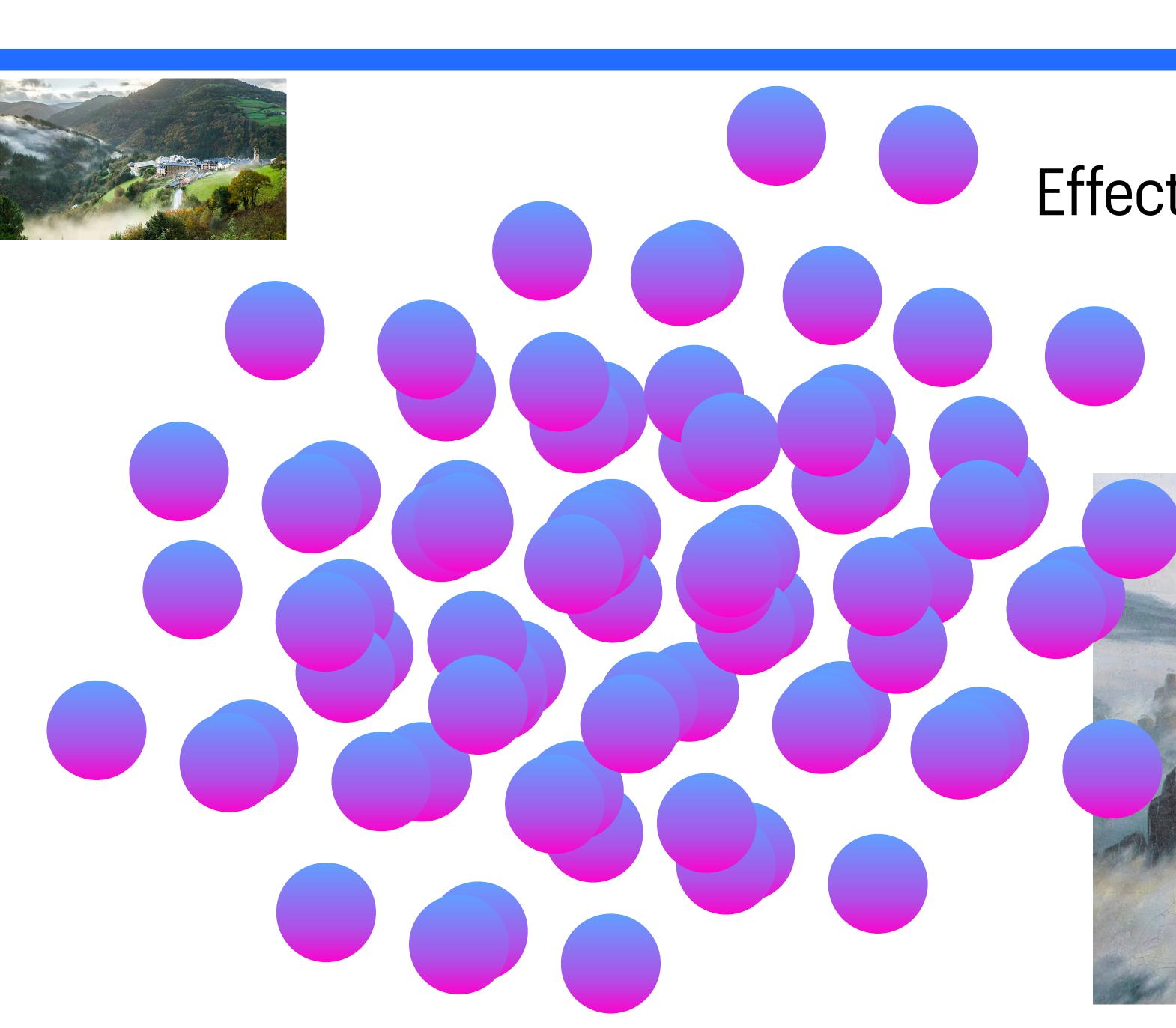
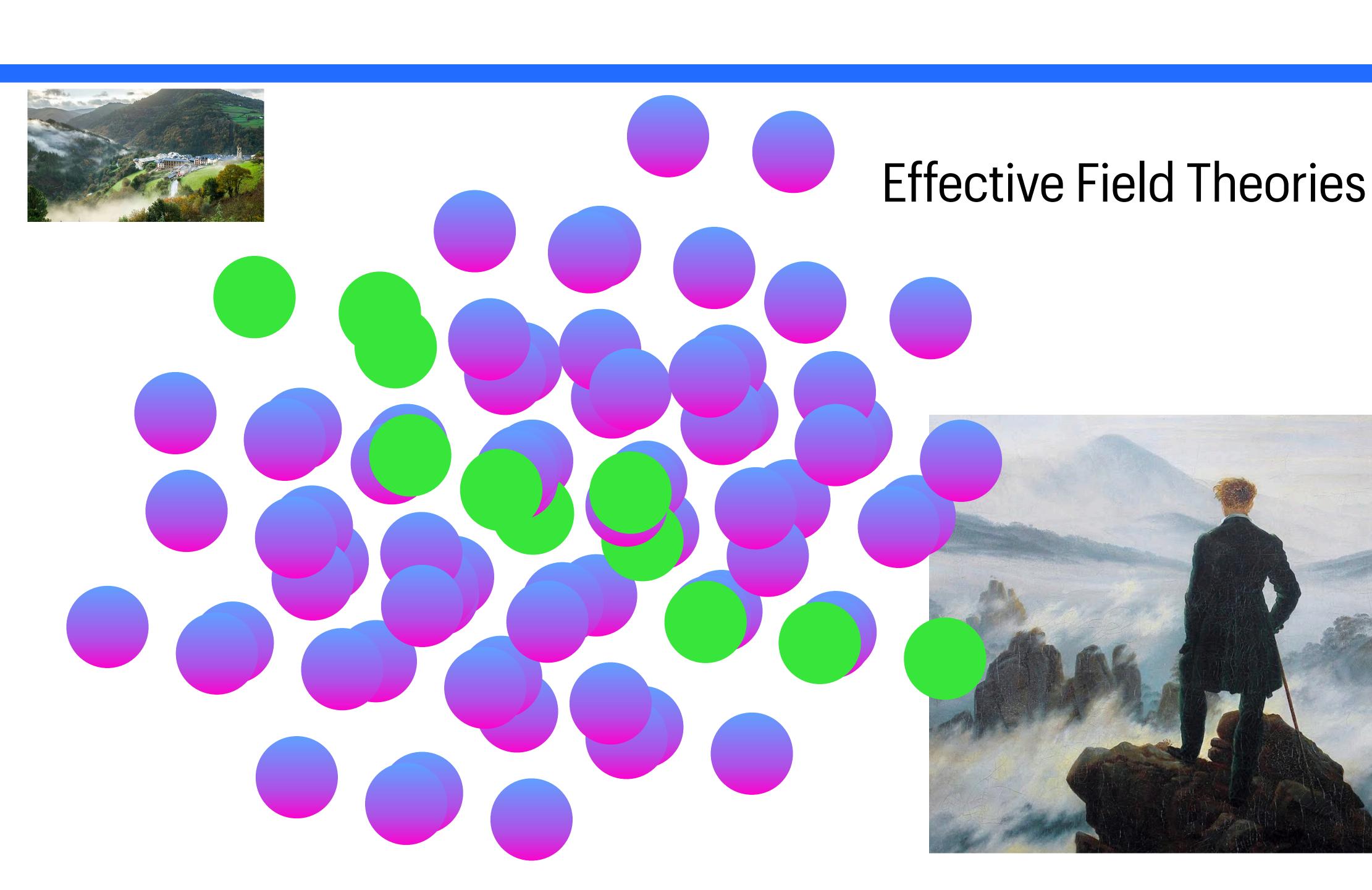


The final theory

The physicist



Effective Field Theories



In most applications in physics we do not use fundamental theories

- We don't know the fundamental theory
- Physical phenomena are ordered by energy scales

For example soft-collinear effective field theory (SCEFT)

In most applications in physics we do not use fundamental theories

- We don't know the fundamental theory
- Physical phenomena are ordered by energy scales

For example soft-collinear effective field theory (SCEFT)

EFT's are characterised by a derivative expansion with infinite terms compatible with the symmetries of the system

$$\mathscr{L} \sim (\partial \phi)^2 + \frac{c_1}{\Lambda^4} (\partial \phi)^4 + \frac{c_2}{\Lambda^8} (\partial \phi)^6 + \dots \qquad \text{Taylor Series of the complete theory}$$

$$\mathscr{L} \sim (\partial \phi)^2 + \frac{c_1}{\Lambda^4} (\partial \phi)^4 + \frac{c_2}{\Lambda^8} (\partial \phi)^6 + \dots \qquad \text{Taylor Series of the complete theory}$$

In an ideal world we obtain the EFT from the UV complete theory

Taylor series from the full function

$$\mathcal{L} \sim (\partial \phi)^2 + \frac{c_1}{\Lambda^4} (\partial \phi)^4 + \frac{c_2}{\Lambda^8} (\partial \phi)^6 + \dots$$

Taylor Series of the complete theory

In an ideal world we obtain the EFT from the UV complete theory

Taylor series from the full function

However, in many cases we do not know the full theory, we just know some terms in the EFT

General Relativity

$$\mathcal{L} = -\sqrt{|g|} M_P^2 R \sim \partial h^2 + \frac{1}{M_P} h(\partial h)^2 + \frac{1}{M_P^2} h^2 (\partial h)^2 + \dots$$

NOT EVERY POLYNOMIAL IS A TAYLOR SERIES OF A FUNCTION WITH SOME DEFINITE PROPERTIES

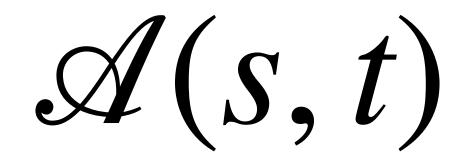
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$$

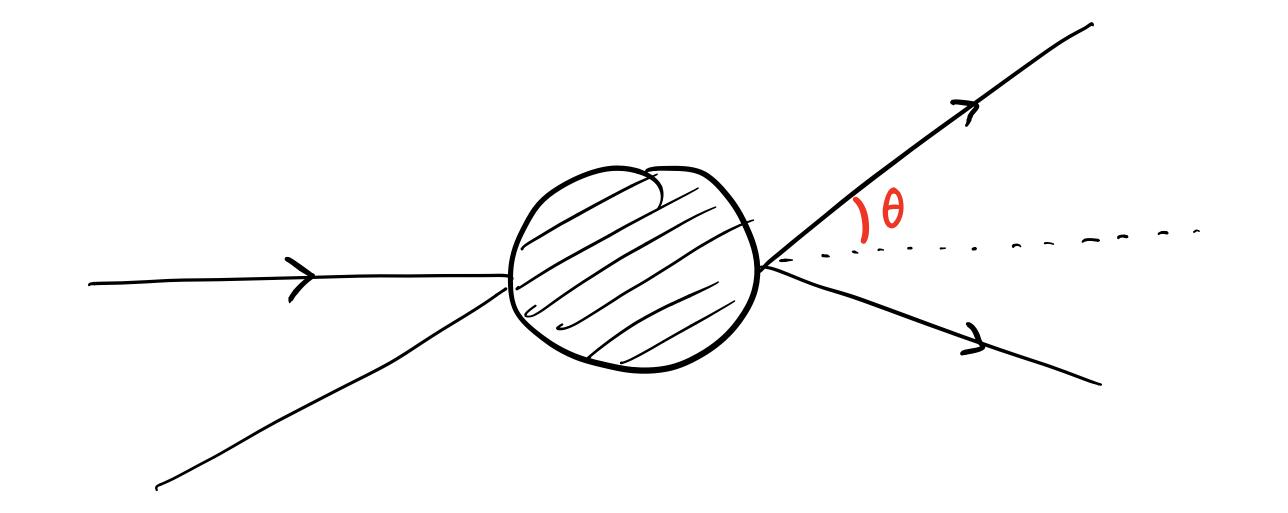
NOT EVERY EFT IS A LOW ENERGY EXPANSION OF A THEORY WITH SOME DEFINITE PROPERTIES

$$\mathcal{L} \sim (\partial \phi)^2 + \frac{c_1}{\Lambda^4} (\partial \phi)^4 + \frac{c_2}{\Lambda^8} (\partial \phi)^6 + \dots$$

Unitarity, Lorentz invariance, symmetries... impose conditions

WE CAN LOOK AT THE 2—>2 SCATTERING AMPLITUDE AROUND FLAT SPACE-TIME





 $s \equiv$ center of mass energy squared

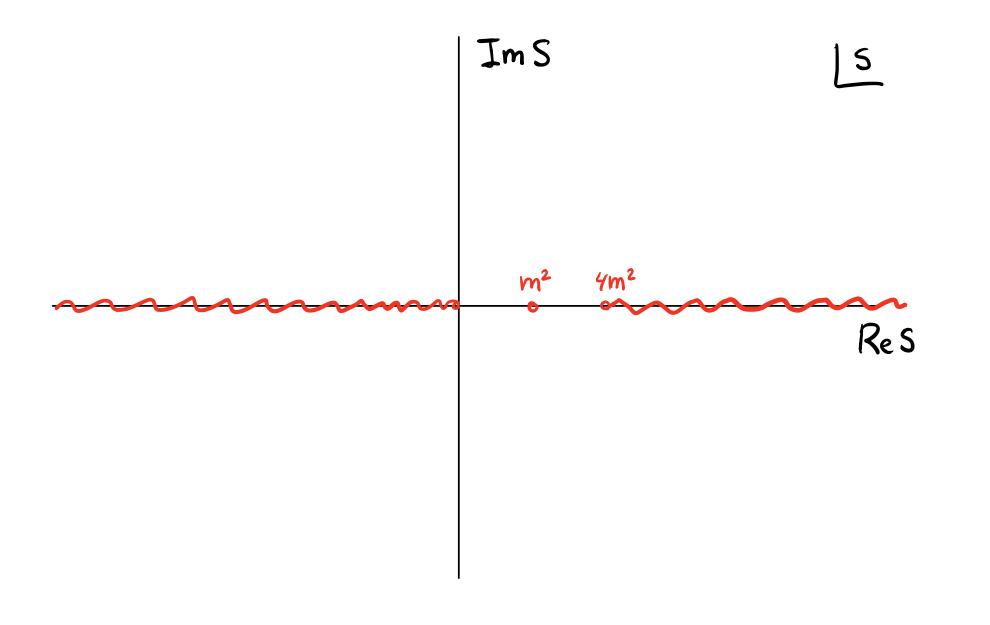
$$t = -\frac{s}{2}(1 - \cos\theta)$$

$$\sigma \sim \int d(\text{phase space}) |\mathcal{A}|^2$$

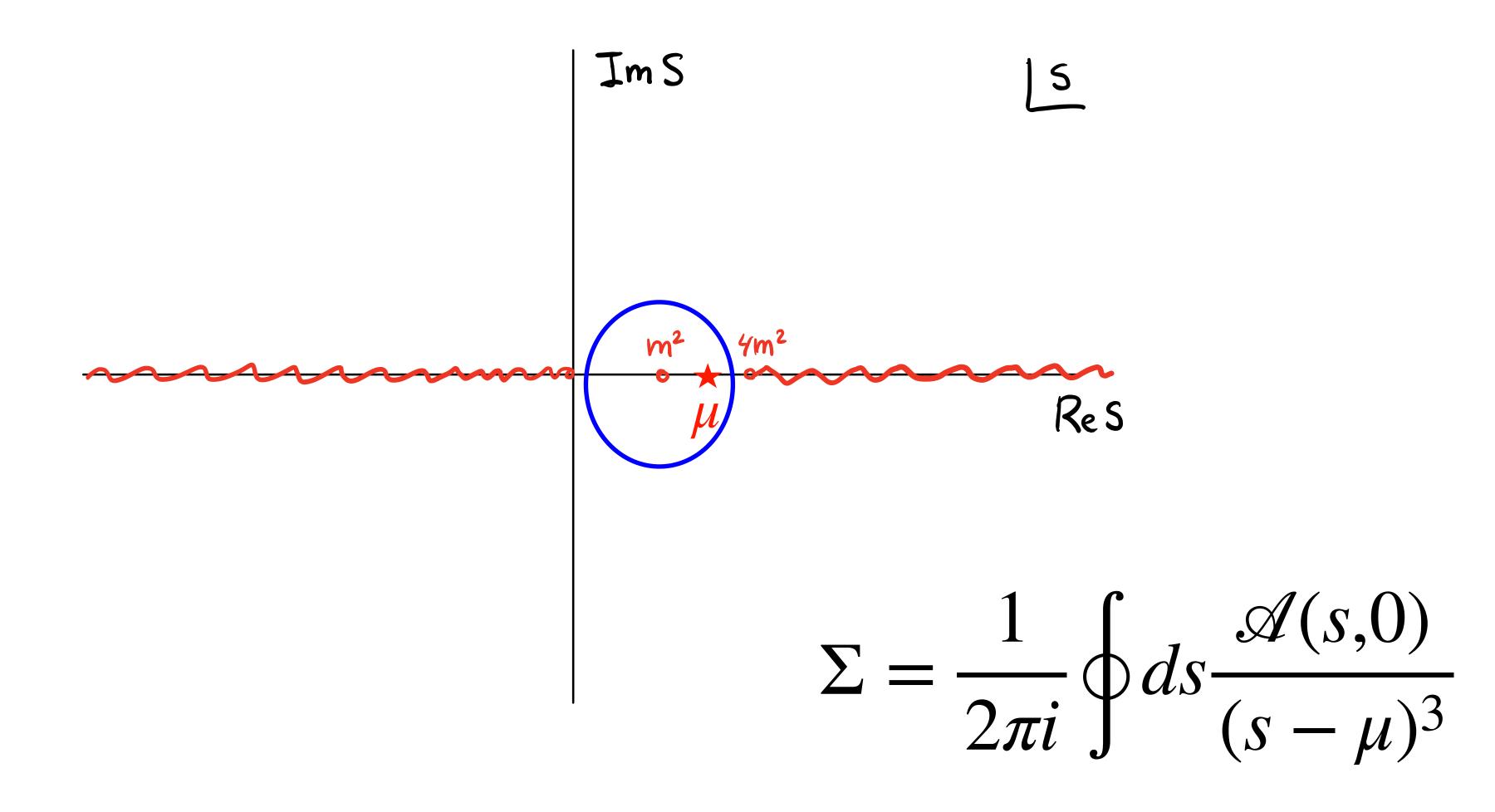
$$\mathcal{A}(s,t)$$

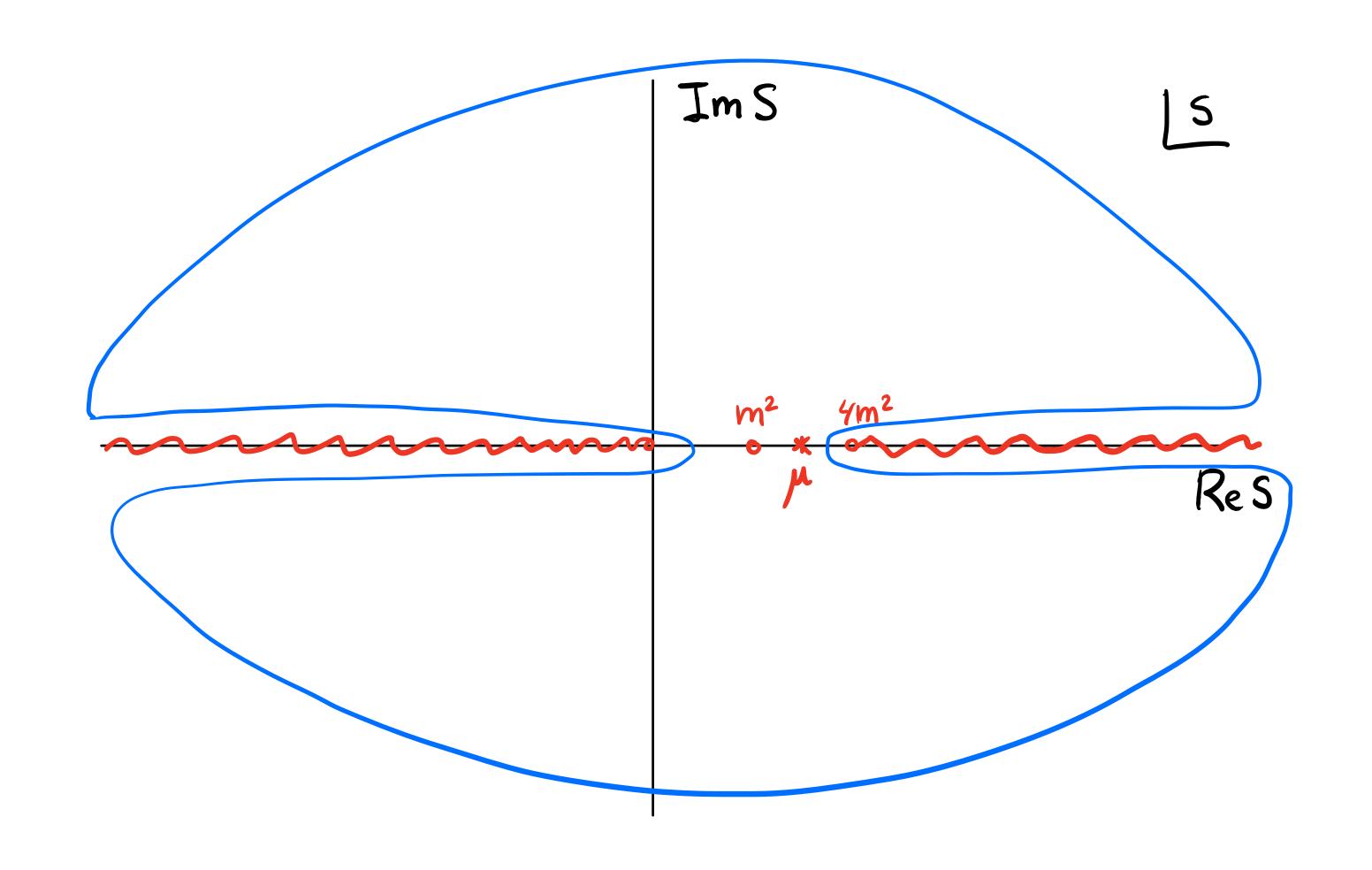
- Lorentz invariance implies that it only depends on s and t.
- Spin statistics is imposed by using crossing symmetry.

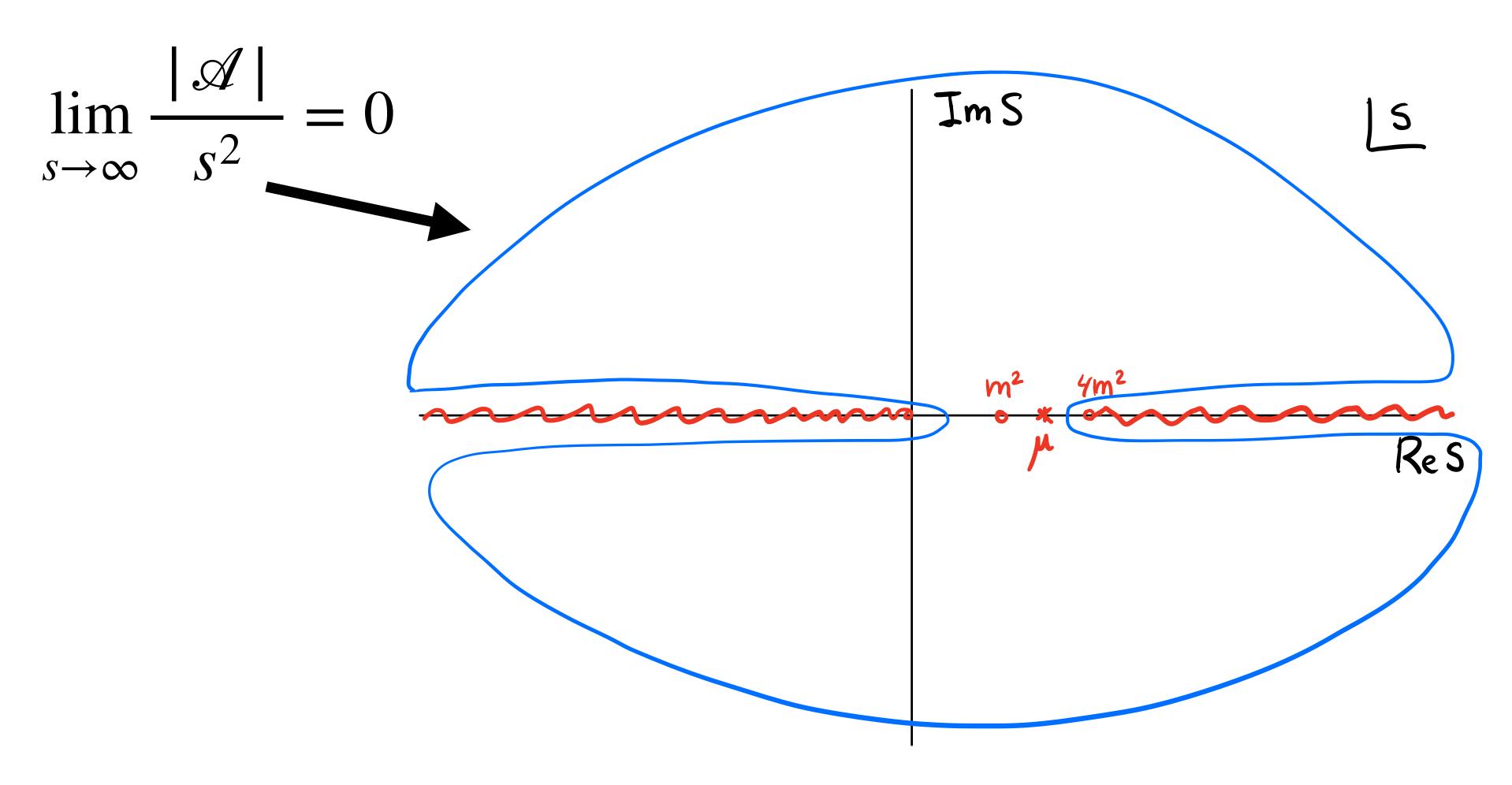
- Lorentz invariance implies that it only depends on s and t.
- Spin statistics is imposed by using crossing symmetry.
- In the forward limit (theta=0) t=0:

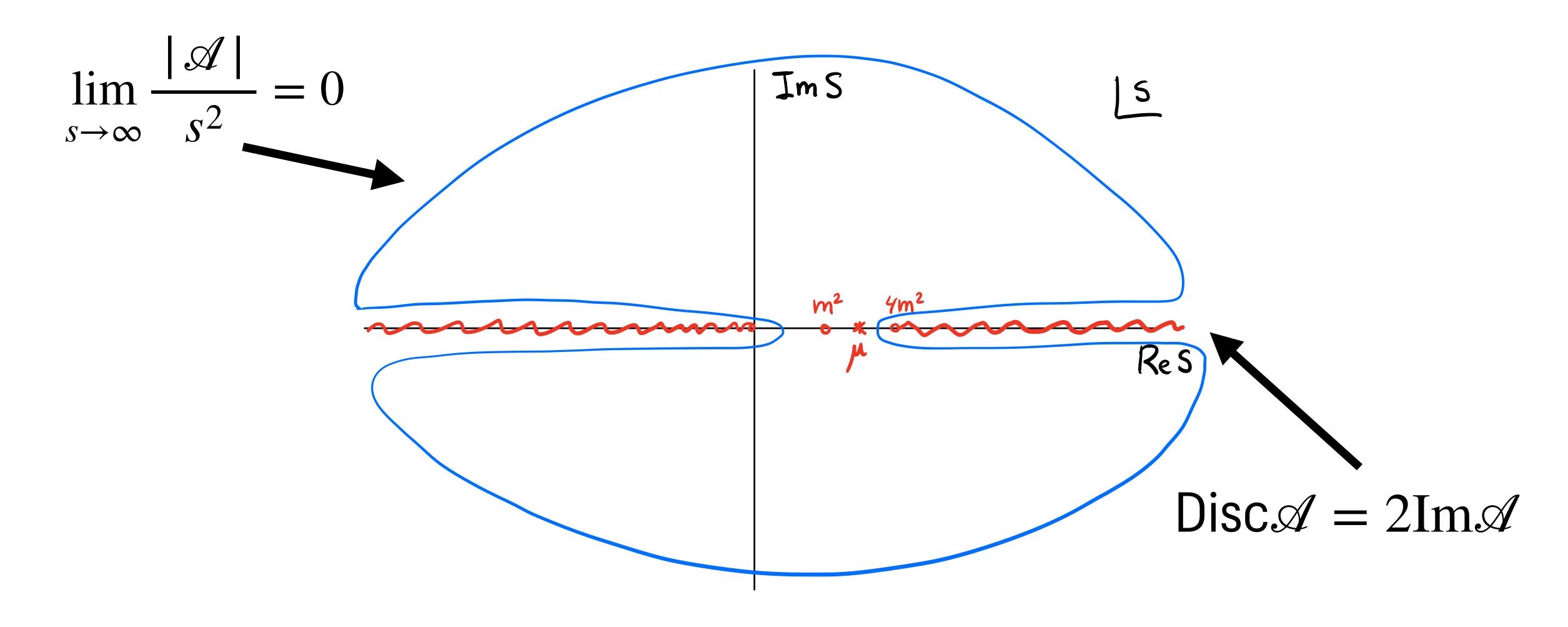


- Poles in the masses intermediate particles s=m^2
- A branch cut above production threshold s=4m²





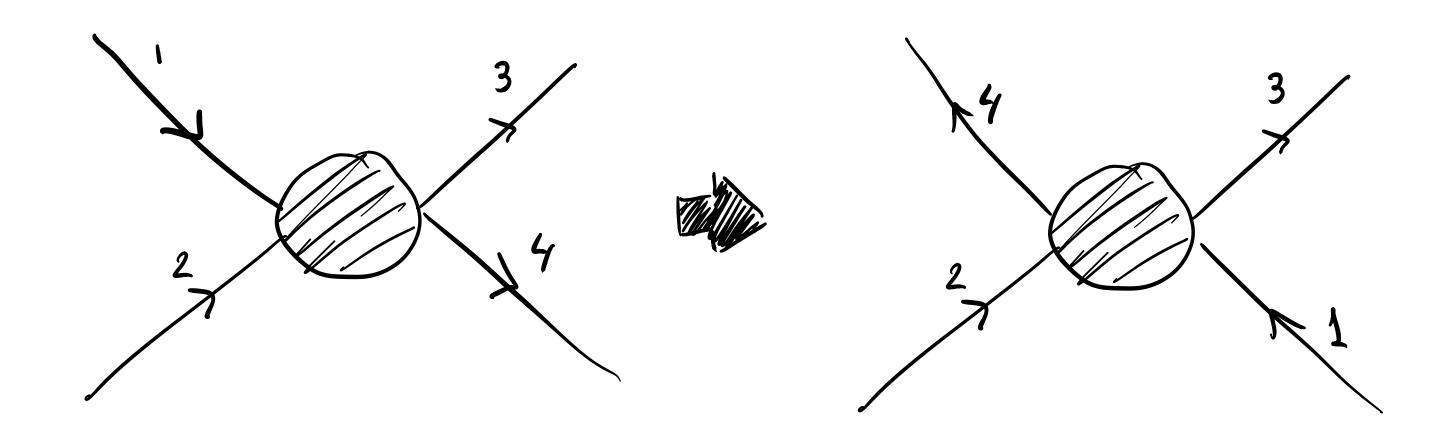




WHERE TO LOOK?

$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{\mathscr{A}(s,0)}{(s-\mu)^3} = \int_{4m^2}^{\infty} \frac{ds}{\pi} \left(\frac{\text{Im}\mathscr{A}}{(s-\mu)^3} + \frac{\text{Im}\mathscr{A}^{\times}}{(s-4m^2+\mu)^3} \right)$$

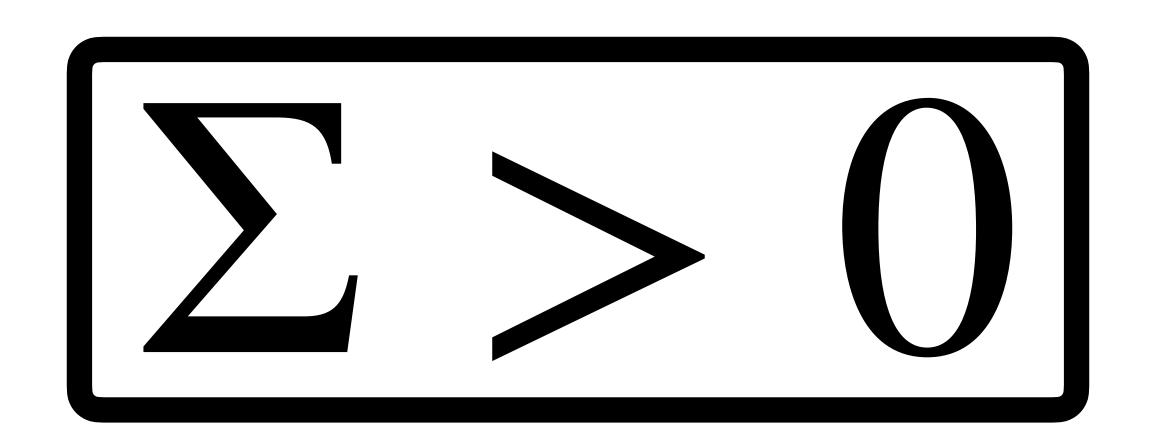
$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{\mathscr{A}(s,0)}{(s-\mu)^3} = \int_{4m^2}^{\infty} \frac{ds}{\pi} \left(\frac{\text{Im}\mathscr{A}}{(s-\mu)^3} + \frac{\text{Im}\mathscr{A}^{\times}}{(s-4m^2+\mu)^3} \right)$$

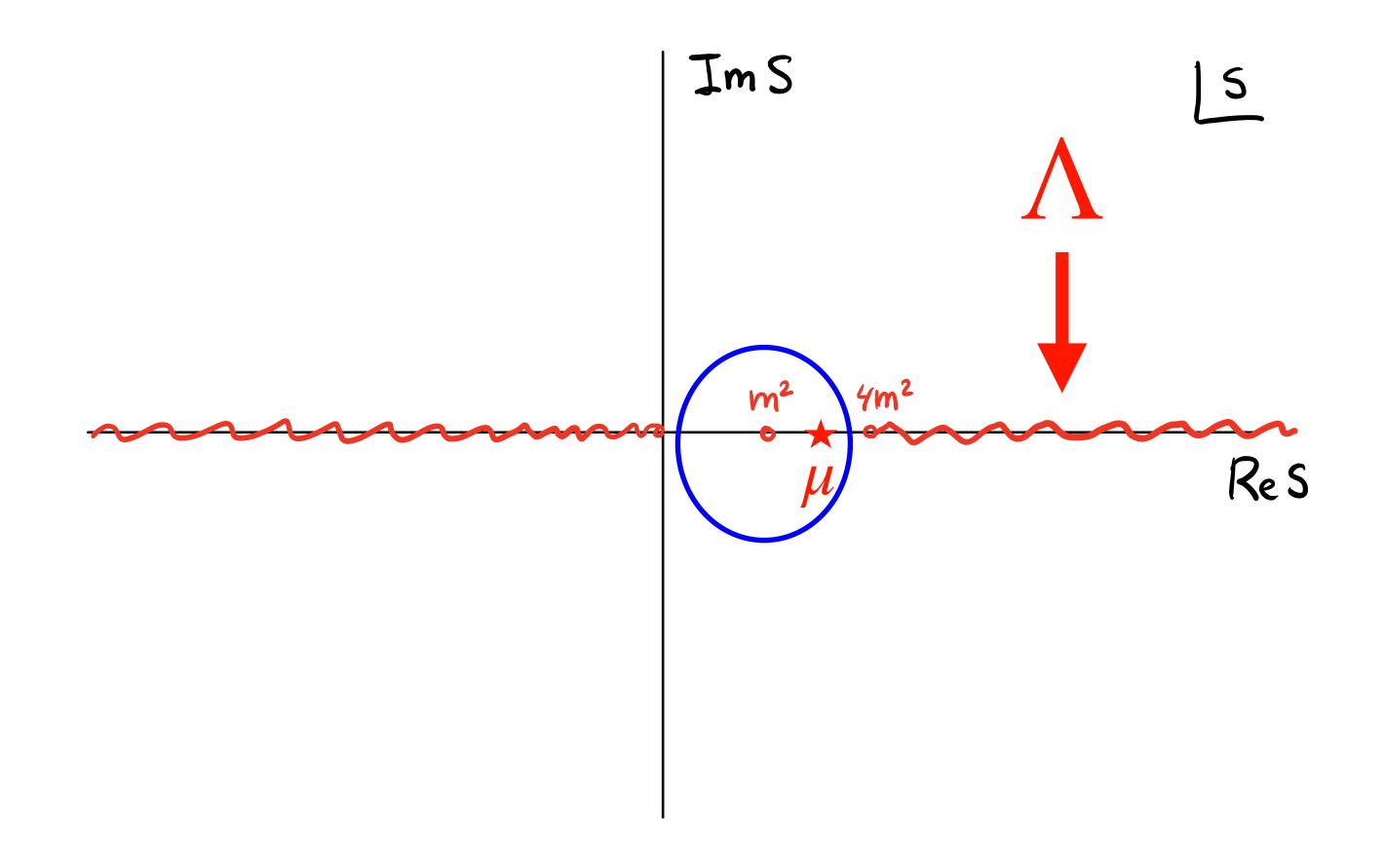


$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{\mathcal{A}(s,0)}{(s-\mu)^3} = \int_{4m^2}^{\infty} \frac{ds}{\pi} \left(\frac{\text{Im}\mathcal{A}}{(s-\mu)^3} + \frac{\text{Im}\mathcal{A}^{\times}}{(s-4m^2+\mu)^3} \right)$$

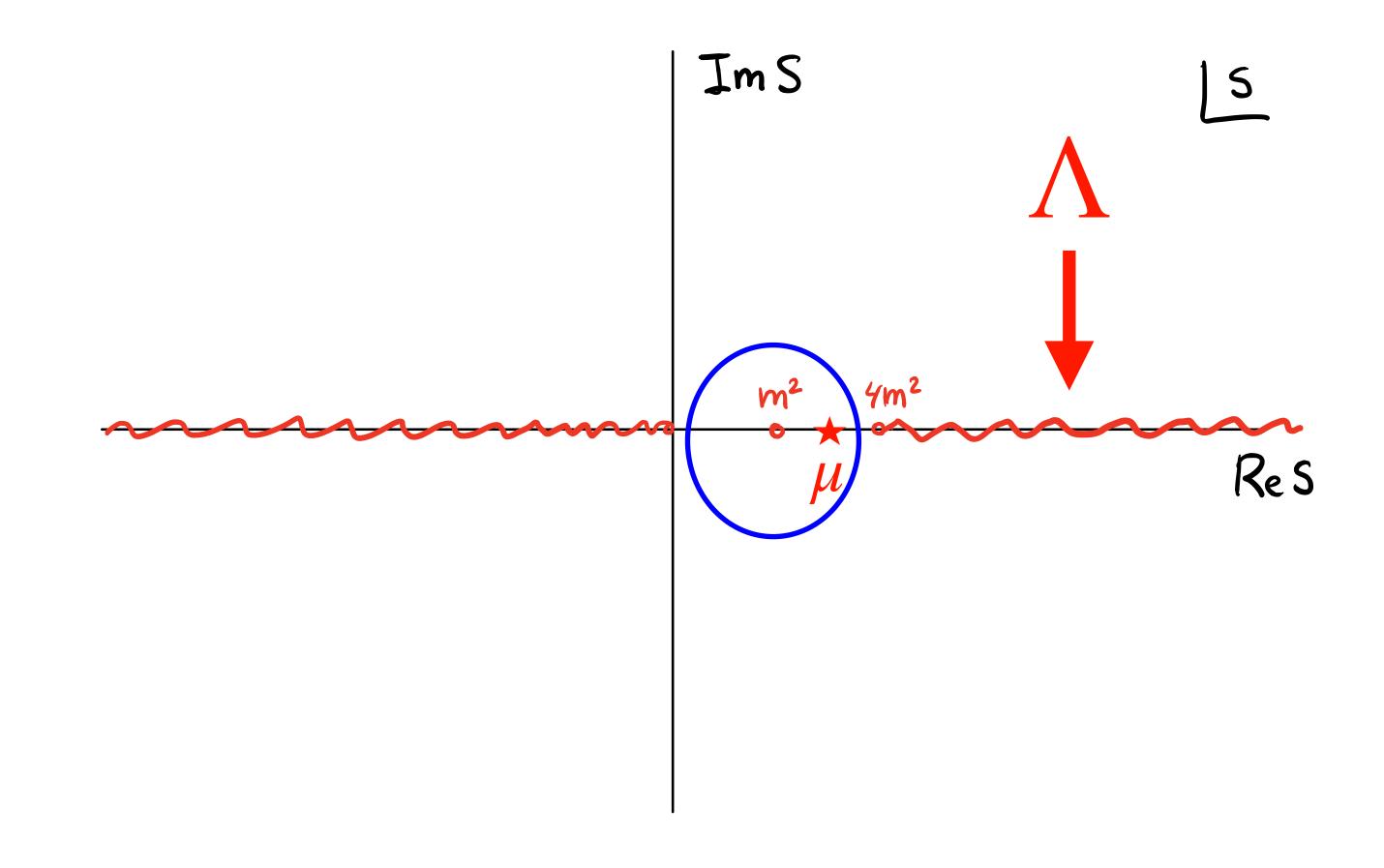
$$Im\mathscr{A}(s,0) = s\sqrt{1 - \frac{4m^2}{s}} \ \sigma(s) > 0 \quad \text{for} \quad s > 4m^2$$

$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{\mathscr{A}(s,0)}{(s-\mu)^3} = \int_{4m^2}^{\infty} \frac{ds}{\pi} \left(\frac{\text{Im}\mathscr{A}}{(s-\mu)^3} + \frac{\text{Im}\mathscr{A}^{\times}}{(s-4m^2+\mu)^3} \right)$$

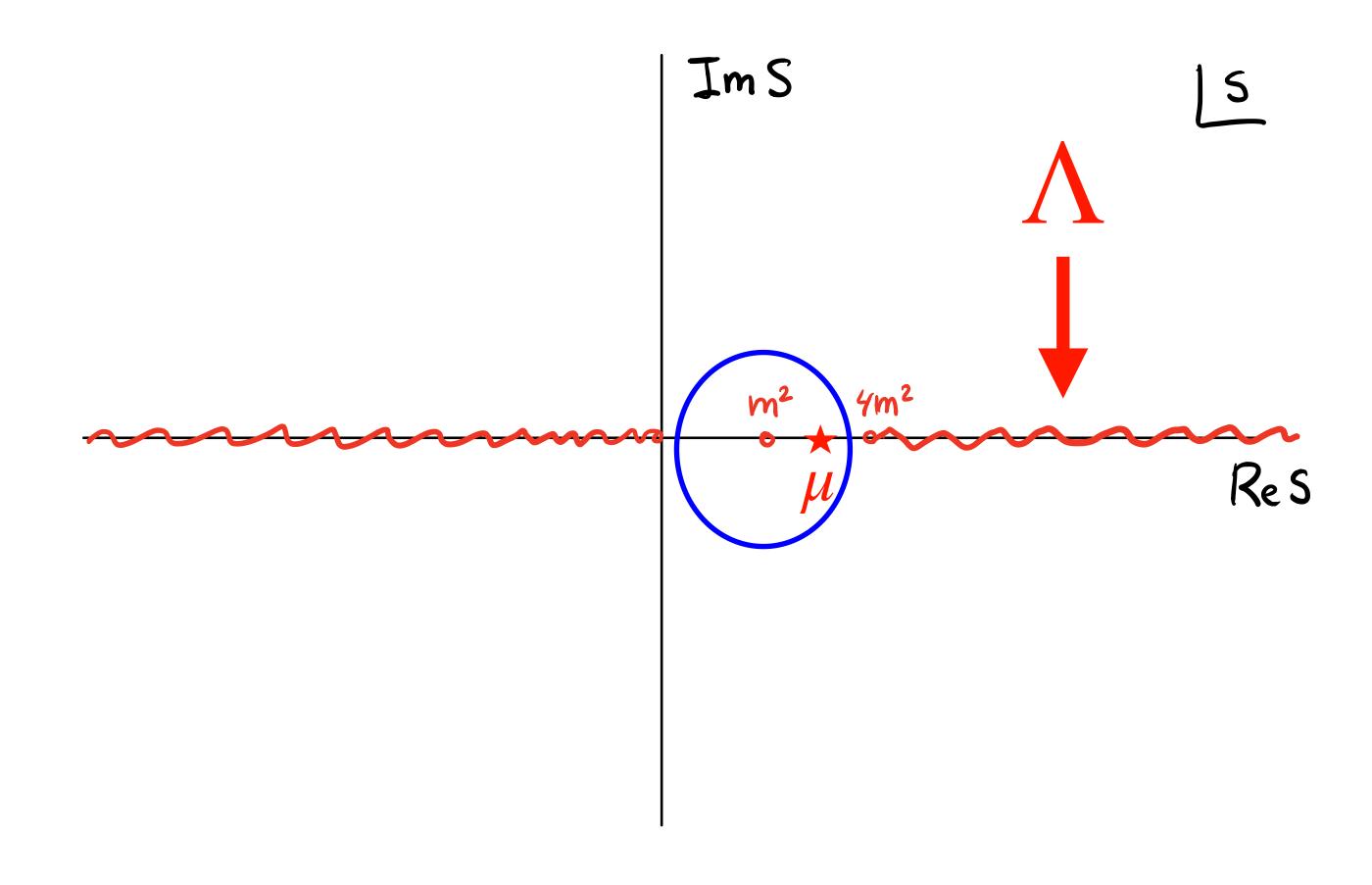




BUT WHAT IF WE ONLY KNOW AN EFT VALID UP TO AN ENERGY LAMBDA?



Computable in the EFT!!
$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{\mathscr{A}(s,0)}{(s-\mu)^3} > 0$$



$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{\mathscr{A}(s,0)}{(s-\mu)^3} = \int_{4m^2}^{\Lambda^2} + \int_{\Lambda^2}^{\infty} \longrightarrow \bar{\Sigma} = \frac{1}{2\pi i} \oint ds \frac{\mathscr{A}(s,0)}{(s-\mu)^3} - \int_{4m^2}^{\Lambda^2} = \int_{\Lambda^2}^{\infty} > 0$$

WHERE TO LOOK?

$$\mathscr{L} \sim (\partial \phi)^2 + \frac{c_1}{\Lambda^4} (\partial \phi)^4$$

$$\mathcal{L} \sim (\partial \phi)^2 + \frac{c_1}{\Lambda^4} (\partial \phi)^4$$

$$\sum = c_1 > 0$$

APPLICATIONS TO A MYRIAD OF TOPICS: MASSIVE GRAVITY, THE A-THEOREM, HIGGS PHYSICS, COSMOLOGY...

BUT THERE IS AN IMPORTANT PIECE MISSING: GRAVITY

WHY GRAVITY FAILS?

THE FORWARD LIMIT IS ILL-DEFINED

$$\mathscr{A}(s,t) = \frac{1}{M_P^2} \left(\frac{s^2}{t} + \frac{t^2}{4m^2 - s - t} + \frac{(4m^2 - s - t)^2}{s} \right) + \frac{1}{M_P^4} \left(s^2 \log(t) + t^2 \log(4m^2 - s - t) + (4m^2 - s - t)^2 \log(s) \right)$$

WHY GRAVITY FAILS?

THE FORWARD LIMIT IS ILL-DEFINED

$$\mathscr{A}(s,t) = \frac{1}{M_P^2} \left(\frac{s^2}{t} + \frac{t^2}{4m^2 - s - t} + \frac{(4m^2 - s - t)^2}{s} \right) + \frac{1}{M_P^4} \left(s^2 \log(t) + t^2 \log(4m^2 - s - t) + (4m^2 - s - t)^2 \log(s) \right)$$

THE FORWARD LIMIT IS ILL-DEFINED

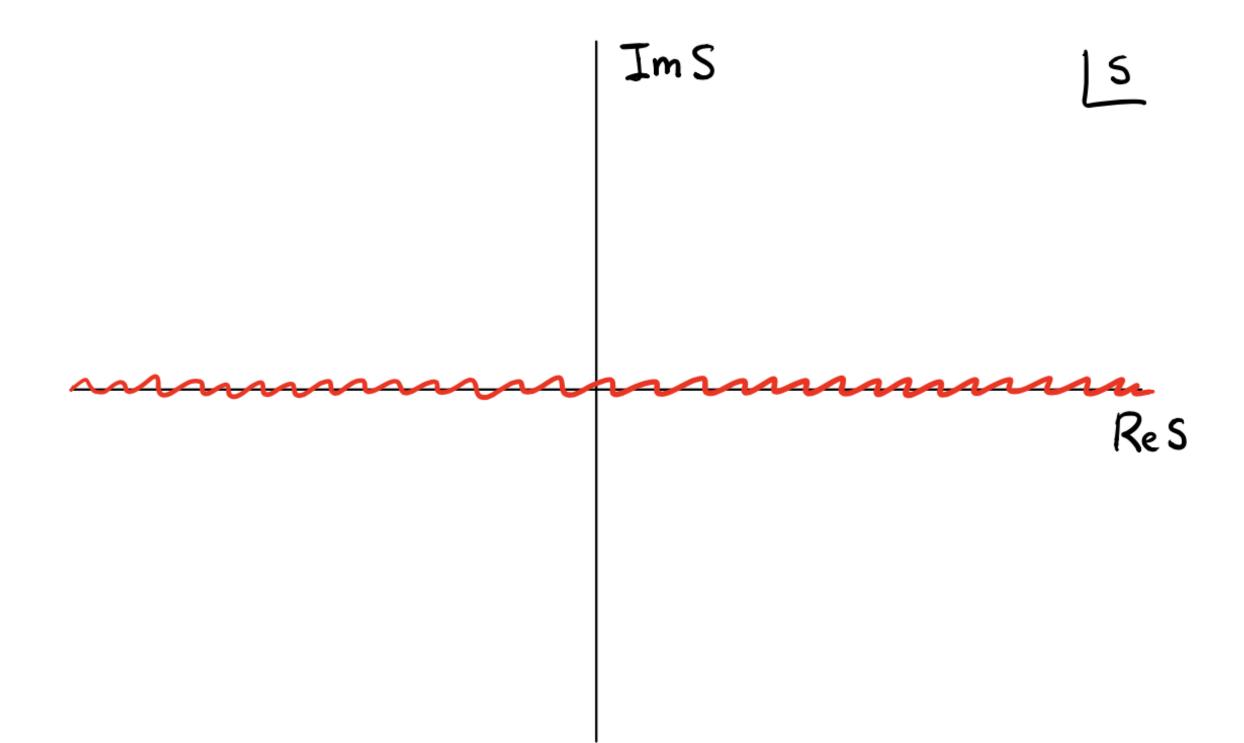
$$\mathscr{A}(s,t) = \frac{1}{M_P^2} \left(\frac{s^2}{t} \right) + \frac{t^2}{4m^2 - s - t} + \frac{(4m^2 - s - t)^2}{s} + \frac{1}{M_P^4} \left(s^2 \log(t) \right) + t^2 \log(4m^2 - s - t) + (4m^2 - s - t)^2 \log(s) \right)$$

SO AS MOST WE CAN GO TO THE ASYMPTOTIC FORWARD LIMIT

$$\mathscr{A}(s,t\to 0) = \frac{a_0}{t} + a_l \log(t) + a(s)$$

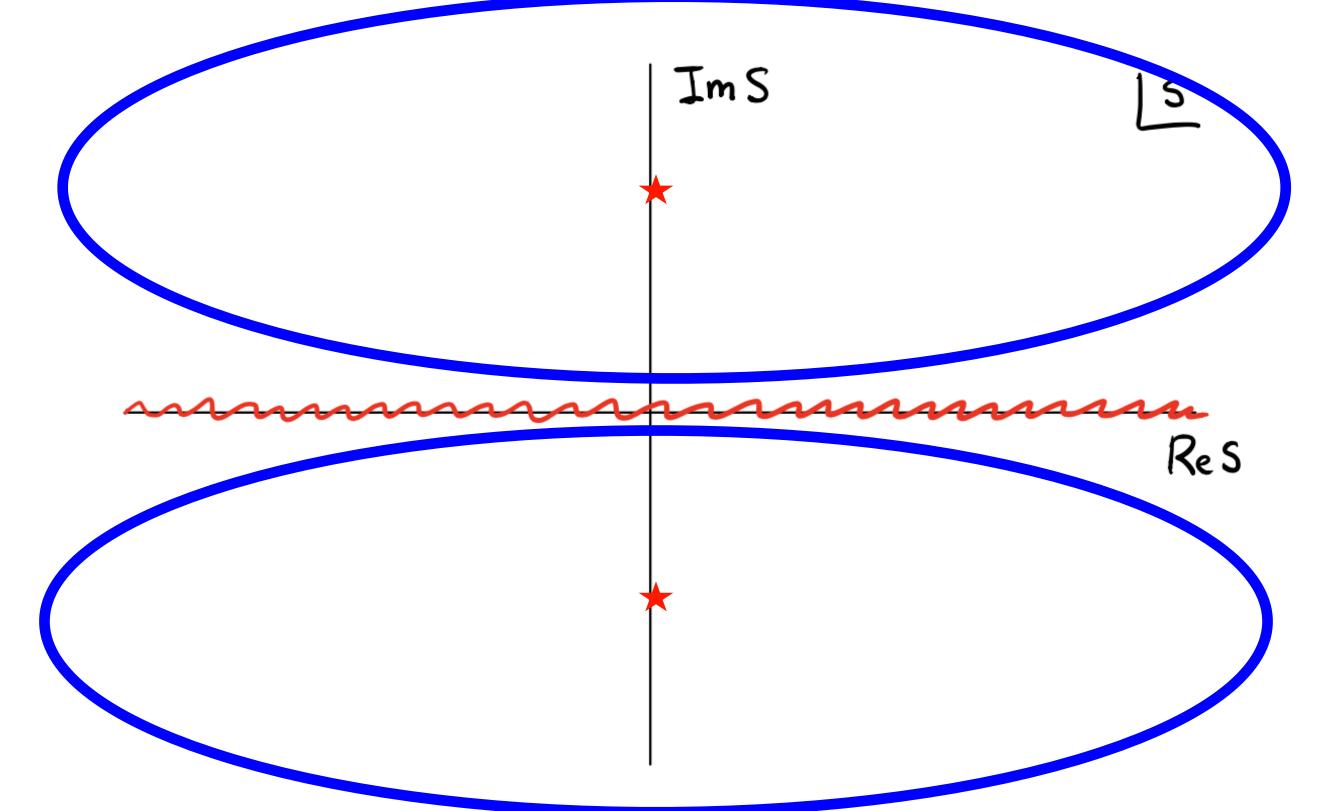
SO AS MOST WE CAN GO TO THE ASYMPTOTIC FORWARD LIMIT

$$\mathscr{A}(s,t\to 0) = \frac{a_0}{t} + a_l \log(t) + a(s)$$



SO AS MOST WE CAN GO TO THE ASYMPTOTIC FORWARD LIMIT

$$\mathscr{A}(s,t\to 0) = \frac{a_0}{t} + a_l \log(t) + a(s)$$



INSTEAD WE DEFINE

$$\mathcal{B}(s,0^{-}) = \text{Re}\mathcal{A}(s+i\kappa,0^{-})$$
$$-\frac{(s-\mu)^{n}}{2\pi} \int_{0}^{4m^{2}} dz \, \frac{\text{Im}\mathcal{A}(z+i\epsilon,0^{-})}{(z-s)(z-\mu)^{n}}.$$

INSTEAD WE DEFINE

$$\mathcal{B}(s,0^{-}) = \text{Re}\mathcal{A}(s+i\kappa,0^{-})$$
$$-\frac{(s-\mu)^{n}}{2\pi} \int_{0}^{4m^{2}} dz \, \frac{\text{Im}\mathcal{A}(z+i\epsilon,0^{-})}{(z-s)(z-\mu)^{n}}.$$

THIS IS ANALYTIC IN THE WHOLE COMPLEX PLANE

INSTEAD WE DEFINE

$$\mathcal{B}(s,0^{-}) = \text{Re}\mathcal{A}(s+i\kappa,0^{-})$$
$$-\frac{(s-\mu)^{n}}{2\pi} \int_{0}^{4m^{2}} dz \, \frac{\text{Im}\mathcal{A}(z+i\epsilon,0^{-})}{(z-s)(z-\mu)^{n}}.$$

THIS IS ANALYTIC IN THE WHOLE COMPLEX PLANE

$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{s^3 \mathcal{B}(s,0)}{(s^2 + \delta^2)^3} = \int_{4m^2}^{\infty} \frac{ds}{\pi} \left(\frac{s^3 \text{Im} \mathcal{A}}{(s^2 + \delta^2)^3} + \frac{(s - 4m^2)^3 \text{Im} \mathcal{A}^{\times}}{((s - 4m^2)^2 + \delta^2)^3} \right)$$

$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{s^3 \mathcal{B}(s,0)}{(s^2 + \delta^2)^3} = \int_{4m^2}^{\infty} \frac{ds}{\pi} \left(\frac{s^3 \text{Im} \mathcal{A}}{(s^2 + \delta^2)^3} + \frac{(s - 4m^2)^3 \text{Im} \mathcal{A}^{\times}}{((s - 4m^2)^2 + \delta^2)^3} \right)$$

BUT WE HAVE
$$\sum \sim \frac{a_0}{t}$$
, with $a_0 > 0$

WHY GRAVITY WORKS?

$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{s^3 \mathcal{B}(s,0)}{(s^2 + \delta^2)^3} = \int_{4m^2}^{\infty} \frac{ds}{\pi} \left(\frac{s^3 \text{Im} \mathcal{A}}{(s^2 + \delta^2)^3} + \frac{(s - 4m^2)^3 \text{Im} \mathcal{A}^{\times}}{((s - 4m^2)^2 + \delta^2)^3} \right)$$

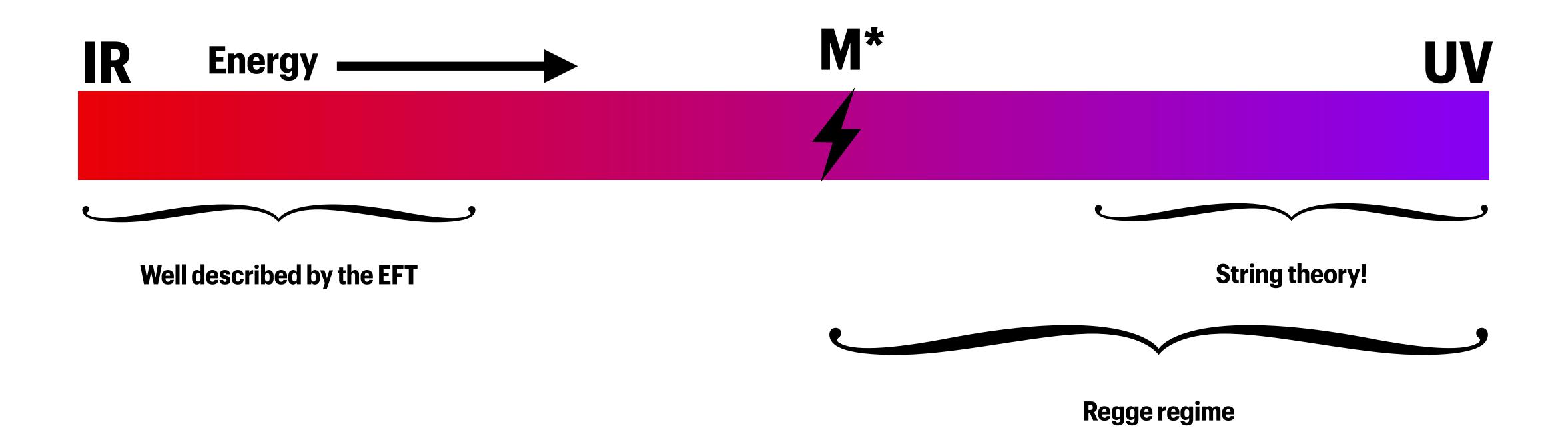
This has divergences 1/t and log(t)

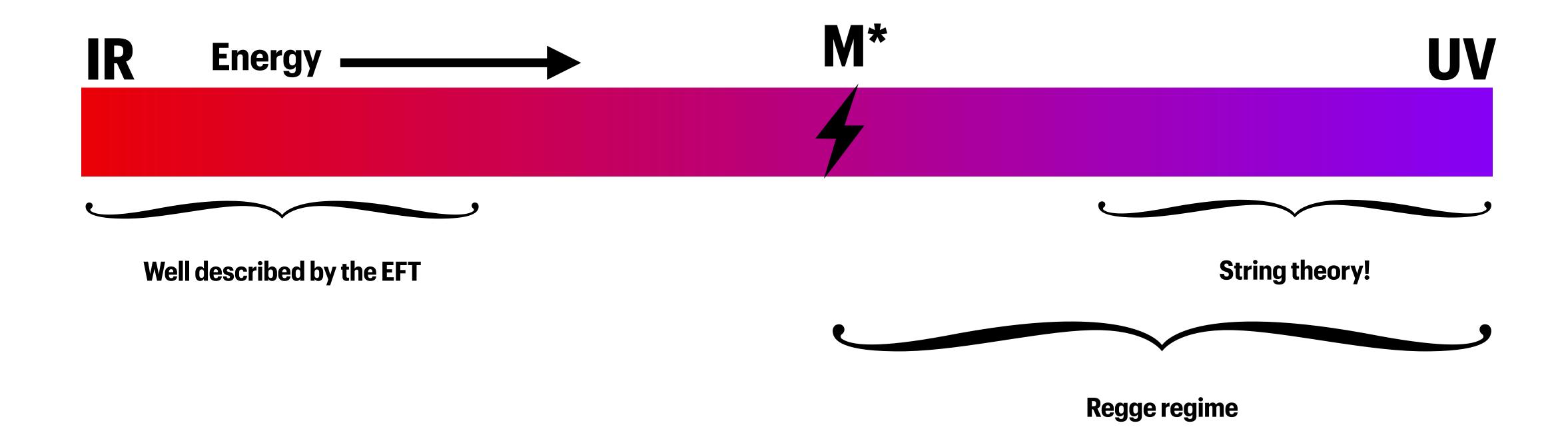
This must also have divergences 1/t and log(t)

$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{s^3 \mathcal{B}(s,0)}{(s^2 + \delta^2)^3} = \int_{4m^2}^{\infty} \frac{ds}{\pi} \left(\frac{s^3 \text{Im} \mathcal{A}}{(s^2 + \delta^2)^3} + \frac{(s - 4m^2)^3 \text{Im} \mathcal{A}^{\times}}{((s - 4m^2)^2 + \delta^2)^3} \right)$$

This has divergences 1/t and log(t)

This must also have divergences 1/t and log(t)





$$\operatorname{Im} \mathscr{A}(s,t) = r(t)(\alpha' s)^{2+l(t)} \left(1 + \frac{\zeta}{\log(\alpha' s)} + \mathcal{O}\left(\frac{1}{\alpha' s}\right) \right), \quad \text{for} \quad E > M^*$$

$$\operatorname{Im} \mathscr{A}(s,t) = r(t)(\alpha' s)^{2+l(t)} \left(1 + \frac{\zeta}{\log(\alpha' s)} + \mathcal{O}\left(\frac{1}{\alpha' s}\right) \right), \quad \text{for} \quad E > M^*$$

$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{s^3 \mathcal{B}(s,0)}{(s^2 + \delta^2)^3} = \int_{4m^2}^{(M^*)^2} + \int_{(M^*)^2}^{\infty}$$

$$\operatorname{Im} \mathscr{A}(s,t) = r(t)(\alpha' s)^{2+l(t)} \left(1 + \frac{\zeta}{\log(\alpha' s)} + \mathcal{O}\left(\frac{1}{\alpha' s}\right) \right), \quad \text{for} \quad E > M^*$$

$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{s^3 \mathcal{B}(s,0)}{(s^2 + \delta^2)^3} = \int_{4m^2}^{(M^*)^2} + \int_{(M^*)^2}^{\infty}$$

$$\int_{(M_*)^2}^{\infty} \sim -\frac{r(0)\alpha'^2}{\pi} \left(-\frac{1}{l'(0)t} + \zeta \log(t) \right) + \mathcal{O}(r(0)\alpha'^2)$$

$$\operatorname{Im} \mathscr{A}(s,t) = r(t)(\alpha' s)^{2+l(t)} \left(1 + \frac{\zeta}{\log(\alpha' s)} + \mathcal{O}\left(\frac{1}{\alpha' s}\right) \right), \quad \text{for} \quad E > M^*$$

$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{s^3 \mathcal{B}(s,0)}{(s^2 + \delta^2)^3} = \int_{4m^2}^{(M^*)^2} + \int_{(M^*)^2}^{\infty}$$

No definite sign!!!

$$\int_{(M_*)^2}^{\infty} \sim -\frac{r(0)\alpha'^2}{\pi} \left(-\frac{1}{l'(0)t} + \zeta \log(t) \right) + \mathcal{O}(r(0)\alpha'^2)$$

No definite sign!!!

$$\int_{(M_*)^2}^{\infty} \sim -\frac{r(0)\alpha'^2}{\pi} \left(-\frac{1}{l'(0)t} + \zeta log(t) \right) + \mathcal{O}(r(0)\alpha'^2)$$

$$\Sigma$$
 – divergences > $\mathcal{O}(r(0)\alpha^2)$

$$r(0)\alpha'^2 \sim (M^*)^{-2}M_P^{-2}$$

$$\Sigma$$
 – divergences > $\mathcal{O}(r(0)\alpha^2)$

$$r(0)\alpha'^2 \sim (M^*)^{-2}M_P^{-2}$$

SO IF I HAVE A THEORY WITH PHYSICS AT A SCALE $\Lambda < M^*$

THIS IS GREATLY PREDICTIVE

SCALAR FIELD

$$S = \int d^4 x \sqrt{|g|} \, \left(-rac{R}{2\kappa^2} + rac{1}{2} \partial_\mu \phi \partial^\mu \phi
ight),$$

$$S = \int d^4x \sqrt{|g|} \left(-\frac{R}{2\kappa^2} + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi \right),$$

$$\mathcal{A}(s, 0^{-}) = -\frac{\kappa^{2} s^{2}}{t} - \frac{33\kappa^{4} s^{2}}{24\pi^{2}} \left(\log(s) + \log(-s)\right)$$
$$-\frac{33\kappa^{4} s^{2}}{24\pi^{2}} \log(t).$$

$$S = \int d^4x \sqrt{|g|} \left(-\frac{R}{2\kappa^2} + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi \right),$$

$$-\frac{33\kappa^4}{24\pi^2} \left(\frac{3}{2} + \log(\delta^2) \right) > \mathcal{O}(r(0)\alpha'^2),$$
$$\frac{y(j)\kappa^2}{\pi^2\delta^{4j-4}} > 0.$$

$$S = \int d^4x \sqrt{|g|} \left(-\frac{R}{2\kappa^2} + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi \right),$$

$$-\frac{33\kappa^4}{24\pi^2} \left(\frac{3}{2} + \log(\delta^2) \right) > \mathcal{O}(r(0)\alpha'^2),$$

$$\frac{y(j)\kappa^2}{\pi^2\delta^{4j-4}} > 0.$$

$$S = \int d^4x \sqrt{|g|} \, \left(-rac{R}{2\kappa^2} + rac{1}{2} \partial_\mu \phi \partial^\mu \phi
ight),$$

$$-\frac{33\kappa^4}{24\pi^2}\left(\frac{3}{2} + \log(\delta^2)\right) > \mathcal{O}(r(0)\alpha'^2),$$

$$\frac{y(j)\kappa^2}{\pi^2\delta^4j^{-4}} > 0.$$
 Automatically satisfied

$$S = \int d^4x \sqrt{|g|} \left[-\frac{R}{2\kappa^2} + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi + \frac{1}{2} \partial_\mu \psi \partial^\mu \psi - \frac{1}{2} \Lambda^2 \psi^2 - \lambda \Lambda \phi \psi^2 \right]. \tag{36}$$

$$S = \int d^4x \sqrt{|g|} \left[-\frac{R}{2\kappa^2} + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi + \frac{1}{2} \partial_\mu \psi \partial^\mu \psi - \frac{1}{2} \Lambda^2 \psi^2 - \lambda \Lambda \phi \psi^2 \right].$$
 (36)

Σ – divergences < 0!!!

If
$$\Lambda < M^* < M_P$$

$$S = \int d^4x \sqrt{|g|} \left[-\frac{R}{2\kappa^2} + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi + \frac{1}{2} \partial_\mu \psi \partial^\mu \psi - \frac{1}{2} \Lambda^2 \psi^2 - \lambda \Lambda \phi \psi^2 \right].$$
 (36)

Σ – divergences < 0!!!

If
$$\Lambda < M^* < M_P$$

SCALAR QED REQUIRES PHYSICS AT A SCALE BELOW THE PLANCK SCALE

$$S = \int d^4x \sqrt{|g|} \left[-\frac{R}{2\kappa^2} + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi + \frac{1}{2} \partial_\mu \psi \partial^\mu \psi - \frac{1}{2} \Lambda^2 \psi^2 - \lambda \Lambda \phi \psi^2 \right].$$
 (36)

Σ – divergences < 0!!!

If
$$\Lambda < M^* < M_P$$

SCALAR QED REQUIRES PHYSICS AT A SCALE BELOW THE PLANCK SCALE

There are some more recent claims about real QED, but careful...

In Einstein-Maxwell theory

$$S = \int d^4x \sqrt{|\hat{g}|} \left[rac{m_{
m Pl}^2}{2} \hat{R} - rac{1}{4} \hat{F}^{MN} \hat{F}_{MN}
ight]$$

$$\left(rac{\sqrt{2}|Q|}{M/m_{
m Pl}}
ight)_{
m extr.}=1$$

In Einstein-Maxwell theory

$$S = \int d^4x \sqrt{|\hat{g}|} \left[rac{m_{
m Pl}^2}{2} \hat{R} - rac{1}{4} \hat{F}^{MN} \hat{F}_{MN}
ight]$$

Extremal charged black-holes satisfy

$$\left(rac{\sqrt{2}|Q|}{M/m_{
m Pl}}
ight)_{
m extr.}=1$$

However, the Weak Gravity Conjecture states

$$\left(\frac{\sqrt{2}|Q|}{M/m_{Pl}}\right) > 1$$
extr.

In Einstein-Maxwell EFT

$$\begin{split} S &= \int d^4 x \sqrt{|\hat{g}|} \left[\frac{m_{\rm Pl}^2}{2} \hat{R} - \frac{1}{4} \hat{F}^{MN} \hat{F}_{MN} \right. \\ &+ \frac{\alpha_1}{4 m_{\rm Pl}^4} \left(\hat{F}^{MN} \hat{F}_{MN} \right)^2 + \frac{\alpha_2}{4 m_{\rm Pl}^4} \left(\hat{\tilde{F}}^{MN} \hat{F}_{MN} \right)^2 \\ &+ \frac{\alpha_3}{2 m_{\rm Pl}^2} \hat{F}_{AB} \hat{F}_{CD} \hat{W}^{ABCD} \right] \,, \end{split}$$

$$\left(\frac{\sqrt{2}|Q|}{M/m_{\rm Pl}}\right)_{\rm extr.} = 1 + \frac{4}{5} \frac{(4\pi)^2 m_{\rm Pl}^2}{M^2} (2\alpha_1 - \alpha_3)$$

In Einstein-Maxwell theory EFT

$$\begin{split} S &= \int d^4 x \sqrt{|\hat{g}|} \left[\frac{m_{\rm Pl}^2}{2} \hat{R} - \frac{1}{4} \hat{F}^{MN} \hat{F}_{MN} \right. \\ &+ \frac{\alpha_1}{4 m_{\rm Pl}^4} \left(\hat{F}^{MN} \hat{F}_{MN} \right)^2 + \frac{\alpha_2}{4 m_{\rm Pl}^4} \left(\hat{\tilde{F}}^{MN} \hat{F}_{MN} \right)^2 \\ &+ \frac{\alpha_3}{2 m_{\rm Pl}^2} \hat{F}_{AB} \hat{F}_{CD} \hat{W}^{ABCD} \right] \,, \end{split}$$

$$\left(\frac{\sqrt{2}|Q|}{M/m_{\rm Pl}}\right)_{\rm extr.} = 1 + \frac{4}{5} \frac{(4\pi)^2 m_{\rm Pl}^2}{M^2} (2\alpha_1 - \alpha_3)$$

$$\mathcal{A} \sim s^2(2\alpha_1 - \alpha_3)$$

In Einstein-Maxwell theory EFT

$$\begin{split} S &= \int d^4 x \sqrt{|\hat{g}|} \left[\frac{m_{\rm Pl}^2}{2} \hat{R} - \frac{1}{4} \hat{F}^{MN} \hat{F}_{MN} \right. \\ &+ \frac{\alpha_1}{4 m_{\rm Pl}^4} \left(\hat{F}^{MN} \hat{F}_{MN} \right)^2 + \frac{\alpha_2}{4 m_{\rm Pl}^4} \left(\hat{\tilde{F}}^{MN} \hat{F}_{MN} \right)^2 \\ &+ \frac{\alpha_3}{2 m_{\rm Pl}^2} \hat{F}_{AB} \hat{F}_{CD} \hat{W}^{ABCD} \right] \;, \end{split}$$

$$\left(\frac{\sqrt{2}|Q|}{M/m_{\rm Pl}}\right)_{\rm extr.} = 1 + \frac{4}{5} \frac{(4\pi)^2 m_{\rm Pl}^2}{M^2} (2\alpha_1 - \alpha_3)$$

$$\mathcal{A} \sim s^2(2\alpha_1 - \alpha_3)$$

$$\Sigma \sim (2\alpha_1 - \alpha_3) > 0$$

CONCLUSIONS

ALWAYS BE POSITIVE:)

- Positivity is a way to bound the zoo of EFTs that we crazily propose in the IR.
- There used to be fundamental obstacles to apply positivity bounds to theories with gravity, but we have overcome them.
- We have the power to bound several modes of gravity+matter.

$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{s^3 \mathcal{B}(s,0)}{(s^2 + \delta^2)^3} - \text{divergences} > \mathcal{O}(r(0)\alpha^2)$$

CONCLUSIONS

ALWAYS BE POSITIVE:)

- Positivity is a way to bound the zoo of EFTs that we crazily propose in the IR.
- There used to be fundamental obstacles to apply positivity bounds to theories with gravity, but we have overcome them.
- We have the power to bound several modes of gravity+matter.

$$\Sigma = \frac{1}{2\pi i} \oint ds \frac{s^3 \mathcal{B}(s,0)}{(s^2 + \delta^2)^3} - \text{divergences} > \mathcal{O}(r(0)\alpha^2)$$

