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Introduction

Average entropy of a subsystem — Page curve
Generalized entropy

1+1-dimensional dilaton gravity (CGHS/RST model)
Black hole solutions

Hawking effect and semi-classical back-reaction

Page curves for RST black holes
- evaporating black hole
- two-sided eternal black hole

Holographic complexity of semi-classical bh’s (if time permits)



Black hole evolution — Hawking (1976)

matter in a pure
quantum state

gravitational collapse

black hole ()

Hawking effect =~ Hawking (1974

outgoing SVLL g Fﬁj

radiation



Unitary black hole evolution D.N.Page (1980)
G. ’t Hooft (1990)

L.Susskind, LT, J.Uglum (1993)

K.Schoutens, E.Verlinde, H.Verlinde (1993)

Assumptions: Susskind, LT, Uglum (1993)

(1) A black hole 1s a quantum system with discrete energy levels and
finite density of states

(2) The dimension of the subspace of states that describe a black hole
of mass M is exp Spu (M)

(3) If the initial state of collapsing matter 1s a pure quantum state then
the system as a whole remains 1n a pure state at all times

(4) After BH forms, the full system can be divided into subsystems
A - (distant) outgoing Hawking radiation

B - everything else (including BH)
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Average entropy of a subsystem
D.N. Page (1993), S. Sen (1996)

Consider a quantum system with Hilbert space of dimension m x n
in a random pure state.

A subsystem of dimension m < n has average entanglement entropy

mn

Sun= 3 1= o
m,n — - —
k 2n 12
k=n-+1
Forn>m>1 0
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Thermodynamic entropy

For n > m > 1 we have I, , <

1
< 5 figure from Page (1993)



Page curve for unitary BH evolution

Entanglement between outgoing Hawking radiation and remaining black hole

2Snit

SEE (rad) Sinit

unitary BH evolution

tPagc

time

tlifetime

Can semi-classical results for Sgg(rad) be reconciled with unitary BH evolution?

Answer is “yes” if a correction motivated by holographic duality is included

Generalised entropy:

Sgen =

Area(])
4G N

Penington (2019)

Almbheiri, Engelhardt, Marolf, Maxfield (2019)
+ SBulk[Sar]

Area term dominates after Page time and gives a result consistent with unitarity

E The semi-classical theory is surprisingly effective!
N
S



Semi-classical Page curves

I: Black holes in AdS coupled to external CFT N Penington (2019)
Almbheiri, Engelhardt, Marolf, Maxfield (2019)

Almheiri, Mahajan, Maldacena (2019)
Almbheiri, Mahajan, Santos (2019)

Extract Hawking radiation via coupling to external CFT  Rocha (2008)

Subsystems: rad — external CFT containing Hawking radiation
bh — CFT dual of AdS containing evaporating BH

Full system is in a pure state: Sgg(rad) = Sgg(bh)

Use (quantum corrected) holographic entanglement entropy to evaluate Sgg(bh)

IT: Black holes in asymptotically flat spacetime Gautason, Schneiderbauer, Sybesma, LT (2020)
Anegawa, lizuka (2020)

Hashimoto, lizuka, Matsuo (2020)

Hartman, Shagoulian, Strominger (2020)

Gautason ef al. :

Adapt semi-classical entropy prescription to two-dimensional dilaton gravity model

Explicit analytic results for semi-classical RST black holes



Generalized entropy Ryu, Takayanagi (2006)
Hubeny, Rangamani, Takayanagi (2007)

Faulkner, Lewkowycz, Maldacena (2013)
Engelhardt, Wall (2014)

Quantum corrected holographic entanglement entropy of boundary region A

Boundary
S Area(4.)
. rea(As
Ay )T st =i {ast [ s}

Minimal surface AS

figure from Faulkner ef al. (2013)

For a black hole in AdS coupled to external CFT: Penington (2019)
— A 1s the entire spatial boundary (where dual CFT is defined)

— Ay 1s a co-dimension two surface inside the bulk geometry

For a black hole in asymptotically flat spacetime: Gautason et al. (2019)
— A 1s a spatial boundary outside black hole (in asymptotic region)

— Ay 1s a co-dimension two surface inside the bulk geometry

When there is more than one quantum extremal surface A we are instructed to choose
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Page curve for evaporating RST black holes

Gautason et al. (2020)

1) work with solvable 2d semi-classical model

i1) adapt generalised entropy to asymptotically flat
background (with linear dilaton)

111) 2d matter described by strongly coupled CFT

— use AdS_3 holography to calculate SBuik
cf. Almheiri, Mahajan, Maldacena, Zhao (2019)

iv) coupling to an external bath is unnecessary -

anchor ‘inside’ and ‘outside’ separated by anchor curve

curve

v) explicit analytic result for generalised entropy

SEE(rad) Simit - =L ’,”’
iS]and
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CGHS model

Callan, Giddings, Harvey, Strominger (1991)

So = % / dzy\/—_g[e—%(}z +4(V)* +4X%) —% Z(W&)Q]

=1

Effective action for radial modes of near-extremal magnetically
charged black holes in D = 4 dilaton gravity.

Length scale A~! set by magnetic charge of 4D extremal black hole,

conformal gauge: 0+0_f; =0, / A=1
ds® = —%GQde+dy_ 04+ 0— (6_2¢) = —2(r=?) 5
0+0-(p—¢)=0.
Conformal reparametrisation to Kruskal gauge: p = ¢
. N
—0,0_e W) 1 203720 =N "0, fi0u f;

1=1

More general matter sector leads to the same black hole geometries

We’ll assume a strongly coupled CFT with large central charge: ¢ > 24



Two-sided classical black hole

Kruskal
Linear dilaton vacuum: e 2% =2 =_gtz= * coordinates
Static black hole solution: e =e 2 =M-—zTz
Rescaled coordinates: zt =vMv, = =vVMu
dv d . .
=20 = M(1 — vu) g2 — 1 vdu  ,___ 2d ‘cigar’ in Lorentzian signature
v Mandal, Sengupta, Wadia (1991)
Witten (1991)

A totically flat dinates:
symptotically flat coordinates Penrose diagram

v=r¢e"", u=—e 17 singularity

Thermodynamic variables:

A
M=2M

7
g

2T singularity
S =2¢72 _ o = M

horizon A



Dynamical black hole

e 2 =e? =Mt)—at(z7 + Py(ah)) Penrose diagram

+ singularity

M(z™) :/ dy Ty Toy(y™),
0

apparent 7" o

+ horizon

Pi(z7) = /Ox dy" Ty (y™)

linear dilaton

IL- vacuum R
Shock wave solution in rescaled Kruskal coordinates:
o—2p(v) _ 1 20y _ ) VU itv <1
M (I1—-v(u+1)) ifv>1
Manifestly flat coordinates Asymptotically flat coordinates:
in linear dilaton region:
+ —
v=2e% |, u=—1—¢e7°
f‘gf\Squ?’ v — ew—I— ’ = _e_w_
' W

= ;:\.A y E . . . . 1 + N
9)), ANS Asymptotic time: ¢ = 2(0 +07)

&
®
w
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Hawking effect from conformal anomaly
CGHS (1991), Christensen & Fulling (1977)
C C
(T =358 — () =-:0:0-p

0=0_(T4y)+ 0+ (T—y) =204 p(T_4) c
—> <T:|::|:> = E (28:2l:p — Q(aj:p)Q — ti)
0=04(T_) + 0 (T4—) —20_p(T4—)

o 1. dy* dy
Conformal reparametrization: 2= — y*(z%) —  ply",y7) = pat,27) — 5 log di - di—
dyi 2 N c y/// 3 (y//)Q
T —T = _ “q.E E — 7 _ ¥
(_dxi) wr () = Tex(27) = Sy a™) Ay, 2} v 2 ()

(Zzi)Q Li(y™) = te(2™) + {y* 2}

No outgoing radiation in linear dilaton vacuum:

p(wh,w™) =0, t_(w7)=0

linear dilaton

Outgoing energy flux at 07 — 400 :

IL_ vacuum R
ansm,)
s/é\/‘ % B c B c 1
s oA L ) 12 (@7) 24( (14 eo )2
e _\*
g 1’§ =>
),OIS%E“\O



Semi-classical back reaction

Add Polyakov-Liouville term to action and take the limit ¢ > 24 Callan et al.(1991)

Sq = —— | d®y/—g / d*y'\/—9(y') R(y y' ) R(y')

967
= —— | &y, po_
= " 1or YyO4+po—p
Add RST term to make semiclassical model solvable Russo, Susskind, LT (1992)
SRST—_W dzyv R¢_—— d2y¢8+8 P

C
Introduce new field variable: §) = e~ ¢ + ﬂ¢

Semi-classical field equations in Kruskal coordinates: 9,0_-Q+1=0, —0iQ= ﬂti

Linear dilaton vacuum: Q= —ztx~ — — log( )

48

Field redefinition is not one-to-one —> boundary at critical value

o = 75 <1_log <468)) Per = "log <408)

4
Curvature singularity: R = —2¢( — (V¢)2)
e

1 48

»¢ RST boundary conditions: 04Qo_q, =0=0-0l,_

—— finite curvature on critical curve where it is timelike




Semi-classical black holes

singularity

(1) Two-sided eternal black hole solution:
Q= M(1—vu) + Qe

Equilibrium with thermal bath at T = Ty

singularity
(i1) Dynamical black hole from shock wave collapse:
Q= M(l —v(u+1) — elog(—Mvu))
ds? = —Me?* dvdu 2= Oon

Black Hole
Singularity

Evént 7
Horizon
t=0
Matter
Fields
7
X Q= chit
SEN ]
Y\\"?‘OX
N Stretched
Horizon
Stretched
Horizon
4
Assume initial black hole mass M is large ce= " <«

compared to scale set by central charge: 48M




Generalised entropy in 1+1 dimensions

Area([]
Sgen — T]E[) + SBulk[SAI}

Adapt prescription to 1+1 dimensional theory:

AdS boundary — anchor curve
A —— point on anchor curve
7 — point ‘inside’ anchor curve

Sair — spacelike curve connecting A and 7

Area term: Recall higher-dimensional origin of 1+1 dimensional theory

area of transverse 2-sphere «— 8¢~ 2¢()

Area([)
4Gy

Semi-classical theory: = 2(9(1 ) — chit)

Bulk term: Use AdS3/CFT2 and standard RT prescription
cf. Almheiri, Mahajan, Maldacena, Zhao (2019)

S Length
¢RSITY,, Bulk[Sar] ~ 4G (3) = length of 3d geodesic connecting endpoints
§/( ‘ /J; 3L
= o9 © AdS3 scale determined by 2d central charge: ¢ = :
2 NE 2G )

Brown, Henneaux (1986)
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Embedding into AdS3

(1) Look for light-cone coordinates ds? = —e*dy*dy~ such that ¢4 (y*) =0

(2) Do a Weyl rescaling to d3% = —dy™ dy~ so that <Tvii) =0
Then the matter CFT is in vacuum state and 3d dual geometry is pure AdS3

ds? = L (d22 — dy+dy_)

22
The Weyl transformation in (2) can be implemented as a coordinate transformation in 3d

UV cutoff
o

— regulated holographic boundary at s =gde Py

Length of AdS3 geodesic gives:

C
SwanlSar] = ¢ log |d(A, 1)*e?Wert)]

distance in flat 2d metric
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Page curve for evaporating black hole

Consider a dynamical solution of RST model with incoming matter shock wave into vacuum
— t_(w”) =0 in manifestly flat coordinates in initial linear dilaton vacuum

but energy of incoming shock gives . (w™) # 0

Take infalling matter to be in a coherent state built on the (w™,w™) vacuum

Fiola, Preskill, Strominger, Trivedi (1994)

Then Spu|Saz] is the same as in the vacuum

— standard Ryu-Takayanagi prescription for AdS3/CFT2 using (w™,w™) coordinates



Island configuration

arca term
‘ ol bulk term
S}gﬂﬁnd = 2M(1 — (1 +uy) — elog (_MU]U])) g
£ gt 1o 4 ata
12 8 U0 %0 ) = ua( +ua) (= (1 +up))

Extremise over location of inside point: (v I,U I)

c 1+ uy n c c
12v; (1 — U](l -+ U])) 24v; vy IOg (%)

c vy c c
0=—-2Muv; + + — .
"0 =T+ ur) | 24ur Guylog (4)

0=—-2M(1+u;)+

Solution for M >c¢>1 retarded time on anchor curve

island __ c
Sgen —2M—ﬂ(t14—0'14)—|—...

No-island configuration

(vr,ur) — (vo,up) on boundary curve € = Qi

Sno—island _

(10 va | UA)2 VAUA
S Pug) (1= va(l+ ua))

C
(tA_JA)+"'7
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Page curve for evaporating black hole
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Figure 5. The Page curve for the dynamical RST black hole.



Location of island

Extremisation problem for time ta on anchor curve is solved by

€

o) O(€%)

vr(ta) > 1, ur(ta) =—-1+

i.e. the island QES is inside black hole (very close to event horizon)

Light signal emitted from anchor curve at time £5°° is received at QES

1 L
if 4 — tzbs = 20, +t, where ts=log <4—6> scrambling time

Valid island solution exists for all t4 —oa % ts

i.e. within a scrambling time after the first Hawking particle being emitted
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Entanglement wedges

"""""
-----
-----
- -

Initial data on A is sufficient to determine bulk fields inside the causal diamond of A.

A’ has the same causal diamond as A and the same entanglement entropy.

Black hole entanglement wedge at time 4 is

the causal diamond of a spatial region between

point 4 on anchor curve and its QES.
Island
Curve

Radiation entanglement wedge at time ta

18 formed from the causal diamonds of the

Anchor
Curve

complement of the spatial region.



Bulk fields in black hole interior

t < tPage t> tPage t> tEvap

figure from Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini (2020)

Old black hole: (ta > tpage)

Bulk fields on island no longer contribute to generalised entropy of black hole

DOF’s on black hole horizon can describe only small part of black hole interior

Do we have enough DOF’s to encode observations made by an infalling observer?
— regulate transplanckian modes using infalling lattice Corley, Jacobson (1997)

— infalling observers only encounter modes that originate from a scrambling time
or less before they enter Lowe, LT (2015)

— only need to reconstruct bulk fields in the black hole entanglement wedge.

Lowe, LT (2016, 2017)



Page curve for eternal RST black hole

Two-sided eternal black hole solution: Q= M(1—vu)+ Qerit

Equilibrium with thermal bath at T = Ty

= 0 1in Kruskal coordinates in eternal black hole background

Symmetric anchor points: (v, u") = (u,v) located well outside BH horizon

. _ c
No-island configuration: Sy, = o log {(U A —v AM)2(UA B UAm)g 20(va ) ,20(v4m wam)
_ 4
= ilog (va —ua) ~ EtA
12 7 (1 —vaua)? 3
Island configuration: gisland — 4 N1 — wrug) + c log (va —v1)?(ug — ug)?
gen Tur (1 —vaua)(l —vruy)
1Q1 . . . . u u 46 v
Rt Extremising over location of inside point: 24 oy~
5 AR v oA o
' . w
3% ' ¢ 1 12M
%ﬁmég Sésélﬁnd:‘lM—i-—OA—i—... _
« \

_
3

tPage = -
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Figure 4. Page curve for the eternal RST black hole with tpage = 6Spm/c. The graph plots
Sgen — 504 as a function of retarded time on the anchor curve.
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Summary / extensions
Semiclassical gravity is suprisingly effective!

By assuming a QRT formula we explicitly obtained Page curves for semi-
classical black holes in asymptotically flat spacetime in a 2d toy model

This includes both an eternal black hole, supported by an incoming energy flux
matching the outgoing Hawking flux, and a black hole formed by gravitational
collapse that gradually evaporates

For the evaporating black hole the Page time is 1/3 of the black hole lifetime

Result relies on 2d conformal methods and AdS3;/CFT» and is valid for black hole
mass large compared to scale set by the matter central charge.

Black hole entanglement wedge encompasses only part of black hole interior
after Page time — but large enough to encode observations by infalling observer

Derivation of generalised entropy formula using replica wormholes

G.Penington, S.Shenker, D.Stanford, Z.Yang (2020)
A.Almbheiri, T.Hartman, J. Maldacena, E. Shaghoulian, A. Tajdini (2020)
T.Hartman, E. Shaghoulian, A .Strominger (2020)

Extension to higher dimensions and to cosmological backgrounds ....

The same toy model provides insight into holographic complexity of black holes
L.Schneiderbauer, W.Sybesma, LT (2020)



