
Lárus Thorlacius

 Entanglement in semi-classical black hole evolution

talk at Iberian Strings 2021 -   January 19-22



Outline

• Introduction 

• Average entropy of a subsystem — Page curve

•   Generalized entropy

• 1+1-dimensional dilaton gravity (CGHS/RST model)

•   Black hole solutions

•   Hawking effect and semi-classical back-reaction

• Page curves for RST black holes
- evaporating black hole
- two-sided eternal black hole

• Holographic complexity of semi-classical bh’s (if time permits)



Black hole evolution

 

 

 

 

 

 

 

 

matter in a pure  
 quantum state

black hole

outgoing  
radiation

gravitational collapse

Hawking effect

Hawking (1976)

Hawking (1974)



Unitary black hole evolution

(3) If  the initial state of  collapsing matter is a pure quantum state then  
     the system as a whole remains in a pure state at all times 

(4) After BH forms, the full system can be divided into subsystems 

           A  -  (distant) outgoing Hawking radiation 

           B  -  everything else (including BH) 

Assumptions: 

(1) A black hole is a quantum system with discrete energy levels and 
finite density of  states 

(2) The dimension of  the subspace of  states that describe a black hole  
     of  mass M is expSBH(M)

Susskind, LT, Uglum (1993)

D.N.Page (1980) 
G. ’t Hooft (1990) 

L.Susskind, LT, J.Uglum (1993) 
K.Schoutens, E.Verlinde, H.Verlinde (1993)

…



Average entropy of  a subsystem

Consider a quantum system with Hilbert space of dimension  
in a random pure state. 

A subsystem of dimension               has average entanglement entropy 

m⇥ n

m < n

D.N. Page (1993), S. Sen (1996)
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Information retention time

View Hawking radiation + black hole as a random
pure state

m × n = exp(Sbh)

Average information content in radiation

I ∼ exp(−Sbh) at onset of evaporation
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Page curve for unitary BH evolution

4 Generalized entropy

In order to derive a Page curve for these semi-classical black holes, we adapt the
expression for the generalized entropy,

Sgen = Area(I)
4GN

+ SBulk[SAI ] , (4.1)

to the two-dimensional setting at hand. The first term on the right hand side involves
the area of the transverse two-sphere evaluated locally at an island, and gives zero
in the absence of an island. Comparing with the black hole entropy in (3.9) yields
2e

≠2„(I) as the area contribution of an island in the classical limit. The natural semi-
classical extension of this expression, which gives zero in the absence of an island, is
given by

Area(I)
4GN

= 2
1
�(I) ≠ �crit

2
. (4.2)

The second term on the right hand side in (4.1) is universal and is the main
focus of this section. It is the von Neumann entropy of the CFT matter fields on a
spacelike surface SAI that is bounded at one end by the island I and at the other end
by a point A on a timelike anchor curve. We take the anchor curve to be a constant
� curve with � = �A ∫ M so that it is located well outside the black hole. For an
eternal black hole (3.34) a curve of constant � is at a fixed spatial coordinate, ‡ = ‡A

in the manifestly asymptotically flat coordinate system (3.35). For an evaporating
black hole, the corresponding statement is no longer exact due to the log term in
(3.36). The spatial location of the anchor curve drifts in the asymptotic coordinates
(3.21) but for �A ∫ M the drift is extremely slow and can be ignored on time scales
of order the black hole lifetime. The final answer for SBulk does not depend on which
SAI is chosen as long as it is a spacelike surface that connects A and I. In the absence
of an island, the surface SAI is instead bounded by A at one end and a point on the
boundary curve � = �crit at the other.

Following [11], we compute the von Neumann entropy holographically by pass-
ing to a three-dimensional gravitational theory and evaluating the geodesic length
between the points where A and I are embedded in the dual three-dimensional space-
time,

SBulk[SAI ] ƒ
Length
4G(3)

. (4.3)

The calculation is simplified if we arrange the embedding geometry to be pure AdS3.
This can be achieved in two steps. The first step is to identify a set of light-cone
coordinates

ds
2 = ≠e2fldy

+dy
≠

. (4.4)

where the integration functions t±(y±) are zero. The second step is to perform a
Weyl rescaling of the two-dimensional metric that strips o� the conformal factor e

2fl.
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Generalised entropy:

Entanglement between outgoing Hawking radiation and remaining black hole

Area term dominates after Page time and gives a result consistent with unitarity

The semi-classical theory is surprisingly effective!

Can semi-classical results for SEE(rad) be reconciled with unitary BH evolution?

0 tPage tlifetime
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2Sinit

no isla
nd

island

Figure 1. Page curve for an evaporating RST black hole.

the Quantum Ryu-Takayanagi (QRT) formula [7–10] and the existence of extremal
hypersurfaces terminating on so-called islands behind the event horizon [11]. A ver-
sion of the Page curve can also be obtained for eternal AdS black holes, but in this
case the islands extend outside the horizon [12]. Explicit computations have for the
most part been restricted to two-dimensional Jackiw-Teitelboim gravity [5, 11], but
see [13] for a discussion of islands in higher dimensional AdS black hole spacetimes.

In the present paper we demonstrate that the QRT formula can also be applied
in the context of an evaporating black hole in asymptotically flat spacetime. At
leading semi-classical order in the model that we use, and for a large initial black
hole mass, the Page time is found to be one third of the black hole lifetime. This
main result is presented in Figure 1, where the entanglement entropy of the outgoing
Hawking radiation that has passed beyond a distant spatial reference point is plotted
as a function of time registered at the reference point.

We work with a two-dimensional dilaton gravity model of the type introduced
by Callan, Giddings, Harvey, and Strominger (CGHS) in [14]. More specifically,
the dilaton gravity sector is that of the model introduced by Russo, Susskind, and
Thorlacius (RST) in [15], which remains analytically solvable at the semi-classical
level. For the matter sector, we take a two-dimensional CFT with a large central
charge c ∫ 1, but rather than working with a large number of free scalar fields
as in the CGHS-model, we assume that the conformal matter is holographic. This
allows us to take advantage of an insight put forward by Almheiri et al. [11] in the
context of two-dimensional AdS gravity, and use a three-dimensional gravitational
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unitary BH evolution

SEE(rad)

time

… …

Answer is “yes” if a correction motivated by holographic duality is included Penington (2019)  
Almheiri, Engelhardt, Marolf, Maxfield (2019)



Semi-classical Page curves

I: Black holes in AdS coupled to external CFT Penington (2019)  
Almheiri, Engelhardt, Marolf, Maxfield (2019) 

Almheiri, Mahajan, Maldacena (2019) 
Almheiri, Mahajan, Santos (2019)

…

II: Black holes in asymptotically flat spacetime Gautason, Schneiderbauer, Sybesma, LT (2020)  
Anegawa, Iizuka (2020) 

Hashimoto, Iizuka, Matsuo (2020) 
Hartman, Shagoulian, Strominger (2020)

…

Subsystems:       rad  —  external CFT containing Hawking radiation 
                           bh  —  CFT dual of AdS containing evaporating BH

Extract Hawking radiation via coupling to external CFT Rocha (2008)

Adapt semi-classical entropy prescription to two-dimensional dilaton gravity model

Explicit analytic results for semi-classical RST black holes

Full system is in a pure state:  SEE(rad) = SEE(bh)

Use (quantum corrected) holographic entanglement entropy to evaluate SEE(bh)

Gautason et al.



Generalized entropy Ryu, Takayanagi (2006) 
Hubeny, Rangamani, Takayanagi (2007) 

Faulkner, Lewkowycz, Maldacena (2013)  
Engelhardt, Wall (2014)

Figure 1: The red segment indicates a spatial region, A, of the boundary theory. The
leading contribution to the entanglement entropy is computed by the area of a minimal
surface that ends at the boundary of region A. This surface divides the bulk into two,
region Ab and its complement. Region Ab lives in the bulk and has one more dimension
than region A. The leading correction to the boundary entanglement entropy is given by
the bulk entanglement entropy between region Ab and the rest of the bulk.

We find that the quantum corrections are essentially given by the bulk entanglement

entropy. More precisely, the minimal surface that appears in (1.1) divides the bulk into two

regions. We denote by Ab the bulk region that is connected to the boundary region A, see

figure 1 . Then the bulk quantum correction is essentially given by the bulk entanglement

entropy between region Ab and the rest of the bulk. Namely, at this order, we can think of

the bulk as an e↵ective field theory living on a fixed background geometry and compute

the entanglement entropy of region Ab as we would normally do in any quantum field

theory1 . This is a computation in the bulk e↵ective field theory, it depends on the details

of the bulk fields. We can then write the quantum correction as

S(A) = Scl(A) + Sq(A) +O(GN) , (1.2)

Sq(A) = Sbulk�ent(Ab) + · · · (1.3)

The dots in (1.3) denote some extra one loop terms that can be expressed (like the

classical term (1.1)) as an integral of local quantities. We will give a more detailed dis-

cussion of these terms below. They include terms that cancel the UV divergencies of the

bulk entanglement entropy, so that Sq is a finite quantity. In the case of black holes, this

expression for the quantum correction has been discussed in [7–12,14,15], with increasing

1Caution: do not confuse the bulk entanglement entropy (1.3) with the one computed by the area
formula (1.1). Both are computed in the bulk and are entanglement entropies, so unfortunately we have
a clash of terminology. Hopefully, this will not cause confusion. Note also that [6] discussed a proposal of
entanglement entropy in gravitational theories which does not require the surfaces to be minimal.

2

As

figure from Faulkner et al. (2013)

When there is more than one quantum extremal surface  As  we are instructed to choose 

the one that gives the smallest entropy

Quantum corrected holographic entanglement entropy of boundary region  A

Sgen(A) = minAs

⇢
extAs


Area(As)

4GN
+ Sbulk(Ab)

��

For a black hole in AdS coupled to external CFT:   Penington (2019) 

     —   A is the entire spatial boundary (where dual CFT is defined) 

     —   As  is a co-dimension two surface inside the bulk geometry

For a black hole in asymptotically flat spacetime:  Gautason et al. (2019) 

     —   A is a spatial boundary outside black hole (in asymptotic region) 

     —   As  is a co-dimension two surface inside the bulk geometry



Page curve for evaporating RST black holes
Gautason et al. (2020)

ii)  adapt generalised entropy to asymptotically flat 
      background (with linear dilaton)

iii) 2d matter described by strongly coupled CFT 
use AdS_3 holography to calculate S Bulk

cf. Almheiri, Mahajan, Maldacena, Zhao (2019)

i)   work with solvable 2d semi-classical model 

iv)  coupling to an external bath is unnecessary - 
      ‘inside’ and ‘outside’ separated by anchor curve

v)  explicit analytic result for generalised entropy

Figure 5. Penrose diagram of a dynamical RST black hole with two spacelike hyper-
surfaces indicated, one before the Page time and the other after, corresponding to the
no-island and island configurations, respectively.

where we have used (3.36) for the area term 2(�(I) ≠ �crit) and the coordinate
distance d(A, I) =

Ô
≠�Ê+�Ê≠ has been expressed in (v, u) coordinates. We are

assuming that the island is located outside the infalling shell of matter and that both
the anchor point and the island lie in a region where a classical approximation can
be used for the conformal factor of the dynamical black hole metric. The anchor
point is by assumption far outside the black hole where the classical approximation
is always valid. It turns out to also be valid for the island for much of the lifetime
of an evaporating black hole provided it starts out with a large enough mass but it
will fail towards the end of the lifetime when the black hole has evaporated down to
a small size.

Extremizing (5.12) over (vI , uI) yields the following two conditions,

0 = ≠2M(1 + uI) + c

12vI

1 + uI

(1 ≠ vI(1 + uI)) + c

24vI
≠

c

6vI log
1

vA
vI

2 , (5.13)

0 = ≠2MvI + c

12uI

vI

(1 ≠ vI(1 + uI)) + c

24uI
≠

c

6uI log
1

uA
uI

2 . (5.14)

In order to solve for the location of the island we make the simplifying assumption
log(vA

vI
) ∫ 1, which allows us to drop the last term on the right in the top equation,

and later on we verify the self-consistency of this assumption. The resulting equations
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Figure 2. Penrose diagram of an evaporating RST black hole formed from collapsing
matter (green). A timelike anchor curve separates the spacetime into interior and exterior
regions. As time evolves along this curve, more and more Hawking radiation has passed
through it on its way to future null infinity. The island moves with time along the purple
curve inside the event horizon.

radiation emitted from the black hole will pass through the anchor curve as depicted
in Figure 2. Hence, we do not need to artificially split our system into a QFT dual
to the black hole plus an auxiliary system where the Hawking quanta are collected
as in an AdS background. Instead the split is taken care of in a natural way by the
anchor curve dividing the system into an “inside” part containing the black hole and
and an “outside” region containing outgoing Hawking radiation. We will compute
the entanglement entropy between the radiation that has passed through the anchor
curve and all that remains inside, including the black hole itself, and see explicitly
that it follows a Page curve as a function of time experienced by asymptotic observers
who remain stationary with respect to the black hole. The challenging aspect of the
computation is the evaluation of the second term in (2.1) for any given trial island I.
To simplify this task, we follow [11] and use AdS3/CFT2 duality to compute the von
Neumann entropy of the bulk fields using a standard Ryu-Takayanagi prescription.
We will come back to this in Sec. 4.
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Figure 2. Penrose diagram of an evaporating RST black hole formed from collapsing
matter (green). A timelike anchor curve separates the spacetime into interior and exterior
regions. As time evolves along this curve, more and more Hawking radiation has passed
through it on its way to future null infinity. The island moves with time along the purple
curve inside the event horizon.

radiation emitted from the black hole will pass through the anchor curve as depicted
in Figure 2. Hence, we do not need to artificially split our system into a QFT dual
to the black hole plus an auxiliary system where the Hawking quanta are collected
as in an AdS background. Instead the split is taken care of in a natural way by the
anchor curve dividing the system into an “inside” part containing the black hole and
and an “outside” region containing outgoing Hawking radiation. We will compute
the entanglement entropy between the radiation that has passed through the anchor
curve and all that remains inside, including the black hole itself, and see explicitly
that it follows a Page curve as a function of time experienced by asymptotic observers
who remain stationary with respect to the black hole. The challenging aspect of the
computation is the evaluation of the second term in (2.1) for any given trial island I.
To simplify this task, we follow [11] and use AdS3/CFT2 duality to compute the von
Neumann entropy of the bulk fields using a standard Ryu-Takayanagi prescription.
We will come back to this in Sec. 4.
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Figure 1. Page curve for an evaporating RST black hole.

the Quantum Ryu-Takayanagi (QRT) formula [7–10] and the existence of extremal
hypersurfaces terminating on so-called islands behind the event horizon [11]. A ver-
sion of the Page curve can also be obtained for eternal AdS black holes, but in this
case the islands extend outside the horizon [12]. Explicit computations have for the
most part been restricted to two-dimensional Jackiw-Teitelboim gravity [5, 11], but
see [13] for a discussion of islands in higher dimensional AdS black hole spacetimes.

In the present paper we demonstrate that the QRT formula can also be applied
in the context of an evaporating black hole in asymptotically flat spacetime. At
leading semi-classical order in the model that we use, and for a large initial black
hole mass, the Page time is found to be one third of the black hole lifetime. This
main result is presented in Figure 1, where the entanglement entropy of the outgoing
Hawking radiation that has passed beyond a distant spatial reference point is plotted
as a function of time registered at the reference point.

We work with a two-dimensional dilaton gravity model of the type introduced
by Callan, Giddings, Harvey, and Strominger (CGHS) in [14]. More specifically,
the dilaton gravity sector is that of the model introduced by Russo, Susskind, and
Thorlacius (RST) in [15], which remains analytically solvable at the semi-classical
level. For the matter sector, we take a two-dimensional CFT with a large central
charge c ∫ 1, but rather than working with a large number of free scalar fields
as in the CGHS-model, we assume that the conformal matter is holographic. This
allows us to take advantage of an insight put forward by Almheiri et al. [11] in the
context of two-dimensional AdS gravity, and use a three-dimensional gravitational
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SEE(rad)

time



CGHS model 
Callan, Giddings, Harvey, Strominger (1991)
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proach to black hole evolution where it is assumed
from the outset that the information is returned
in the Hawking radiation. In Section 5 we put
forward a phenomenological framework for black
hole physics which is consistent with a unitary
evolution of quantum states. It is argued that
any model where information is returned encoded
in the Hawking radiation will have to incorporate
a principle of black hole complementarity, which
allows for the different viewpoints of an observer,
who enters a black hole in free fall, and of an ob-
server who remains outside at all times. In Sec-
tion 6 we consider some gedanken experiments de-
signed to test the validity of the complementarity
hypothesis and find that their detailed analysis
requires knowledge of Planck scale effects. This
indicates that the information paradox is not well
posed in terms of low-energy physics alone. In
Section 7 we describe some recent work which
suggests that string theory implements black hole
complementarity in a natural way. The key ob-
servation in this context is that string matter ex-
hibits very different kinematic behavior at high
energies than matter formed out of weakly inter-
acting pointlike particles.

2. Classical Dilaton Gravity in 1+1 Di-

mensions

When faced with a difficult problem it is of-
ten useful to look for a simpler toy system, in
which an analogous problem can be posed and
studied and, in the best of all worlds, solved.
In the case of the black hole information puz-
zle such a simplified context is provided by cer-
tain two-dimensional models of gravity which
have been actively studied (but unfortunately not
fully solved) in recent years. These theories are
far from being realistic models of real gravity
since crucial ingredients of the four-dimensional
physics, such as propagating gravitons, are miss-
ing. The simple toy theories do, however, have
black hole geometries as classical solutions. When
one considers the quantum theory of matter fields
in such spacetimes one finds Hawking radiation
and, at the semiclassical level, its back-reaction
on the geometry leads to an information para-
dox, which is entirely analogous to the one posed
by Hawking. The fate of quantum information is
an important question of principle and it seems

worth looking for an answer in this simplified con-
text even if it is not at all guaranteed to reflect
accurately on the situation in a more realistic set-
ting.

A large number of papers has been written
on various aspects of two-dimensional black hole
physics in recent years. For reviews see e.g.
[16,17].

2.1. The CGHS Model
The CGHS model [15] of two-dimensional dila-

ton gravity, coupled to scalar matter fields, was
proposed a few years ago as a particularly con-
venient toy model for black hole physics. The
classical dynamics is governed by the action

S0 =
1

2π

∫

d2y
√
−g

[

e−2φ(R + 4(∇φ)2 + 4λ2)

−
1

2

N
∑

i=1

(∇fi)
2
]

, (1)

which can be viewed as an effective action for ra-
dial modes of near-extremal magnetically charged
black holes in four-dimensional dilaton gravity
[15,18,19]. We will primarily be interested in this
theory on its own merits as a two-dimensional
model of gravity coupled to matter, but the
higher-dimensional interpretation is helpful in de-
veloping an intuitive picture of some aspects of
the physics.

The action (1) inherits a length scale λ−1 from
the four-dimensional geometry, which is set by
the magnetic charge of the extremal black hole,
λ−1 = 2Q. We shall use units in which λ = 1
throughout. In the region of the four-dimensional
geometry where the two-dimensional effective de-
scription applies, the physical radius1 of the local
transverse two-sphere is given by the dilaton field,
r(x0, x1) = e−φ(x0,x1).

1 This is the radius measured by the Einstein metric. If we
instead use the string metric the radius would be constant
in this region, which is accordingly often referred to as
the ‘infinite throat’ part of the four-dimensional geometry.
See [20] for a detailed discussion of black holes in four-
dimensional dilaton gravity.
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Conformal reparametrisation to Kruskal gauge: ⇢ = �

Effective action for radial modes of near-extremal magnetically 
charged black holes in D = 4 dilaton gravity. 

Length scale λ−1 set by magnetic charge of 4D extremal black hole,   
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The classical equations of motion are

∇2fi = 0 ,

1
4R + ∇2φ − (∇φ)2 + 1 = 0 ,

∇µ∇νφ + gµν((∇φ)2 −∇2φ − 1) = e2φ

2 T f
µν ,

(2)

where T f
µν is the matter energy-momentum ten-

sor,

T f
µν =

1

2

N
∑

i=1

[

∇µfi∇νfi −
1

2
(∇fi)

2
]

. (3)

It is convenient to work in conformal gauge and
choose lightcone coordinates y± = y0 ± y1, for
which the line element is

ds2 = −
1

2
e2ρdy+dy− . (4)

The fields in the theory are then fi, φ, and the
conformal factor ρ. The classical equations of mo-
tion of these fields can be arranged to read

∂+∂−fi = 0 ,

∂+∂−(e−2φ) = −e2(ρ−φ) ,

∂+∂−(ρ − φ) = 0 .

(5)

In addition, one must impose as constraints the
equations of motion corresponding to the compo-
nents of the metric that have been set to zero by
this choice of gauge,

e−2φ(2∂2
+φ − 4∂+ρ∂+φ) = T f

++ ,

e−2φ(2∂2
−φ − 4∂−ρ∂−φ) = T f

−− .
(6)

The non-vanishing components of the matter
energy-momentum tensor are given by T f

±± =
1
2

∑N
i=1(∂±fi)2, and the conservation of matter

energy-momentum takes the form ∂−T f
++ = 0 =

∂+T f
−− in the classical theory. The left moving

energy flux T f
++ is only a function of the left mov-

ing lightcone coordinate y+ and the right moving
flux T f

−− only depends on y−.
One of the conformal gauge equations (5) is

∂+∂−(ρ − φ) = 0, which has the general solution
ρ = φ + f+(y+) + f−(y−). The arbitrary func-
tions f+ and f− can be eliminated by a conformal

reparametrization to coordinates (x+, x−) such
that dx+/dy+ = e2f+ and dx−/dy− = e2f− . This
special coordinate system is referred to as Kruskal
coordinates for reasons which will become appar-
ent a little later on.

Since ρ = φ in Kruskal gauge the equations of
motion and constraints reduce to

∂+∂−e−2φ = −1 ,

∂2
±e−2φ(x+,x−) = −T f

±±(x±) ,
(7)

Let us first consider solutions with vanishing flux
of matter energy, T f

±± = 0. The simplest one is
the so called linear dilaton vacuum,

fi = 0 ,

e−2φ = e−2ρ = −x+x− .
(8)

This geometry has vanishing curvature every-
where. It derives its name from its expression
in the coordinate system (σ+, σ−) defined by the

transformation x± = ±e±σ±

, where the metric is
manifestly flat, ρ = 0, and the dilaton is linear in
the spatial coordinate, φ = −(σ+−σ−)/2 = −σ1.

Due to the factor of e−2φ in front of the dilaton-
gravity terms in the action (1) the value of the
dilaton field controls the strength of gravitational
quantum corrections in the theory. In the lin-
ear dilaton vacuum the coupling varies with spa-
tial position, ranging monotonically from infi-
nite strength in the limit σ1 → −∞ to zero as
σ1 → +∞. From the 3+1-dimensional viewpoint
σ1 is a radial coordinate and the weakly coupled
region corresponds to asymptotic transverse two-
spheres of large radius, while the strong coupling
at σ1 → −∞ reflects the fact that the transverse
area is going to zero and short-distance effects
are becoming important. In general one expects
significant quantum corrections to the spacetime
metric where the coupling is strong and in some
models the internal asymptotic region is replaced,
as we shall see later on, by a timelike boundary
which can be interpreted as the origin of radial
coordinates.

2.2. Eternal Black Holes

In classical general relativity a black hole is de-
fined as a region of spacetime which is not in the
causal past of future null infinity I+ [3]. This
means that no timelike observer can escape from

4

The classical equations of motion are

∇2fi = 0 ,

1
4R + ∇2φ − (∇φ)2 + 1 = 0 ,

∇µ∇νφ + gµν((∇φ)2 −∇2φ − 1) = e2φ

2 T f
µν ,

(2)

where T f
µν is the matter energy-momentum ten-

sor,

T f
µν =

1

2

N
∑

i=1

[

∇µfi∇νfi −
1

2
(∇fi)

2
]

. (3)

It is convenient to work in conformal gauge and
choose lightcone coordinates y± = y0 ± y1, for
which the line element is

ds2 = −
1

2
e2ρdy+dy− . (4)

The fields in the theory are then fi, φ, and the
conformal factor ρ. The classical equations of mo-
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∂+∂−(e−2φ) = −e2(ρ−φ) ,

∂+∂−(ρ − φ) = 0 .

(5)
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e−2φ(2∂2
+φ − 4∂+ρ∂+φ) = T f

++ ,

e−2φ(2∂2
−φ − 4∂−ρ∂−φ) = T f

−− .
(6)

The non-vanishing components of the matter
energy-momentum tensor are given by T f

±± =
1
2

∑N
i=1(∂±fi)2, and the conservation of matter

energy-momentum takes the form ∂−T f
++ = 0 =

∂+T f
−− in the classical theory. The left moving

energy flux T f
++ is only a function of the left mov-

ing lightcone coordinate y+ and the right moving
flux T f

−− only depends on y−.
One of the conformal gauge equations (5) is

∂+∂−(ρ − φ) = 0, which has the general solution
ρ = φ + f+(y+) + f−(y−). The arbitrary func-
tions f+ and f− can be eliminated by a conformal

reparametrization to coordinates (x+, x−) such
that dx+/dy+ = e2f+ and dx−/dy− = e2f− . This
special coordinate system is referred to as Kruskal
coordinates for reasons which will become appar-
ent a little later on.

Since ρ = φ in Kruskal gauge the equations of
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∂+∂−e−2φ = −1 ,

∂2
±e−2φ(x+,x−) = −T f

±±(x±) ,
(7)

Let us first consider solutions with vanishing flux
of matter energy, T f

±± = 0. The simplest one is
the so called linear dilaton vacuum,

fi = 0 ,

e−2φ = e−2ρ = −x+x− .
(8)

This geometry has vanishing curvature every-
where. It derives its name from its expression
in the coordinate system (σ+, σ−) defined by the

transformation x± = ±e±σ±

, where the metric is
manifestly flat, ρ = 0, and the dilaton is linear in
the spatial coordinate, φ = −(σ+−σ−)/2 = −σ1.

Due to the factor of e−2φ in front of the dilaton-
gravity terms in the action (1) the value of the
dilaton field controls the strength of gravitational
quantum corrections in the theory. In the lin-
ear dilaton vacuum the coupling varies with spa-
tial position, ranging monotonically from infi-
nite strength in the limit σ1 → −∞ to zero as
σ1 → +∞. From the 3+1-dimensional viewpoint
σ1 is a radial coordinate and the weakly coupled
region corresponds to asymptotic transverse two-
spheres of large radius, while the strong coupling
at σ1 → −∞ reflects the fact that the transverse
area is going to zero and short-distance effects
are becoming important. In general one expects
significant quantum corrections to the spacetime
metric where the coupling is strong and in some
models the internal asymptotic region is replaced,
as we shall see later on, by a timelike boundary
which can be interpreted as the origin of radial
coordinates.

2.2. Eternal Black Holes

In classical general relativity a black hole is de-
fined as a region of spacetime which is not in the
causal past of future null infinity I+ [3]. This
means that no timelike observer can escape from

conformal gauge: � = 1

More general matter sector leads to the same black hole geometries

�@+@�e
�2�(x+,x�) = 1 , �2 @2

±e
�2�(x+,x�) =

NX

i=1

@±fi @±fi

We’ll assume a strongly coupled CFT with large central charge: c � 24



Two-sided classical black hole

ds2 = � dv du

1� v u
e�2� = M(1� v u)

e�2� = e�2⇢ = M � x+x�Static black hole solution:

S = 2 e�2�
���
horizon

= 2M =
2⇡M
�

T =
�

2⇡

M =
�

⇡
M

x+ =
p
Mv , x� =

p
MuRescaled coordinates:

where (vA, uA) denotes an anchor point on the curve on the right in the figure.
The anchor curves are assumed to be located well outside the black hole where the
conformal factor is well approximated by its classical value,

e
2fl(v,u)

¥
1

1 ≠ vu
. (5.3)

The bulk entropy then takes a simple form,

Sbulk = c

12 log (vA ≠ uA)4

(1 ≠ vAuA)2
¥

c

3tA , (5.4)

where tA is asymptotic time, measured by an observer on the anchor curve, and the
asymptotically flat coordinates (t, ‡) are related to the (v, u) coordinates via,

v = e
t+‡

, u = ≠e
≠t+‡

. (5.5)

Corrections to this result are either exponentially suppressed (by factors of e
≠2tA

or e
≠2‡A) or subleading in powers of ‘, or both. Our computation includes, by

construction, the entropy of the radiation emitted on both sides of the black hole
and we note that the entropy growth rate in (5.4) is precisely twice the rate that was
obtained in [32] for the entanglement entropy of radiation emitted to one side.

0 tPage

0

SBH

2SBH

no
-is

la
nd

island

Figure 4. Page curve for the eternal RST black hole with tPage = 6SBH/c. The graph
plots Sgen ≠

c
3
‡A as a function of retarded time on the anchor curve.

We now repeat the calculation with symmetrically placed islands at I = (vI , uI)
and I

m = (uI , vI), as indicated in Figure 3. In this case, the area term in the
generalized entropy (4.1) is non-vanishing and bulk term involves geodesics in AdS3
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Asymptotically flat coordinates:
Penrose diagram

Thermodynamic variables:

Linear dilaton vacuum: e�2� = e�2⇢ = �x+x�
Kruskal  
coordinates

Mandal, Sengupta, Wadia (1991) 
Witten (1991)

2d ‘cigar’ in Lorentzian signature



Dynamical black hole

e�2� = e�2⇢ = M(x+)� x+
�
x� + P+(x

+)
�

P+(x
+) =

Z x+

0
dy+ T++(y

+)

M(x+) =

Z x+

0
dy+y+ T++(y

+) ,

Shock wave solution in rescaled Kruskal coordinates:

In most of what follows we work to leading non-trivial order in ‘, but to get started
it is useful to consider the ‘ æ 0 limit where semi-classical e�ects are turned o�. In
this limit, the gravitational field equation is sourced by the energy-momentum tensor
of the two-dimensional matter CFT,4

4e≠2„
5
ÒµÒ‹„ ≠ gµ‹

1
⇤„ ≠ (Ò„)2 + 1

26
= Tµ‹ , (3.13)

while the equation of motion of the dilaton field is una�ected by the coupling to
matter. The CFT energy momentum tensor has two non-trivial components T++(x+)
and T≠≠(x≠), each of which only depends on one of the light cone coordinates. The
field equations take a particularly simple form in the Kruskal coordinates (3.3),

≠ ˆ+ˆ≠e≠2„ = 1 , ≠2ˆ
2

±e≠2„ = T±± , (3.14)

and the response to arbitrary incoming matter energy flux is easily obtained,

e≠2„ = e≠2fl = F (x+) ≠ x
+

Ë
x

≠ + G(x+)
È

, (3.15)

where
F

Õ(x+) = 1
2x

+
T++(x+) , G

Õ(x+) = 1
2T++(x+) . (3.16)

We take the energy-momentum tensor to have compact support in x
+ corresponding

to a thin shell of infalling matter energy incident on the linear dilaton vacuum.
For our purposes, the detailed form of the solution (3.15) is not needed, only the
behaviour at early and late times, and we can therefore consider an idealised solution
where two static configurations are patched together across an infinitely thin null
shock wave,

e≠2„(x+,x≠
) = e≠2fl(x+,x≠

) =

Y
_]

_[

≠x
+

x
≠ if x

+
< x

+

0 ,

M ≠ x
+

3
x

≠ + M
x+

0

4
if x

+
> x

+

0 .
(3.17)

A rescaling of the coordinates,

x
+ = x

+

0
v , x

≠ = M

x
+

0

u , (3.18)

brings the metric and dilaton into the following simple form,

e≠2fl(v,u) = 1
M

e≠2„(v,u) =

Y
]

[
≠vu if v < 1 ,

(1 ≠ v(u + 1)) if v > 1 .
(3.19)

4Our conventions match those of [30] except we are dealing with Lorentzian CFT. In particular,
the classical energy-momentum tensor is defined as

T µ‹ = ≠
4fi

Ô
≠g

”S

”gµ‹
, (3.12)

and the normalization for the energy-momentum tensor therefore di�ers from the one used in [14]
by a factor of 2.

– 8 –

Manifestly flat coordinates 
in linear dilaton region:

Asymptotically flat coordinates:
In the v < 1 linear dilaton region, the change of coordinates,

v = e
Ê+

, u = ≠e
≠Ê≠

, (3.20)

brings the metric into manifestly flat form, fl(Ê+
, Ê

≠) = 0, while a set of coordinates,
for which the metric is asymptotically Minkowskian in the v > 1 region outside the
shock wave, is given by

v = e
‡+

, u = ≠1 ≠ e
≠‡≠

. (3.21)

Time as measured by asymptotic observers at rest with respect to the black hole is

t = 1
2(‡+ + ‡

≠) . (3.22)

3.2 Semi-classical black holes
On a curved spacetime background, the energy-momentum tensor of the matter CFT
is no longer traceless due to the conformal anomaly,

ÈT
µ
µÍ = c

12R , (3.23)

where R is the Ricci scalar of the background metric. In two spacetime dimensions
the continuity equation expressing energy-momentum conservation can be integrated
using only (3.23) as input [31] leading to the following expressions in conformal
coordinates,

ÈT+≠Í = ≠
c

6ˆ+ˆ≠fl , ÈT±±Í = c

12
1
2ˆ

2

±fl ≠ 2(ˆ±fl)2
≠ t±

2
, (3.24)

where t±(x±) are functions of integration determined by physical boundary condi-
tions that reflect the matter quantum state.

The boundary functions t± are sensitive to the choice of coordinate system. This
is to be expected since notions of positive frequency and normal ordering depend on
the choice of time variable. Under a conformal reparametrization of the light-cone
coordinates, x

±
æ y

±(x±), the conformal factor of the metric transforms as

fl(y+
, y

≠) = fl(x+
, x

≠) ≠
1
2 log dy

+

dx+

dy
≠

dx≠ . (3.25)

When inserted in (3.24) this leads to the usual anomalous transformation of the
energy-momentum tensor involving a Schwarzian derivative,

A
dy

±

dx±

B
2

T±±(y±) = T±±(x±) ≠
c

12{y
±

, x
±

} , {y, x} = y
ÕÕÕ

yÕ ≠
3
2

(yÕÕ)2

(yÕ)2
. (3.26)

In order to preserve the form (3.24) for the energy-momentum tensor in the new
coordinates, we e�ectively obtain a new function t±(y±) related to the old one via

A
dy

±

dx±

B
2

t±(y±) = t±(x±) + {y
±

, x
±

} . (3.27)

– 9 –

In the v < 1 linear dilaton region, the change of coordinates,

v = e
Ê+

, u = ≠e
≠Ê≠

, (3.20)

brings the metric into manifestly flat form, fl(Ê+
, Ê

≠) = 0, while a set of coordinates,
for which the metric is asymptotically Minkowskian in the v > 1 region outside the
shock wave, is given by

v = e
‡+

, u = ≠1 ≠ e
≠‡≠

. (3.21)

Time as measured by asymptotic observers at rest with respect to the black hole is

t = 1
2(‡+ + ‡

≠) . (3.22)

3.2 Semi-classical black holes
On a curved spacetime background, the energy-momentum tensor of the matter CFT
is no longer traceless due to the conformal anomaly,

ÈT
µ
µÍ = c

12R , (3.23)

where R is the Ricci scalar of the background metric. In two spacetime dimensions
the continuity equation expressing energy-momentum conservation can be integrated
using only (3.23) as input [31] leading to the following expressions in conformal
coordinates,

ÈT+≠Í = ≠
c

6ˆ+ˆ≠fl , ÈT±±Í = c

12
1
2ˆ

2

±fl ≠ 2(ˆ±fl)2
≠ t±

2
, (3.24)

where t±(x±) are functions of integration determined by physical boundary condi-
tions that reflect the matter quantum state.

The boundary functions t± are sensitive to the choice of coordinate system. This
is to be expected since notions of positive frequency and normal ordering depend on
the choice of time variable. Under a conformal reparametrization of the light-cone
coordinates, x

±
æ y

±(x±), the conformal factor of the metric transforms as

fl(y+
, y

≠) = fl(x+
, x

≠) ≠
1
2 log dy

+

dx+

dy
≠

dx≠ . (3.25)

When inserted in (3.24) this leads to the usual anomalous transformation of the
energy-momentum tensor involving a Schwarzian derivative,

A
dy

±

dx±

B
2

T±±(y±) = T±±(x±) ≠
c

12{y
±

, x
±

} , {y, x} = y
ÕÕÕ

yÕ ≠
3
2

(yÕÕ)2

(yÕ)2
. (3.26)

In order to preserve the form (3.24) for the energy-momentum tensor in the new
coordinates, we e�ectively obtain a new function t±(y±) related to the old one via

A
dy

±

dx±

B
2

t±(y±) = t±(x±) + {y
±

, x
±

} . (3.27)
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Asymptotic time:

In the v < 1 linear dilaton region, the change of coordinates,

v = e
Ê+

, u = ≠e
≠Ê≠

, (3.20)

brings the metric into manifestly flat form, fl(Ê+
, Ê

≠) = 0, while a set of coordinates,
for which the metric is asymptotically Minkowskian in the v > 1 region outside the
shock wave, is given by

v = e
‡+

, u = ≠1 ≠ e
≠‡≠

. (3.21)

Time as measured by asymptotic observers at rest with respect to the black hole is

t = 1
2(‡+ + ‡

≠) . (3.22)

3.2 Semi-classical black holes
On a curved spacetime background, the energy-momentum tensor of the matter CFT
is no longer traceless due to the conformal anomaly,

ÈT
µ
µÍ = c

12R , (3.23)

where R is the Ricci scalar of the background metric. In two spacetime dimensions
the continuity equation expressing energy-momentum conservation can be integrated
using only (3.23) as input [31] leading to the following expressions in conformal
coordinates,

ÈT+≠Í = ≠
c

6ˆ+ˆ≠fl , ÈT±±Í = c

12
1
2ˆ

2

±fl ≠ 2(ˆ±fl)2
≠ t±

2
, (3.24)

where t±(x±) are functions of integration determined by physical boundary condi-
tions that reflect the matter quantum state.

The boundary functions t± are sensitive to the choice of coordinate system. This
is to be expected since notions of positive frequency and normal ordering depend on
the choice of time variable. Under a conformal reparametrization of the light-cone
coordinates, x

±
æ y

±(x±), the conformal factor of the metric transforms as

fl(y+
, y

≠) = fl(x+
, x

≠) ≠
1
2 log dy

+

dx+

dy
≠

dx≠ . (3.25)

When inserted in (3.24) this leads to the usual anomalous transformation of the
energy-momentum tensor involving a Schwarzian derivative,

A
dy

±

dx±

B
2

T±±(y±) = T±±(x±) ≠
c

12{y
±

, x
±

} , {y, x} = y
ÕÕÕ

yÕ ≠
3
2

(yÕÕ)2

(yÕ)2
. (3.26)

In order to preserve the form (3.24) for the energy-momentum tensor in the new
coordinates, we e�ectively obtain a new function t±(y±) related to the old one via

A
dy

±

dx±

B
2

t±(y±) = t±(x±) + {y
±

, x
±

} . (3.27)
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Penrose diagram



Hawking effect from conformal anomaly
CGHS (1991),  Christensen & Fulling (1977)
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12
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Conformal reparametrization:

In the v < 1 linear dilaton region, the change of coordinates,

v = e
Ê+

, u = ≠e
≠Ê≠

, (3.20)

brings the metric into manifestly flat form, fl(Ê+
, Ê

≠) = 0, while a set of coordinates,
for which the metric is asymptotically Minkowskian in the v > 1 region outside the
shock wave, is given by

v = e
‡+

, u = ≠1 ≠ e
≠‡≠

. (3.21)

Time as measured by asymptotic observers at rest with respect to the black hole is

t = 1
2(‡+ + ‡

≠) . (3.22)

3.2 Semi-classical black holes
On a curved spacetime background, the energy-momentum tensor of the matter CFT
is no longer traceless due to the conformal anomaly,

ÈT
µ
µÍ = c

12R , (3.23)

where R is the Ricci scalar of the background metric. In two spacetime dimensions
the continuity equation expressing energy-momentum conservation can be integrated
using only (3.23) as input [31] leading to the following expressions in conformal
coordinates,

ÈT+≠Í = ≠
c

6ˆ+ˆ≠fl , ÈT±±Í = c

12
1
2ˆ

2

±fl ≠ 2(ˆ±fl)2
≠ t±

2
, (3.24)

where t±(x±) are functions of integration determined by physical boundary condi-
tions that reflect the matter quantum state.

The boundary functions t± are sensitive to the choice of coordinate system. This
is to be expected since notions of positive frequency and normal ordering depend on
the choice of time variable. Under a conformal reparametrization of the light-cone
coordinates, x

±
æ y

±(x±), the conformal factor of the metric transforms as

fl(y+
, y

≠) = fl(x+
, x

≠) ≠
1
2 log dy

+

dx+

dy
≠

dx≠ . (3.25)

When inserted in (3.24) this leads to the usual anomalous transformation of the
energy-momentum tensor involving a Schwarzian derivative,

A
dy

±

dx±

B
2

T±±(y±) = T±±(x±) ≠
c

12{y
±

, x
±

} , {y, x} = y
ÕÕÕ

yÕ ≠
3
2

(yÕÕ)2

(yÕ)2
. (3.26)

In order to preserve the form (3.24) for the energy-momentum tensor in the new
coordinates, we e�ectively obtain a new function t±(y±) related to the old one via

A
dy

±

dx±

B
2

t±(y±) = t±(x±) + {y
±

, x
±

} . (3.27)
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In the v < 1 linear dilaton region, the change of coordinates,

v = e
Ê+

, u = ≠e
≠Ê≠

, (3.20)

brings the metric into manifestly flat form, fl(Ê+
, Ê

≠) = 0, while a set of coordinates,
for which the metric is asymptotically Minkowskian in the v > 1 region outside the
shock wave, is given by

v = e
‡+

, u = ≠1 ≠ e
≠‡≠

. (3.21)

Time as measured by asymptotic observers at rest with respect to the black hole is

t = 1
2(‡+ + ‡

≠) . (3.22)

3.2 Semi-classical black holes
On a curved spacetime background, the energy-momentum tensor of the matter CFT
is no longer traceless due to the conformal anomaly,

ÈT
µ
µÍ = c

12R , (3.23)

where R is the Ricci scalar of the background metric. In two spacetime dimensions
the continuity equation expressing energy-momentum conservation can be integrated
using only (3.23) as input [31] leading to the following expressions in conformal
coordinates,

ÈT+≠Í = ≠
c

6ˆ+ˆ≠fl , ÈT±±Í = c

12
1
2ˆ

2

±fl ≠ 2(ˆ±fl)2
≠ t±

2
, (3.24)

where t±(x±) are functions of integration determined by physical boundary condi-
tions that reflect the matter quantum state.

The boundary functions t± are sensitive to the choice of coordinate system. This
is to be expected since notions of positive frequency and normal ordering depend on
the choice of time variable. Under a conformal reparametrization of the light-cone
coordinates, x

±
æ y

±(x±), the conformal factor of the metric transforms as

fl(y+
, y

≠) = fl(x+
, x

≠) ≠
1
2 log dy

+

dx+

dy
≠

dx≠ . (3.25)

When inserted in (3.24) this leads to the usual anomalous transformation of the
energy-momentum tensor involving a Schwarzian derivative,

A
dy

±

dx±

B
2

T±±(y±) = T±±(x±) ≠
c

12{y
±

, x
±

} , {y, x} = y
ÕÕÕ

yÕ ≠
3
2

(yÕÕ)2

(yÕ)2
. (3.26)

In order to preserve the form (3.24) for the energy-momentum tensor in the new
coordinates, we e�ectively obtain a new function t±(y±) related to the old one via

A
dy

±

dx±

B
2

t±(y±) = t±(x±) + {y
±

, x
±

} . (3.27)

– 9 –

In the v < 1 linear dilaton region, the change of coordinates,

v = e
Ê+

, u = ≠e
≠Ê≠

, (3.20)

brings the metric into manifestly flat form, fl(Ê+
, Ê

≠) = 0, while a set of coordinates,
for which the metric is asymptotically Minkowskian in the v > 1 region outside the
shock wave, is given by

v = e
‡+

, u = ≠1 ≠ e
≠‡≠

. (3.21)

Time as measured by asymptotic observers at rest with respect to the black hole is

t = 1
2(‡+ + ‡

≠) . (3.22)

3.2 Semi-classical black holes
On a curved spacetime background, the energy-momentum tensor of the matter CFT
is no longer traceless due to the conformal anomaly,

ÈT
µ
µÍ = c

12R , (3.23)

where R is the Ricci scalar of the background metric. In two spacetime dimensions
the continuity equation expressing energy-momentum conservation can be integrated
using only (3.23) as input [31] leading to the following expressions in conformal
coordinates,

ÈT+≠Í = ≠
c

6ˆ+ˆ≠fl , ÈT±±Í = c

12
1
2ˆ

2

±fl ≠ 2(ˆ±fl)2
≠ t±

2
, (3.24)

where t±(x±) are functions of integration determined by physical boundary condi-
tions that reflect the matter quantum state.

The boundary functions t± are sensitive to the choice of coordinate system. This
is to be expected since notions of positive frequency and normal ordering depend on
the choice of time variable. Under a conformal reparametrization of the light-cone
coordinates, x

±
æ y

±(x±), the conformal factor of the metric transforms as

fl(y+
, y

≠) = fl(x+
, x

≠) ≠
1
2 log dy

+

dx+

dy
≠

dx≠ . (3.25)

When inserted in (3.24) this leads to the usual anomalous transformation of the
energy-momentum tensor involving a Schwarzian derivative,

A
dy

±

dx±

B
2

T±±(y±) = T±±(x±) ≠
c

12{y
±

, x
±

} , {y, x} = y
ÕÕÕ

yÕ ≠
3
2

(yÕÕ)2

(yÕ)2
. (3.26)

In order to preserve the form (3.24) for the energy-momentum tensor in the new
coordinates, we e�ectively obtain a new function t±(y±) related to the old one via

A
dy

±

dx±

B
2

t±(y±) = t±(x±) + {y
±

, x
±

} . (3.27)
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No outgoing radiation in linear dilaton vacuum:

⇢(!+,!�) = 0 , t�(!
�) = 0

Outgoing energy flux at �+ ! +1 :

As an example, consider a black hole formed by gravitational collapse as in (3.19).
At early advanced time before the arrival of the collapsing matter (i.e. v < 1), we
have a linear dilaton vacuum and vanishing energy-momentum tensor. The metric
is manifestly flat in the (Ê+

, Ê
≠) coordinate system in (3.20) and it follows that

t≠(Ê≠) = 0. Upon transforming to the (‡+
, ‡

≠) coordinate system (3.21), in which
the metric is manifestly asymptotically flat, one finds non-vanishing outgoing energy
flux at ‡

+
æ Œ,

T≠≠(‡≠) = ≠
c

12t≠(‡≠) = c

24

A

1 ≠
1

(1 + e‡≠)2

B

. (3.28)

In [14] this expression was interpreted as the energy flux of Hawking radiation from
the black hole as observed by an asymptotic observer. Energy conservation implies
that a black hole emitting Hawking radiation loses mass. When the semi-classical
expansion parameter ‘ in (3.11) has a small but finite value, the classical solution
(3.15) is only valid on timescales that are short compared to the lifetime of the black
hole, which is tlifetime = 1/‘ at leading order. The semi-classical back-reaction on the
spacetime geometry due to Hawking emission matter can, however, be accounted for
by adding to the classical action Igrav in (3.1) a non-local Polyakov term induced by
matter quantum e�ects [14],

IQ = ≠
c

12fi

⁄
dx

+dx
≠

ˆ+flˆ≠fl , (3.29)

written here in conformal coordinates.5 If we take c ∫ 24 then IQ should be dominant
compared to semi-classical contributions from the dilaton gravity sector. Further
modifications to the theory are needed in order to find analytic solutions to the
semi-classical equations of motion. We will follow the approach of [15] and add the
following term,

IRST = c

48fi

⁄
d2

x
Ô

≠g„R , (3.30)

to the semi-classical action, which is allowed by general covariance and does not
disturb the classical (‘ æ 0) limit of the theory. The RST term IRST involves a
factor of c and therefore enters at the same order as the Polyakov term IQ.

The resulting semi-classical field equations simplify dramatically when a new
field variable is introduced,

� = e≠2„ + c

24„ , (3.31)

but there are subtleties involved. In particular, the new field variable is bounded from
below, � Ø �crit = c

48

1
1 ≠ log c

48

2
, and when � æ �crit the gravitational coupling

becomes strong in the semi-classical theory [15]. This has a suggestive physical
interpretation, where � æ �crit represents a boundary of spacetime, analogous to

5While the non-local nature of IQ is not immediately apparent in the conformal gauge expression
(3.29), it enters the formalism via the boundary functions t± in (3.24).
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Semi-classical field equations in Kruskal coordinates:  

the boundary at the origin of radial coordinates in the higher-dimensional theory
from which the CGHS model is descended.

One benefit of including the RST term (3.30) is that semi-classical solutions of
the full theory Igrav + IQ + IRST can be expressed in Kruskal coordinates (3.3), where
the field equations reduce to

ˆ+ˆ≠� + 1 = 0 , ≠ˆ
2

±� = c

24t± , (3.32)

with t± the same boundary functions as before. The linear dilaton vacuum remains
an exact solution of the semi-classical equations and takes the form

� = ≠x
+

x
≠

≠
c

48 log(≠x
+

x
≠) , (3.33)

in the new field variable. Notice that t±(x±) ”= 0 even if this is the vacuum solution
but this is because the metric is not manifestly flat in Kruskal coordinates. Trans-
forming to a manifestly flat coordinate system ‡

± renders the functions t±(‡±) = 0
as expected.

A two-sided eternal black hole solution is given by

� = M(1 ≠ vu) + �crit , (3.34)

where we have rescaled the coordinates as in (3.6). Here we find that in Kruskal
coordinates that t±(x±) = 0 but if we transform to coordinates for which the metric
is manifestly asymptotically flat,

v = e
‡+

, u = ≠e
≠‡≠

, (3.35)

we find that t±(‡±) = 1

2
. This corresponds to a flat space energy-momentum tensor

T±±(‡±) = c
24

which is exactly the energy-momentum tensor of a thermal gas of
temperature T = 1

2fi which is the temperature of the eternal black hole. The outgoing
energy flux carried by the Hawking radiation is matched by an incoming flux of
thermal radiation at the same temperature as the Hawking temperature of the black
hole.

Finally, consider the formation and subsequent evaporation of a dynamical black
hole. As in the classical case without back-reaction, we imagine a situation where
a short burst of matter energy is injected into a linear dilaton vacuum described
by (3.33). The solution describing the full evolution of such a black hole can be
found in [15]. Here we are mainly interested in the geometry outside the collapsing
matter shell, i.e. for v > 1, where it takes the form

ds
2 = ≠Me2„ dvdu , � = M

1
1 ≠ v(u + 1) ≠ ‘ log(≠Mvu)

2
, (3.36)

with „ and � related via (3.31).
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Linear dilaton vacuum:

10

and the semiclassical constraint equations become

(∂±χ)2 − ∂2
±χ − (∂±Ω)2 + t± = T̃±± . (38)

Here T̃±± is the observable energy-momentum
flux in the asymptotic region, rescaled by a factor
of 12/N , which is appropriate in the large N limit
where we study black holes formed by incoming
energy measured in units of N .

We can choose Kruskal coordinates, in which
χ = Ω, and the equations of motion and con-
straints reduce to

∂+∂−Ω = −1 ,

−∂2
±Ω = T̃±± − t± .

(39)

Notice the similarity with the classical equa-
tions (39). The matter energy-momentum ten-
sor T̃±± is normal ordered with respect to the
vacuum state appropriate to inertial observers
in the asymptotically Minkowskian coordinates
(25). The vacuum state has T̃±± = 0 and
t±(σ±) = 0, which gets transformed to t±(x±) =

1/4x±2
in Kruskal coordinates under (23). The

vacuum solution obtained by integrating (39) is
then

Ω = −x+x− −
1

4
log (−x+x−) −

1

2
log 2 . (40)

A comparison with the field redefinition (35) re-
veals that in this semiclassical model the dilaton
field is linear, φ = −σ1− 1

2 log (N/12), in the vac-
uum solution just as in the classical theory.

Now consider a geometry with leftmoving mat-
ter incident on the vacuum from I−

R . The semi-
classical solution is

Ω = −x+
(

x− + P̃+(x+)
)

+ M̃(x+)

−
1

4
log (−x+x−) −

1

2
log 2 , (41)

where M̃ and P̃+ are the moments (14) and (15)
of the incoming energy flux in Kruskal coordi-
nates, rescaled by a factor of 12/N . Although
this is a perfectly good solution of the semiclas-
sical equations (39) its physical interpretation is
problematic. The reason is that the range of val-
ues taken by Ω as a function of x+ and x− is
unrestricted but the field redefinition (35) is de-
generate (see Figure 3), and Ω below a certain
critical value Ωcr, corresponds to a complex value

φ

Ω

Ωcr

φcr

Figure 3. The field redefinition from φ to Ω is not
one-to-one.

of the original dilaton field. The critical point,
where Ω′(φ) = 0, is at φcr = − 1

2 log (N/48) and
Ωcr = 1

4 .
The existence of this critical value of the dila-

ton field has important implications. By using
the equations of motion (37) written in terms of
ρ and φ one can express the spacetime curvature
as

R =
4

1 − N
48e2φ

(

1 − (∇φ)2
)

, (42)

and we see that in general the curvature will di-
verge where φ = φcr, even if the solution for χ and
Ω is perfectly regular there. Gravitational quan-
tum corrections are strong in this model when the
dilaton field is near its critical value. This can be
seen by defining the two-component vector

Φ =

[

φ
ρ

]

, (43)

and assembling the kinetic terms in the full effec-
tive action S = S0 + S1 + S2 into (∂+Φ)M(∂−Φ).
The role of gravitational coupling is played by

(− detM)−1/4 ∼ (e−2φ −
N

48
)−1/2, (44)

which goes to infinity as φ → φcr.
It is tempting to ignore the problem of unphys-

ical values of Ω and simply define the semiclassi-
cal theory in terms of the effective action (36)
for χ and Ω. Such a theory has the appropri-
ate classical limit by construction and the smooth

Field redefinition is not one-to-one —> boundary at critical value 

RST boundary conditions:

11

behavior of χ and Ω in the strong coupling re-
gion of the original theory in effect resolves the
classical singularity. Unfortunately this approach
is undermined by an instability. The incoming
matter excites the system from its vacuum con-
figuration and Hawking radiation is emitted to
I+

R . The mismatch between inertial coordinates
at I+

R and I−

L is given by (26), with P∞ replaced
by P̃∞, and the calculation of the Hawking flux at
I+

R proceeds in the same manner. Although the
semiclassical solution exhibits a back-reaction ef-
fect on the geometry due to the Hawking emission
there is nothing to turn the outgoing flux off when
the emitted energy exceeds the total incoming en-
ergy and the Bondi mass measured at I+

R goes to
negative infinity at late times.

In order to avoid these problems of unphysical
Ω values and negative energy instability, Russo et
al. [32] interpreted the curve Ω = Ωcr as the ana-
log of the origin of radial coordinates in higher di-
mensional gravity, beyond which solutions should
not be continued, and proposed ‘phenomenologi-
cal’ boundary conditions for Ω,

∂+Ω
∣

∣

Ω=Ωcr
= 0 = ∂−Ω

∣

∣

Ω=Ωcr
, (45)

which ensure that the spacetime curvature re-
mains finite at the critical curve where it is
timelike. This turns out to stabilize the semi-
classical evolution, which is perhaps not surpris-
ing since negative energy configurations typically
have naked singularities and the above boundary
conditions implement a form of cosmic censorship
in the two-dimensional theory.

It should be noted, however, that these bound-
ary conditions for Ω are not the most general ones
allowed and they do not imply boundary condi-
tions for the matter fields, which is a drawback
if we want to discuss the quantum state of the
outgoing matter in connection with the informa-
tion paradox. It was initially claimed [32] that the
RST boundary conditions on Ω would be compat-
ible with Dirichlet or Neumann boundary condi-
tions on the fi but it was later realized that this
is not the case [34,35], and (45) may in fact not
be realizable as the semiclassical limit of any con-
sistent quantum mechanical boundary conditions.
In Section 4 we will discuss alternative choices of
boundary conditions [36–38], which are compati-
ble with simple reflecting conditions on the mat-

ter fields, but these models are somewhat more
complicated than the RST model and the analy-
sis of the semiclassical solutions less transparent.
We will therefore explore the physical picture pre-
sented in the RST model before moving on to
other models.

3.4. Semiclassical Black Holes

Let us first consider the static solutions of the
semiclassical equations (39) subject to the bound-
ary conditions (45),

Ω = −x+x− −
(1 − a)

4
log (−x+x−)

+M +
a

4
+

(1 − a)

4
log (

1 − a

4
) . (46)

These static geometries are characterized by two
parameters. One is proportional to the asymp-
totic energy density, a/4 = T̃++ = T̃−− = as
σ1 → ∞, and the other one M , will be re-
ferred to as the mass even if the canonical ADM
mass diverges for geometries with a non-vanishing
asymptotic energy density.3

The solution with a = 0 and M = 0 is the linear
dilaton vacuum (40), for a = 0 and M > 0 it is a
‘quantum kink’ solution with a singular horizon
at x+x− = 0 [26,27], and for a = 0 and M < 0 it
has a naked singularity.

A solution with 0 < a < 1 and M = 0 corre-
sponds to a heat bath at a temperature T = a/2π.
A semiclassical black hole emits Hawking radia-
tion and a static configuration can only exist if the
black hole is in equilibrium with a heat bath at
a temperature equal to the Hawking temperature
TH = 1/2π. This is described by a static solu-
tion with a = 1 and M > 0, which has a space-
like singularity at x+x− = M and non-singular
event horizon at x+x− = 0. Notice that since
the boundary curve Ω = 1/4 is spacelike in the
static black hole geometries they are determined
without applying the boundary conditions (45).

The black hole temperature is independent of
the mass parameter so that the specific heat is
infinite. Random fluctuations in the thermal flux
of energy at the horizon will therefore cause the

3One might expect a disastrous back-reaction on the ge-
ometry in the asymptotic region, corresponding to the
Jeans instability in 3+1-dimensional gravity, but this is
avoided because the coupling strength eφ goes to zero
there.

finite curvature on critical curve where it is timelike 

⌦cr =
c

48

⇣
1� log

⇣ c

48

⌘⌘
, �cr = �1

2
log

⇣ c

48

⌘

Curvature singularity: R =
4

1� c
48e

2�

�
1� (r�)2

�



Semi-classical black holes
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Figure 5. Left panel: Penrose diagram depicting the life cycle of evaporating black hole formed
by collapse. Right panel: The corresponding Kruskal diagram with the same color coding. The
gray line denotes a curve of equal tortoise time t.

where the range of the parameter u is the interval (0, 1). The point (x+S (0), x
�
S (0)) repre-

sents the formation of the black hole singularity, while (x+S (1), x
�
S (1)) describes the point

where the black hole has entirely evaporated. This parametrization has the convenient

property

� x+S (u)x
�
S (u) =



4
e

4M
 u . (4.7)

The curve ⌦(x+B, x
�
B) = ⌦crit =


4 (1 � ln 

4 ) for x+ < x+0 defines the boundary of physical

spacetime before the matter shockwave arrives, and is given by

� x+Bx
�
B =



4
, (4.8)

in Kruskal coordinates.

As in the classical theory, we take the anchor curve for our WdW patch to be the

stretched horizon of the black hole, defined as a membrane outside the black hole event

horizon, with an area of order 1, in Planck units, larger than the area of the black hole

event horizon. For technical simplicity, we follow [2] and take the stretched horizon of an

RST black hole formed by shockwave collapse to coincide with the apparent horizon during

the period of evaporation. This determines the anchor curve as

� x+A

✓
x�A +

M

x+0

◆
=



4
, (4.9)

as usual, in Kruskal coordinates. With this convention, the area of the stretched horizon

vanishes at the evaporation end point, whereas it should strictly speaking be 1 in Planck
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Assume initial black hole mass M is large
compared to scale set by central charge:

(i) Two-sided eternal black hole solution:

the boundary at the origin of radial coordinates in the higher-dimensional theory
from which the CGHS model is descended.
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with t± the same boundary functions as before. The linear dilaton vacuum remains
an exact solution of the semi-classical equations and takes the form

� = ≠x
+

x
≠

≠
c

48 log(≠x
+

x
≠) , (3.33)

in the new field variable. Notice that t±(x±) ”= 0 even if this is the vacuum solution
but this is because the metric is not manifestly flat in Kruskal coordinates. Trans-
forming to a manifestly flat coordinate system ‡

± renders the functions t±(‡±) = 0
as expected.

A two-sided eternal black hole solution is given by

� = M(1 ≠ vu) + �crit , (3.34)

where we have rescaled the coordinates as in (3.6). Here we find that in Kruskal
coordinates that t±(x±) = 0 but if we transform to coordinates for which the metric
is manifestly asymptotically flat,

v = e
‡+

, u = ≠e
≠‡≠

, (3.35)

we find that t±(‡±) = 1

2
. This corresponds to a flat space energy-momentum tensor

T±±(‡±) = c
24

which is exactly the energy-momentum tensor of a thermal gas of
temperature T = 1

2fi which is the temperature of the eternal black hole. The outgoing
energy flux carried by the Hawking radiation is matched by an incoming flux of
thermal radiation at the same temperature as the Hawking temperature of the black
hole.

Finally, consider the formation and subsequent evaporation of a dynamical black
hole. As in the classical case without back-reaction, we imagine a situation where
a short burst of matter energy is injected into a linear dilaton vacuum described
by (3.33). The solution describing the full evolution of such a black hole can be
found in [15]. Here we are mainly interested in the geometry outside the collapsing
matter shell, i.e. for v > 1, where it takes the form

ds
2 = ≠Me2„ dvdu , � = M

1
1 ≠ v(u + 1) ≠ ‘ log(≠Mvu)

2
, (3.36)

with „ and � related via (3.31).
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where we have temporarily restored the characteristic mass scale ⁄. The temperature
of a CGHS black hole is independent of its mass,

T = ⁄

2fi
. (3.8)

The Bekenstein-Hawking entropy, given by one quarter of the horizon area in Planck
units in the original four dimensional theory, can be expressed in terms of the dilaton
field evaluated at the horizon,

S = 2e≠2„
----
Horizon

= 2M = 2fiM

⁄
. (3.9)

A purely two-dimensional argument leading to the dilaton dependence in (3.9) is that
while the area of the horizon is unity, the gravitational coupling constant is controlled
by the dilaton as is apparent from (3.1), and this must be taken into account when
evaluating the Bekenstein-Hawking entropy S = Area/4GN .

3.1 Coupling to matter
In the original CGHS model [14], the dilaton gravity sector is coupled to matter in
the form of N minimally coupled free scalars, with N ∫ 24 so that semi-classical
corrections are dominated by one-loop e�ects due to the matter fields. Here we will
instead assume a strongly coupled matter sector described by a holographic two-
dimensional CFT with large central charge c that has an AdS3 gravitational dual.
This is an important technical assumption which allows us to simply evaluate the
von Neumann entropy of the CFT fields on a spacelike section but does not a�ect the
gravitational sector. In particular, the theory still has solutions describing dynamical
black holes formed from incoming matter energy-momentum.3

Through the holographic dictionary, the two-dimensional central charge is related
to three-dimensional gravitational quantities via the Brown-Henneaux formula,

c = 3L3

2G(3)

. (3.10)

As discussed in Section 5.2 below, we can arrange our computation of the von Neu-
mann entropy of the matter fields in such a way that we only have to deal with pure
gravity in AdS3 spacetime.

We are interested in semi-classical black holes with initial mass M large compared
to the scale set by the central charge of the matter CFT, for which there is a natural
expansion parameter given by

‘ ©
c

48M
π 1 . (3.11)

3When comparing to black holes in [14, 15] we make the identification N = c and Ÿ = c/12.
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Generalised entropy in 1+1 dimensions

4 Generalized entropy

In order to derive a Page curve for these semi-classical black holes, we adapt the
expression for the generalized entropy,

Sgen = Area(I)
4GN

+ SBulk[SAI ] , (4.1)

to the two-dimensional setting at hand. The first term on the right hand side involves
the area of the transverse two-sphere evaluated locally at an island, and gives zero
in the absence of an island. Comparing with the black hole entropy in (3.9) yields
2e

≠2„(I) as the area contribution of an island in the classical limit. The natural semi-
classical extension of this expression, which gives zero in the absence of an island, is
given by

Area(I)
4GN

= 2
1
�(I) ≠ �crit

2
. (4.2)

The second term on the right hand side in (4.1) is universal and is the main
focus of this section. It is the von Neumann entropy of the CFT matter fields on a
spacelike surface SAI that is bounded at one end by the island I and at the other end
by a point A on a timelike anchor curve. We take the anchor curve to be a constant
� curve with � = �A ∫ M so that it is located well outside the black hole. For an
eternal black hole (3.34) a curve of constant � is at a fixed spatial coordinate, ‡ = ‡A

in the manifestly asymptotically flat coordinate system (3.35). For an evaporating
black hole, the corresponding statement is no longer exact due to the log term in
(3.36). The spatial location of the anchor curve drifts in the asymptotic coordinates
(3.21) but for �A ∫ M the drift is extremely slow and can be ignored on time scales
of order the black hole lifetime. The final answer for SBulk does not depend on which
SAI is chosen as long as it is a spacelike surface that connects A and I. In the absence
of an island, the surface SAI is instead bounded by A at one end and a point on the
boundary curve � = �crit at the other.

Following [11], we compute the von Neumann entropy holographically by pass-
ing to a three-dimensional gravitational theory and evaluating the geodesic length
between the points where A and I are embedded in the dual three-dimensional space-
time,

SBulk[SAI ] ƒ
Length
4G(3)

. (4.3)

The calculation is simplified if we arrange the embedding geometry to be pure AdS3.
This can be achieved in two steps. The first step is to identify a set of light-cone
coordinates

ds
2 = ≠e2fldy

+dy
≠

. (4.4)

where the integration functions t±(y±) are zero. The second step is to perform a
Weyl rescaling of the two-dimensional metric that strips o� the conformal factor e

2fl.
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length of 3d geodesic connecting endpoints

where we have temporarily restored the characteristic mass scale ⁄. The temperature
of a CGHS black hole is independent of its mass,

T = ⁄

2fi
. (3.8)

The Bekenstein-Hawking entropy, given by one quarter of the horizon area in Planck
units in the original four dimensional theory, can be expressed in terms of the dilaton
field evaluated at the horizon,

S = 2e≠2„
----
Horizon

= 2M = 2fiM

⁄
. (3.9)

A purely two-dimensional argument leading to the dilaton dependence in (3.9) is that
while the area of the horizon is unity, the gravitational coupling constant is controlled
by the dilaton as is apparent from (3.1), and this must be taken into account when
evaluating the Bekenstein-Hawking entropy S = Area/4GN .

3.1 Coupling to matter
In the original CGHS model [14], the dilaton gravity sector is coupled to matter in
the form of N minimally coupled free scalars, with N ∫ 24 so that semi-classical
corrections are dominated by one-loop e�ects due to the matter fields. Here we will
instead assume a strongly coupled matter sector described by a holographic two-
dimensional CFT with large central charge c that has an AdS3 gravitational dual.
This is an important technical assumption which allows us to simply evaluate the
von Neumann entropy of the CFT fields on a spacelike section but does not a�ect the
gravitational sector. In particular, the theory still has solutions describing dynamical
black holes formed from incoming matter energy-momentum.3

Through the holographic dictionary, the two-dimensional central charge is related
to three-dimensional gravitational quantities via the Brown-Henneaux formula,

c = 3L3

2G(3)

. (3.10)

As discussed in Section 5.2 below, we can arrange our computation of the von Neu-
mann entropy of the matter fields in such a way that we only have to deal with pure
gravity in AdS3 spacetime.

We are interested in semi-classical black holes with initial mass M large compared
to the scale set by the central charge of the matter CFT, for which there is a natural
expansion parameter given by

‘ ©
c

48M
π 1 . (3.11)

3When comparing to black holes in [14, 15] we make the identification N = c and Ÿ = c/12.
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Brown, Henneaux (1986)

AdS3 scale determined by 2d central charge:

Anchor
Curve

Island
Curve

Figure 1. A Penrose diagram of an evaporating RST black hole formed from collapsing
matter. A timelike Anchor Curve separates the spacetime into interior and exterior regions.
As time evolves along this curve, more and more Hawking radiation has passed through it
on its way to future null infinity. The island moves with time along the Island Curve inside
the event horizon.

where �0 is an arbitrary constant that can be absorbed into the coordinate r. Since
the effective gravitational Newtons constant is determined by the dilaton itself, Geff =

G(2)e2� we see that the gravitational strength becomes large as r tends to �1. It is
often useful to view the two-dimensional theory as a dimensional reduction of a four-
dimensional model. From this point of view the function e�2� has the interpretation
of the are of the transverse 2-sphere and Geff is the original four-dimensional Newton’s
constant.

Throughout this paper will often employ so-called Kruskal gauge in which the
metric takes the form

ds2 = �e2�dx+dx� . (3.3)

The equations of motion then reduce to

@+@�e
�2� + 1 = @2

+e
�2� = @2

�e
�2� = 0 , (3.4)

with a general solution
e�2� = M � x+x� . (3.5)
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(1)  Look for light-cone coordinates such that 
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focus of this section. It is the von Neumann entropy of the CFT matter fields on a
spacelike surface SAI that is bounded at one end by the island I and at the other end
by a point A on a timelike anchor curve. We take the anchor curve to be a constant
� curve with � = �A ∫ M so that it is located well outside the black hole. For an
eternal black hole (3.34) a curve of constant � is at a fixed spatial coordinate, ‡ = ‡A

in the manifestly asymptotically flat coordinate system (3.35). For an evaporating
black hole, the corresponding statement is no longer exact due to the log term in
(3.36). The spatial location of the anchor curve drifts in the asymptotic coordinates
(3.21) but for �A ∫ M the drift is extremely slow and can be ignored on time scales
of order the black hole lifetime. The final answer for SBulk does not depend on which
SAI is chosen as long as it is a spacelike surface that connects A and I. In the absence
of an island, the surface SAI is instead bounded by A at one end and a point on the
boundary curve � = �crit at the other.

Following [11], we compute the von Neumann entropy holographically by pass-
ing to a three-dimensional gravitational theory and evaluating the geodesic length
between the points where A and I are embedded in the dual three-dimensional space-
time,

SBulk[SAI ] ƒ
Length
4G(3)

. (4.3)

The calculation is simplified if we arrange the embedding geometry to be pure AdS3.
This can be achieved in two steps. The first step is to identify a set of light-cone
coordinates

ds
2 = ≠e2fldy

+dy
≠

. (4.4)

where the integration functions t±(y±) are zero. The second step is to perform a
Weyl rescaling of the two-dimensional metric that strips o� the conformal factor e

2fl.
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t±(y
±) = 0

(2)  Do a Weyl rescaling to ds̃2 = �dy+ dy� so that h eT±±i = 0

Then the matter CFT is in vacuum state and 3d dual geometry is pure AdS3

Then both t±(y±) and the gravitational contribution the energy-momentum tensor
in (3.24) vanish. In this case, the matter CFT is in a vacuum state and the dual
three-dimensional geometry is empty AdS3 spacetime. In Poincare coordinates the
metric is

ds
2

3
= L

2

3

z2

1
dz

2
≠ dy

+dy
≠

2
, (4.5)

and the geodesics are semi-circles centered on the holographic boundary. The Weyl
transformation in step two above can be implemented as a coordinate transformation
in three dimensions which maps the regulated holographic boundary to a surface,

z = ” e≠fl(y+,y≠
)

, (4.6)

that depends on dynamical input from the two-dimensional matter theory. Here ” is
a UV cuto� parameter.

A standard calculation involving AdS3 geodesics then leads to the following result
for the holographic entropy,

SBulk[SAI ] = c

6 log
Ë
d(A, I)2efl(A)efl(I)

È ----
t±=0

, (4.7)

where d(A, I) is the two-dimensional distance measured between the points A and I

in the flat metric ds
2

flat
= ≠dy

+dy
≠ and the subscript is a reminder that the formula

should be evaluated in coordinates for which t±(y±) = 0. We have dropped the UV
cuto� from the formula as it just contributes an additive constant.

5 Page curves

We now have everything in place to calculate generalized entropy in the RST model
using the QRT prescription. Our primary goal is to obtain the Page curve of an evap-
orating black hole that has a finite lifetime but first we carry out the corresponding
calculation for a semi-classical eternal black hole. This provides a first test involv-
ing a black hole in asymptotically flat spacetime which turns out to be considerably
simpler than the evaporating case.

5.1 Eternal black hole
A semi-classical eternal black hole in asymptotically flat spacetime is supported by a
thermal gas of incoming radiation that maintains the mass of the black hole against
the energy loss to Hawking radiation. The two-dimensional black holes studied in
this paper all have temperature T = 1

2fi and the thermal gas must be at the same
temperature. As was noted below (3.34), the energy flux outside an eternal semi-
classical RST black hole is

T±±(‡±) = c

24 , (5.1)
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z = ” e≠fl(y+,y≠
)

, (4.6)

that depends on dynamical input from the two-dimensional matter theory. Here ” is
a UV cuto� parameter.

A standard calculation involving AdS3 geodesics then leads to the following result
for the holographic entropy,
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6 log
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d(A, I)2efl(A)efl(I)

È ----
t±=0

, (4.7)

where d(A, I) is the two-dimensional distance measured between the points A and I

in the flat metric ds
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= ≠dy

+dy
≠ and the subscript is a reminder that the formula

should be evaluated in coordinates for which t±(y±) = 0. We have dropped the UV
cuto� from the formula as it just contributes an additive constant.

5 Page curves

We now have everything in place to calculate generalized entropy in the RST model
using the QRT prescription. Our primary goal is to obtain the Page curve of an evap-
orating black hole that has a finite lifetime but first we carry out the corresponding
calculation for a semi-classical eternal black hole. This provides a first test involv-
ing a black hole in asymptotically flat spacetime which turns out to be considerably
simpler than the evaporating case.

5.1 Eternal black hole
A semi-classical eternal black hole in asymptotically flat spacetime is supported by a
thermal gas of incoming radiation that maintains the mass of the black hole against
the energy loss to Hawking radiation. The two-dimensional black holes studied in
this paper all have temperature T = 1

2fi and the thermal gas must be at the same
temperature. As was noted below (3.34), the energy flux outside an eternal semi-
classical RST black hole is

T±±(‡±) = c

24 , (5.1)
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Page curve for evaporating black hole

Consider a dynamical solution of RST model with incoming matter shock wave into vacuum 

�! in manifestly flat coordinates in initial linear dilaton vacuumt�(!
�) = 0

but energy of incoming shock gives t+(!
+) 6= 0

Take infalling matter to be in a coherent state built on the vacuum(!+,!�)

Fiola, Preskill, Strominger, Trivedi (1994)
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Island configuration

Figure 5. Penrose diagram of a dynamical RST black hole with two spacelike hyper-
surfaces indicated, one before the Page time and the other after, corresponding to the
no-island and island configurations, respectively.

where we have used (3.36) for the area term 2(�(I) ≠ �crit) and the coordinate
distance d(A, I) =

Ô
≠�Ê+�Ê≠ has been expressed in (v, u) coordinates. We are

assuming that the island is located outside the infalling shell of matter and that both
the anchor point and the island lie in a region where a classical approximation can
be used for the conformal factor of the dynamical black hole metric. The anchor
point is by assumption far outside the black hole where the classical approximation
is always valid. It turns out to also be valid for the island for much of the lifetime
of an evaporating black hole provided it starts out with a large enough mass but it
will fail towards the end of the lifetime when the black hole has evaporated down to
a small size.

Extremizing (5.12) over (vI , uI) yields the following two conditions,

0 = ≠2M(1 + uI) + c

12vI

1 + uI

(1 ≠ vI(1 + uI)) + c

24vI
≠

c

6vI log
1

vA
vI

2 , (5.13)

0 = ≠2MvI + c

12uI

vI

(1 ≠ vI(1 + uI)) + c

24uI
≠

c

6uI log
1

uA
uI

2 . (5.14)

In order to solve for the location of the island we make the simplifying assumption
log(vA

vI
) ∫ 1, which allows us to drop the last term on the right in the top equation,

and later on we verify the self-consistency of this assumption. The resulting equations
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where ts = log ( 1

4‘) is the scrambling time. This is in line with a similar result in [12].
However, because our black hole is in asymptotically flat spacetime and not AdS2

the time di�erence tA ≠ t
obs

A explicitly depends on the location of the anchor curve.

5.2 Dynamical black hole
We now turn our attention to dynamical black holes and compute a Page curve for
a black hole that is formed by gravitational collapse of matter and then gradually
evaporates due to Hawking emission. The steps in the calculation are the same as
before, i.e. to find extrema of the generalized entropy with and without an island
and determine which one gives the minimum value. The area term in the generalized
entropy can be read o� directly from the semi-classical black hole solution but the
remaining bulk term requires more work.

In the holographic evaluation of the bulk entropy term in (4.7) we are instructed
to identify light-cone coordinates where the t± contribution to the two-dimensional
matter energy momentum tensor is zero. The correct choice is the (Ê+

, Ê
≠) system

in (3.20) where the metric is manifestly flat in the initial linear dilaton region before
the matter shell collapses to form the black hole. These coordinates are suitable for
the evaluation of (4.7) when calculating the generalized entropy on a trial surface in
the linear dilaton vacuum where the CFT is manifestly in its vacuum state and the
three-dimensional holographic dual is pure AdS3. Of course, a dynamical black hole
is not the linear dilaton vacuum and t+(Ê+) is non-vanishing due to the incoming
energy flux that forms the black hole. There is, however, a simple way around this
problem. Following [32], we take the incoming matter to be described by a coherent
state built on the vacuum state of inertial observers at past null infinity. As shown
in [32], the von Neumann entropy of such a state is identical to the von Neumann
entropy of the vacuum state. As a result, we can use the AdS3/CFT2 Ryu-Takayanagi
prescription (4.7) to calculate the bulk term in the generalized entropy, provided we
use the coordinate system that corresponds to the CFT in its vacuum state. This
means in particular, that we are instructed to calculate the two-dimensional distance
d(A, I) in (Ê+

, Ê
≠) coordinates.

The generalized entropy is to be computed for the two competing configurations,
with and without an island, indicated in the Penrose diagram in Figure 5. The final
result is the one that gives a smaller value for the entropy.

5.2.1 Island configuration
Let us start by determining the generalized entropy for an island configuration,

S
island

gen
= 2M

1
1 ≠ vI(1 + uI) ≠ ‘ log (≠MvIuI)

2
(5.12)

+ c

12 log
C3

log vA

vI
log uA

uI

4
2 vAuA

(1 ≠ vA(1 + uA))
vIuI

(1 ≠ vI(1 + uI))

D

,
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bulk term

area term

Extremise over location of inside point:

Figure 5. Penrose diagram of a dynamical RST black hole with two spacelike hyper-
surfaces indicated, one before the Page time and the other after, corresponding to the
no-island and island configurations, respectively.
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distance d(A, I) =

Ô
≠�Ê+�Ê≠ has been expressed in (v, u) coordinates. We are

assuming that the island is located outside the infalling shell of matter and that both
the anchor point and the island lie in a region where a classical approximation can
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point is by assumption far outside the black hole where the classical approximation
is always valid. It turns out to also be valid for the island for much of the lifetime
of an evaporating black hole provided it starts out with a large enough mass but it
will fail towards the end of the lifetime when the black hole has evaporated down to
a small size.
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In order to solve for the location of the island we make the simplifying assumption
log(vA

vI
) ∫ 1, which allows us to drop the last term on the right in the top equation,

and later on we verify the self-consistency of this assumption. The resulting equations
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Solution for M � c � 1

can be rearranged as

(vI(1 + uI))2
≠ (1 ≠ ‘) vI(1 + uI) + ‘ = 0 and log

1uA

uI

2
= 4(1 + uI) . (5.15)

One of the two solutions of the quadratic equation for vI(1 + uI) corresponds to an
island in the near horizon region,

uI = ≠1 + ‘

vI
+ O(‘2) . (5.16)

The other solution has the island near the black hole singularity and is unphysical.
Inserting the island solution into the remaining equation in (5.15) we find

uA = ≠1 ≠
3‘

vI
+ O(‘2) . (5.17)

In terms of the asymptotic coordinates (3.21) we have

uA = ≠1 ≠ e
‡A≠tA , vA = e

‡A+tA . (5.18)

The above relations imply that

log
1vA

vI

2
¥ 2‡A + log

11
‘

2
∫ 1 , (5.19)

so the simplifying assumption that we used to obtain the island solution is indeed
justified. We also assumed in the calculation that the island is located at vI > 1 and
this turns out to be valid when tA ≠ ‡A & log(1/‘). The expression for the outgoing
energy flux (3.28) reveals that the first Hawking radiation passes through the anchor
curve at tA ≠ ‡A ¥ 0 and the island solution is already valid within a time of order
the scrambling time after that.

We can again probe the location of the island by considering an observer sitting
on the anchor curve who sends an ingoing light signal. The relation between vI and
vA in (5.19) implies that in order to be received at an island at (vI , uI), the signal
must be emitted from the anchor curve at a time t

obs

A , such that tA ≠ t
obs

A = 2‡A + ts

with ts the black hole scrambling time. Earlier, we found the same result for an
island just outside the event horizon of an eternal black hole. Here the island is
inside the black hole but still located very close to the event horizon.

Finally, inserting the leading order saddle point values for vI and uI into (5.12)
gives

S
island

gen
= 2M ≠

c

24(tA ≠ ‡A) + . . . , (5.20)

as a function of the retarded time at the anchor curve. Although the time-dependent
contribution is initially of order ‘, compared to the leading order area term, it is
important to keep in mind that this contribution grows with time, and eventually
becomes comparable to the leading order result. This expression for the generalized
entropy, which is valid when a time of order the scrambling time has passed after the
first Hawking radiation emerges into the outside region beyond the anchor curve, is
to be compared to the contribution from a no-island configuration that we now turn
our attention to.
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retarded time on anchor curve

No-island configuration

5.2.2 No-island configuration
In the absence of an island, the spacelike surface SAI extends from the anchor curve
to the semi-classical boundary at � = �crit. The gravitational coupling becomes
strong at the semi-classical boundary and it is not a priori clear how to proceed.
The validity of the semi-classical black hole solution indeed breaks down near the
boundary but from a higher dimensional perspective this has a simple interpretation
in terms of the area of the transverse two-sphere going to zero. We are primarily
interested in the dependence of the bulk entropy (4.7) on asymptotic time and this
will not be greatly a�ected by the detailed conditions imposed at the origin. This
can be seen by adopting a simple prescription for the strong coupling region and then
checking that a change in the prescription does not change the leading order result
at late times on the anchor curve.

In the following we let the spacelike surface SAI end at a fixed reference point
(v0, u0) on the boundary curve for all anchor points. In other words, we will simply
ignore any adjustment of the endpoint at the semi-classical boundary in response to
changing the anchor point. We take the reference point to be in the v < 1 linear
dilaton region inside the matter shock wave, i.e. with u0 = ≠‘/v0 for some v0 < 1.
The generalized entropy is given by

S
no-island

gen
= c

12 log
C3

log vA

v0

log uA

u0

4
2 vAuA

(1 ≠ vA(1 + uA))

D

= c

12(tA ≠ ‡A) + . . . , (5.21)

up to logarithmic correction terms. In particular, all dependence on v0 is contained
in the sub-leading terms that we have dropped. This expression is valid for retarded
time of order the scrambling time and onwards.

Comparing the island and no-island results in (5.20) and (5.21), respectively,
shows that for retarded time tA ≠ ‡A >

1

3‘ the generalized entropy will be dominated
by the island configuration. The Page time for a dynamical RST black hole is one
third of the black hole lifetime,

tPage = 1
3‘

= 16M

c
. (5.22)

The corresponding Page curve is drawn in Figure 1.

6 Discussion

By assuming a QRT formula we have explicitly obtained Page curves for semi-classical
black holes in asymptotically flat spacetime in a two-dimensional dilaton gravity
model. This includes both an eternal black hole, supported by an incoming energy
flux matching the outgoing Hawking flux, and a black hole formed by gravitational
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Page curve for evaporating black hole
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Figure 5. The Page curve for the dynamical RST black hole.

This implies that vA ⇠
p
 AetA � 1. The backreacted Page curve which results from

these computations is displayed in Fig. 5.
Note that the Page time comes out to be 1/3 of the total life time of the black

hole. This is because the entropy of the radiation grows at twice the the evaporation
rate of the black hole and can be explained as follows [32]. The relation between
internal energy and entropy of the gas emitted by a black body in two dimensions
satisfies

S =
2U

T
. (6.25)

We can now compute the ratio of the entropy of the gas that the black hole emits
compared to the entropy lost by the black hole. The black hole satisfies the first
law �SBH = ��M/T where �M is the mass lost by the black hole in a given time
interval. The entropy increase of the gas radiated is �Sgas = 2�U/T where �U is
the energy of the emitted gas. This must equal �M and we get �Sgas = �2�SBH.

7 Conclusion and outlook

By assuming the QRT formula we have explicitly obtained the Page curve for an
evaporating black hole in asymptotically flat spacetime in two dimensions. For the
eternal black hole we confirm the appearance of an island outside the horizon, whereas
in the evaporating scenario the island is always inside the horizon and at the end
of evaporation seems to melt together with both singularity and horizon. The page
time is found to happen at one third of the lifetime of the black hole, which agrees
with the expectation that how to phrase the usual expectation of 1

2 of Lifetime?.

– 21 –



Location of island

Anchor
Curve

Island
Curve

Figure 1. A Penrose diagram of an evaporating RST black hole formed from collapsing
matter. A timelike Anchor Curve separates the spacetime into interior and exterior regions.
As time evolves along this curve, more and more Hawking radiation has passed through it
on its way to future null infinity. The island moves with time along the Island Curve inside
the event horizon.

where �0 is an arbitrary constant that can be absorbed into the coordinate r. Since
the effective gravitational Newtons constant is determined by the dilaton itself, Geff =

G(2)e2� we see that the gravitational strength becomes large as r tends to �1. It is
often useful to view the two-dimensional theory as a dimensional reduction of a four-
dimensional model. From this point of view the function e�2� has the interpretation
of the are of the transverse 2-sphere and Geff is the original four-dimensional Newton’s
constant.

Throughout this paper will often employ so-called Kruskal gauge in which the
metric takes the form

ds2 = �e2�dx+dx� . (3.3)

The equations of motion then reduce to

@+@�e
�2� + 1 = @2

+e
�2� = @2

�e
�2� = 0 , (3.4)

with a general solution
e�2� = M � x+x� . (3.5)
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t obsA

tA i.e. the island QES is inside black hole (very close to event horizon)

vI(tA) > 1 , uI(tA) = �1 +
✏

vI(tA)
+O(✏2)

Extremisation problem for time tA on anchor curve is solved by

Valid island solution exists for all tA � �A ' ts

i.e. within a scrambling time after the first Hawking particle being emitted

Light signal emitted from anchor curve at time is received at QESt obsA

where ts ⌘ log

✓
1

4✏

◆
if scrambling timetA � t obsA = 2�a + ts



Entanglement wedges

Initial data on A is sufficient to determine bulk fields inside the causal diamond of A.

A’ has the same causal diamond as A and the same entanglement entropy.

Black hole entanglement wedge at time tA is 

the causal diamond of a spatial region between 

point tA on anchor curve and its QES.

A

A0

⌃

Anchor
Curve

Island
Curve

Figure 1. A Penrose diagram of an evaporating RST black hole formed from collapsing
matter. A timelike Anchor Curve separates the spacetime into interior and exterior regions.
As time evolves along this curve, more and more Hawking radiation has passed through it
on its way to future null infinity. The island moves with time along the Island Curve inside
the event horizon.
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the effective gravitational Newtons constant is determined by the dilaton itself, Geff =

G(2)e2� we see that the gravitational strength becomes large as r tends to �1. It is
often useful to view the two-dimensional theory as a dimensional reduction of a four-
dimensional model. From this point of view the function e�2� has the interpretation
of the are of the transverse 2-sphere and Geff is the original four-dimensional Newton’s
constant.

Throughout this paper will often employ so-called Kruskal gauge in which the
metric takes the form

ds2 = �e2�dx+dx� . (3.3)

The equations of motion then reduce to
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+e
�2� = @2

�e
�2� = 0 , (3.4)

with a general solution
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Radiation entanglement wedge at time tA

is formed from the causal diamonds of the 

complement of the spatial region.



Bulk fields in black hole interior

Old black hole: (tA  >  tPage) 

Bulk fields on island no longer contribute to generalised entropy of black hole

DOF’s on black hole horizon can describe only small part of black hole interior

—  regulate transplanckian modes using infalling lattice   Corley, Jacobson (1997)              

historically been called the “entanglement wedge” [65, 72, 73]. Following our presentation

perhaps a better name would be “the fine-grained entropy region,” but we will not attempt

to change the name.

As a first example, let us look again at a black hole formed from collapse but before the

Page time. The minimal surface is now a vanishing surface at the origin and the entanglement

wedge of the black hole is the region depicted in green in figure 18a.

Figure 18: In green we show the entanglement wedges of the black hole and in blue the
entanglement wedges of the radiation region. Di↵erent figures show the wedges at di↵erent
times. They are di↵erent because there is transfer of quantum information through the cuto↵
surface. To describe the white regions we need information both from the black hole region
and the radiation region.

As a second example, we can look at the entanglement wedges of both the black hole and

the radiation at late times, larger than the Page time. These are shown in figure 18(b). The

idea is that the black hole degrees of freedom describe the region of the spacetime in the

black hole entanglement wedge while the radiation describes the degrees of freedom in the

radiation entanglement wedge. It is important that the degrees of freedom that describe the

black hole only describe a portion of the interior, the green region in figure 18(b). The rest

of the interior is encoded in the radiation.

Note how this conclusion, namely that the interior belongs to the entanglement wedge

of the radiation, follows from the same guiding principle of using the fine-grained entropy.

Since the fine-grained entropy of the radiation after the Page time contains the interior as

part of the island, its entropy is sensitive to the quantum state of that region; a spin in a

mixed state in the island contributes to the fine-grained entropy of the radiation.

32

figure from Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini (2020)

—  only need to reconstruct bulk fields in the black hole entanglement wedge.

Do we have enough DOF’s to encode observations made by an infalling observer? 

—  infalling observers only encounter modes that originate from a scrambling time 
or less before they enter    Lowe, LT (2015)

Lowe, LT (2016, 2017)



Page curve for eternal RST black hole
Two-sided eternal black hole solution:

the boundary at the origin of radial coordinates in the higher-dimensional theory
from which the CGHS model is descended.

One benefit of including the RST term (3.30) is that semi-classical solutions of
the full theory Igrav + IQ + IRST can be expressed in Kruskal coordinates (3.3), where
the field equations reduce to

ˆ+ˆ≠� + 1 = 0 , ≠ˆ
2

±� = c

24t± , (3.32)

with t± the same boundary functions as before. The linear dilaton vacuum remains
an exact solution of the semi-classical equations and takes the form

� = ≠x
+

x
≠

≠
c

48 log(≠x
+

x
≠) , (3.33)

in the new field variable. Notice that t±(x±) ”= 0 even if this is the vacuum solution
but this is because the metric is not manifestly flat in Kruskal coordinates. Trans-
forming to a manifestly flat coordinate system ‡

± renders the functions t±(‡±) = 0
as expected.

A two-sided eternal black hole solution is given by

� = M(1 ≠ vu) + �crit , (3.34)

where we have rescaled the coordinates as in (3.6). Here we find that in Kruskal
coordinates that t±(x±) = 0 but if we transform to coordinates for which the metric
is manifestly asymptotically flat,

v = e
‡+

, u = ≠e
≠‡≠

, (3.35)

we find that t±(‡±) = 1

2
. This corresponds to a flat space energy-momentum tensor

T±±(‡±) = c
24

which is exactly the energy-momentum tensor of a thermal gas of
temperature T = 1

2fi which is the temperature of the eternal black hole. The outgoing
energy flux carried by the Hawking radiation is matched by an incoming flux of
thermal radiation at the same temperature as the Hawking temperature of the black
hole.

Finally, consider the formation and subsequent evaporation of a dynamical black
hole. As in the classical case without back-reaction, we imagine a situation where
a short burst of matter energy is injected into a linear dilaton vacuum described
by (3.33). The solution describing the full evolution of such a black hole can be
found in [15]. Here we are mainly interested in the geometry outside the collapsing
matter shell, i.e. for v > 1, where it takes the form

ds
2 = ≠Me2„ dvdu , � = M

1
1 ≠ v(u + 1) ≠ ‘ log(≠Mvu)

2
, (3.36)

with „ and � related via (3.31).
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Equilibrium with thermal bath at T = TH

in Kruskal coordinates in eternal black hole backgroundt±(x
±) = 0

Figure 3. A Penrose diagram of an eternal black hole. A pair of timelike anchor curves
(blue curves) separates the spacetime into an interior and two exteriors. The two spatial
hypersurfaces intersect the anchor curves at di�erent times. On the late time surface the
generalized entropy is dominated by the area term associated to the islands denoted by
purple dots.

when evaluated in manifestly asymptotically flat coordinates and this is precisely
the energy-momentum tensor of a thermal CFT at a temperature of T = 1

2fi . It
was also noted that t+(v) = t≠(u) = 0 for an eternal black hole and therefore
(v, u) is the appropriate set of coordinates to use when evaluating SBulk in (4.7).
The relevant matter CFT vacuum state is the Hartle-Hawking state where positive
frequency modes are determined with respect to time in Kruskal coordinates rather
than asymptotic Minkowski time.

The eternal black hole is two sided and we place a timelike anchor curve in each
asymptotic region. For simplicity, we assume that our anchor points lie symmetrically
on the anchor curves, as shown in Figure 3. Then each anchor point has a mirror
anchor point (denoted by superscript m) in the other exterior region, which is related
to the original point by (v, u)m = (u, v). We also take the black hole mass to be large
compared to the scale set by the matter central charge, so that ‘ = c

48M π 1, and
the anchor curves to be located in the linear dilaton region, so that �A ∫ M . With
these assumptions in place the semi-classical field variables are well approximated
by their classical counterparts in all regions of interest and our calculations simplify.

Inspired by [4, 11], we now perform two calculations: One with no islands, and
one with a single island on each side. Consider first the no-island scenario. In this
case, the area term of the generalized entropy is by definition zero, as I is empty.
The von Neumann entropy of the bulk fields is non-vanishing and given by the length
of the geodesic in AdS3 that connects the two mirrored anchor points. This means
that we can directly apply (4.7) but with I replaced by A

m, as indicated in Figure 3,

Sbulk = c

12 log
Ë
(vA ≠ vAm)2(uA ≠ uAm)2

e
2fl(vA,uA)

e
2fl(vAm ,uAm )

È
, (5.2)
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Symmetric anchor points:  (vm, um) = (u, v)

Island configuration:
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Corrections to this result are either exponentially suppressed (by factors of e−2tA or e−2σA)
or subleading in powers of ϵ, or both. Our computation includes, by construction, the
entropy of the radiation emitted on both sides of the black hole and we note that the
entropy growth rate in (5.4) is precisely twice the rate that was obtained in [32] for the
entanglement entropy of radiation emitted to one side.

We now repeat the calculation with symmetrically placed islands at I = (vI , uI) and
Im = (uI , vI), as indicated in figure 3. In this case, the area term in the generalized
entropy (4.1) is non-vanishing and bulk term involves geodesics in AdS3 that connect the
anchor point and corresponding island on each side of the black hole. The contributions
from the two sides of the black hole are identical and add up to

Sisland
gen = 4M(1− vIuI) +

c

6
log

(vA − vI)2(uA − uI)2

(1− vAuA)(1− vIuI)
, (5.6)

where we have used (3.33) for the semi-classical area function Ω(I)−Ωcrit. Both the anchor
point and the island are assumed to lie in a region where the classical approximation (5.3)
can be used for the conformal factor. This is automatically satisfied for an anchor point
outside a large mass black hole and we will check ex post facto that it also holds for the
island. Extremizing over (vI , uI) and working to leading order in ϵ ≪ 1, we obtain

uI
vI

=
uA
vA

, vI ≈ − 4ϵ

uA
. (5.7)

This is a saddle point and not a minimum. However, the QRT prescription instructs us
find all extrema and select the one that gives the lowest value for the generalized entropy.
Inserting the leading order saddle point values for vI and uI into (5.6) gives

Sisland
gen = 4M +

c

3
σA + . . . . (5.8)

Comparing to the no-island result in (5.4) shows that for tA > σA + 1
4ϵ the generalized

entropy is dominated by the island configuration. The σA term accounts for the time it
takes for the Hawking radiation to travel from the black hole to the anchor curve. Correcting
for this, we obtain

tPage =
1

4ϵ
=

12M

c
, (5.9)

for the Page time of an eternal RST black hole. The Page curve is drawn in figure 4.
For a two-sided black hole in AdS2 gravity, the island and its mirror were found to be

outside the event horizon [12]. This remains true here as well. The island saddle point (5.7)
is outside the event horizon but inside the stretched horizon, with the proper distance
between island and event horizon given by a tiny number,

dI ≈ 4ϵ

√
M

ΩA
. (5.10)

The fact that the island is close to the event horizon justifies using the classical approxima-
tion for the conformal factor in (5.6), as promised. For another perspective on the location
of the island, consider an observer sitting on the anchor curve who sends an ingoing light
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Corrections to this result are either exponentially suppressed (by factors of e−2tA or e−2σA)
or subleading in powers of ϵ, or both. Our computation includes, by construction, the
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entropy growth rate in (5.4) is precisely twice the rate that was obtained in [32] for the
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where we have used (3.33) for the semi-classical area function Ω(I)−Ωcrit. Both the anchor
point and the island are assumed to lie in a region where the classical approximation (5.3)
can be used for the conformal factor. This is automatically satisfied for an anchor point
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takes for the Hawking radiation to travel from the black hole to the anchor curve. Correcting
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of the island, consider an observer sitting on the anchor curve who sends an ingoing light

– 14 –

No-island configuration:

J
H
E
P
0
5
(
2
0
2
0
)
0
9
1

Figure 3. A Penrose diagram of an eternal black hole. A pair of timelike anchor curves (blue
curves) separates the spacetime into an interior and two exteriors. The two spatial hypersurfaces
intersect the anchor curves at different times. On the late time surface the generalized entropy is
dominated by the area term associated to the islands denoted by purple dots.

(denoted by superscript m) in the other exterior region, which is related to the original
point by (v, u)m = (u, v). We also take the black hole mass to be large compared to the
scale set by the matter central charge, so that ϵ = c

48M ≪ 1, and the anchor curves to be
located in the linear dilaton region, so that ΩA ≫ M . With these assumptions in place
the semi-classical field variables are well approximated by their classical counterparts in all
regions of interest and our calculations simplify.

Inspired by [4, 11], we now perform two calculations: one with no islands, and one
with a single island on each side. Consider first the no-island scenario. In this case, the
area term of the generalized entropy is by definition zero, as I is empty. The von Neumann
entropy of the bulk fields is non-vanishing and given by the length of the geodesic in AdS3
that connects the two mirrored anchor points. This means that we can directly apply (4.7)
but with I replaced by Am, as indicated in figure 3,

Sbulk =
c

12
log

[
(vA − vAm)2(uA − uAm)2 e2ρ(vA,uA)e2ρ(vAm ,uAm )

]
, (5.2)

where (vA, uA) denotes an anchor point on the curve on the right in the figure. The anchor
curves are assumed to be located well outside the black hole where the conformal factor is
well approximated by its classical value,

e2ρ(v,u) ≈ 1

1− vu
. (5.3)

The bulk entropy then takes a simple form,

Sbulk =
c

12
log

(vA − uA)4

(1− vAuA)2
≈ c

3
tA , (5.4)

where tA is asymptotic time, measured by an observer on the anchor curve, and the asymp-
totically flat coordinates (t,σ) are related to the (v, u) coordinates via,

v = et+σ , u = −e−t+σ . (5.5)
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48M ≪ 1, and the anchor curves to be
located in the linear dilaton region, so that ΩA ≫ M . With these assumptions in place
the semi-classical field variables are well approximated by their classical counterparts in all
regions of interest and our calculations simplify.
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entropy of the bulk fields is non-vanishing and given by the length of the geodesic in AdS3
that connects the two mirrored anchor points. This means that we can directly apply (4.7)
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Corrections to this result are either exponentially suppressed (by factors of e−2tA or e−2σA)
or subleading in powers of ϵ, or both. Our computation includes, by construction, the
entropy of the radiation emitted on both sides of the black hole and we note that the
entropy growth rate in (5.4) is precisely twice the rate that was obtained in [32] for the
entanglement entropy of radiation emitted to one side.

We now repeat the calculation with symmetrically placed islands at I = (vI , uI) and
Im = (uI , vI), as indicated in figure 3. In this case, the area term in the generalized
entropy (4.1) is non-vanishing and bulk term involves geodesics in AdS3 that connect the
anchor point and corresponding island on each side of the black hole. The contributions
from the two sides of the black hole are identical and add up to

Sisland
gen = 4M(1− vIuI) +

c

6
log

(vA − vI)2(uA − uI)2

(1− vAuA)(1− vIuI)
, (5.6)

where we have used (3.33) for the semi-classical area function Ω(I)−Ωcrit. Both the anchor
point and the island are assumed to lie in a region where the classical approximation (5.3)
can be used for the conformal factor. This is automatically satisfied for an anchor point
outside a large mass black hole and we will check ex post facto that it also holds for the
island. Extremizing over (vI , uI) and working to leading order in ϵ ≪ 1, we obtain

uI
vI

=
uA
vA

, vI ≈ − 4ϵ

uA
. (5.7)

This is a saddle point and not a minimum. However, the QRT prescription instructs us
find all extrema and select the one that gives the lowest value for the generalized entropy.
Inserting the leading order saddle point values for vI and uI into (5.6) gives

Sisland
gen = 4M +

c

3
σA + . . . . (5.8)

Comparing to the no-island result in (5.4) shows that for tA > σA + 1
4ϵ the generalized

entropy is dominated by the island configuration. The σA term accounts for the time it
takes for the Hawking radiation to travel from the black hole to the anchor curve. Correcting
for this, we obtain

tPage =
1

4ϵ
=

12M

c
, (5.9)

for the Page time of an eternal RST black hole. The Page curve is drawn in figure 4.
For a two-sided black hole in AdS2 gravity, the island and its mirror were found to be

outside the event horizon [12]. This remains true here as well. The island saddle point (5.7)
is outside the event horizon but inside the stretched horizon, with the proper distance
between island and event horizon given by a tiny number,

dI ≈ 4ϵ

√
M

ΩA
. (5.10)

The fact that the island is close to the event horizon justifies using the classical approxima-
tion for the conformal factor in (5.6), as promised. For another perspective on the location
of the island, consider an observer sitting on the anchor curve who sends an ingoing light
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where (vA, uA) denotes an anchor point on the curve on the right in the figure.
The anchor curves are assumed to be located well outside the black hole where the
conformal factor is well approximated by its classical value,

e
2fl(v,u)
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The bulk entropy then takes a simple form,

Sbulk = c

12 log (vA ≠ uA)4

(1 ≠ vAuA)2
¥

c

3tA , (5.4)

where tA is asymptotic time, measured by an observer on the anchor curve, and the
asymptotically flat coordinates (t, ‡) are related to the (v, u) coordinates via,

v = e
t+‡

, u = ≠e
≠t+‡

. (5.5)

Corrections to this result are either exponentially suppressed (by factors of e
≠2tA

or e
≠2‡A) or subleading in powers of ‘, or both. Our computation includes, by

construction, the entropy of the radiation emitted on both sides of the black hole
and we note that the entropy growth rate in (5.4) is precisely twice the rate that was
obtained in [32] for the entanglement entropy of radiation emitted to one side.
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Figure 4. Page curve for the eternal RST black hole with tPage = 6SBH/c. The graph
plots Sgen ≠

c
3
‡A as a function of retarded time on the anchor curve.

We now repeat the calculation with symmetrically placed islands at I = (vI , uI)
and I

m = (uI , vI), as indicated in Figure 3. In this case, the area term in the
generalized entropy (4.1) is non-vanishing and bulk term involves geodesics in AdS3
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Figure 4. Page curve for the eternal RST black hole with tPage = 6SBH/c. The graph plots
Sgen − c

3σA as a function of retarded time on the anchor curve.

signal to the island. A straightforward calculation shows that in order to be received at
an island at (vI , uI), that corresponds to an anchor point at time tA, the signal must be
emitted from the anchor curve at an earlier time tobsA , such that

tA − tobsA = 2σA + ts , (5.11)

where ts = log ( 1
4ϵ) is the scrambling time. This is in line with a similar result in [12].

However, because our black hole is in asymptotically flat spacetime and not AdS2 the time
difference tA − tobsA explicitly depends on the location of the anchor curve.

5.2 Dynamical black hole

We now turn our attention to dynamical black holes and compute a Page curve for a black
hole that is formed by gravitational collapse of matter and then gradually evaporates due to
Hawking emission. The steps in the calculation are the same as before, i.e. to find extrema
of the generalized entropy with and without an island and determine which one gives the
minimum value. The area term in the generalized entropy can be read off directly from the
semi-classical black hole solution but the remaining bulk term requires more work.

In the holographic evaluation of the bulk entropy term in (4.7) we are instructed to
identify light-cone coordinates where the t± contribution to the two-dimensional matter
energy momentum tensor is zero. The correct choice is the (ω+,ω−) system in (3.19)
where the metric is manifestly flat in the initial linear dilaton region before the matter shell
collapses to form the black hole. These coordinates are suitable for the evaluation of (4.7)
when calculating the generalized entropy on a trial surface in the linear dilaton vacuum
where the CFT is manifestly in its vacuum state and the three-dimensional holographic
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• Semiclassical gravity is suprisingly effective!

• By assuming a QRT formula we explicitly obtained Page curves for semi-
classical black holes in asymptotically flat spacetime in a 2d toy model

• This includes both an eternal black hole, supported by an incoming energy flux 
matching the outgoing Hawking flux, and a black hole formed by gravitational 
collapse that gradually evaporates

• For the evaporating black hole the Page time is 1/3 of the black hole lifetime

• Result relies on 2d conformal methods and AdS3/CFT2 and is valid for black hole 
mass large compared to scale set by the matter central charge.

• Black hole entanglement wedge encompasses only part of black hole interior 
after Page time — but large enough to encode observations by infalling observer

• Derivation of generalised entropy formula using replica wormholes 
 G.Penington, S.Shenker, D.Stanford, Z.Yang (2020)

    A.Almheiri, T.Hartman, J. Maldacena, E. Shaghoulian, A. Tajdini (2020)
                                          T.Hartman, E. Shaghoulian, A.Strominger (2020)

• Extension to higher dimensions and to cosmological backgrounds ….

• The same toy model provides insight into holographic complexity of black holes
  L.Schneiderbauer, W.Sybesma, LT (2020)

Summary / extensions


