}, u^{m}\right)=(u, v) \quad$ located well outside BH horizon
No-island configuration: $\left.\quad S_{\text {bulk }}=\frac{c}{12} \log \left[\left(v_{A}-v_{A^{m}}\right)^{2}\left(u_{A}-u_{A^{m}}\right)^{2} e^{2 \rho\left(v_{A}, u_{A}\right)} e^{2 \rho\left(v_{A},\right.}, u_{A^{m}}\right)\right]$

$$
\approx \frac{c}{12} \log \frac{\left(v_{A}-u_{A}\right)^{4}}{\left(1-v_{A} u_{A}\right)^{2}} \approx \frac{c}{3} t_{A}
$$

Island configuration:

$$
S_{\mathrm{gen}}^{\mathrm{island}}=4 M\left(1-v_{I} u_{I}\right)+\frac{c}{6} \log \frac{\left(v_{A}-v_{I}\right)^{2}\left(u_{A}-u_{I}\right)^{2}}{\left(1-v_{A} u_{A}\right)\left(1-v_{I} u_{I}\right)}
$$

Extremising over location of inside point: $\frac{u_{I}}{v_{I}}=\frac{u_{A}}{v_{A}}, \quad v_{I} \approx-\frac{4 \epsilon}{u_{A}}$

$$
S_{\text {gen }}^{\text {island }}=4 M+\frac{c}{3} \sigma_{A}+\ldots \quad \longrightarrow \quad t_{\text {Page }}=\frac{1}{4 \epsilon}=\frac{12 M}{c}
$$

Figure 4. Page curve for the eternal RST black hole with $t_{\text {Page }}=6 S_{\mathrm{BH}} / c$. The graph plots $S_{\text {gen }}-\frac{c}{3} \sigma_{A}$ as a function of retarded time on the anchor curve.

Summary / extensions

- Semiclassical gravity is suprisingly effective!
- By assuming a QRT formula we explicitly obtained Page curves for semiclassical black holes in asymptotically flat spacetime in a 2 d toy model
- This includes both an eternal black hole, supported by an incoming energy flux matching the outgoing Hawking flux, and a black hole formed by gravitational collapse that gradually evaporates
- For the evaporating black hole the Page time is $1 / 3$ of the black hole lifetime
- Result relies on 2 d conformal methods and $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ and is valid for black hole mass large compared to scale set by the matter central charge.
- Black hole entanglement wedge encompasses only part of black hole interior after Page time - but large enough to encode observations by infalling observer
- Derivation of generalised entropy formula using replica wormholes
G.Penington, S.Shenker, D.Stanford, Z.Yang (2020)
A.Almheiri, T.Hartman, J. Maldacena, E. Shaghoulian, A. Tajdini (2020)
T.Hartman, E. Shaghoulian, A.Strominger (2020)
- Extension to higher dimensions and to cosmological backgrounds
- The same toy model provides insight into holographic complexity of black holes

