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Introduction and first definitions

Supervarieties

Relationship between Geometry and Physics is a long story.
One of the aspects of this fruitful intertwinement is Supergeometry.

Supergeometry

Geometric framework where anti-commutative (fermionic) variables
live.
Studies supermanifolds or supervarieties.

Various first approaches (Kostant-Leites, De Witt, Rogers).

After Kostant and Manin, the Kostant-Leites model prevailed.
Moreover, the definition can be also adapted for holomorphic and
algebraic varieties (or schemes).
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Introduction and first definitions

Diferentiable supermanifolds

Differentiable supermanifolds have locally graded coordinates
(z1, . . . , zm, θ1, . . . , θn), |zi | = 0 (even), |θj | = 1 (odd). The algebra
of (local) superfunctions is the Z2-graded algebra∧

C〈θ1, . . . , θn〉
where C = C∞(z1, . . . , zm).

How the local models glue together? One takes a differentiable
manifold X and a local atlas {Ui} with coordinates (z i1, . . . , z

i
m) and

transition functions φij and glue
∧
Ci 〈θi1, . . . , θin〉 and

∧
Cj 〈θ

j
1, . . . , θ

j
n〉

on Uij with Z2-graded algebra isomorphisms Φij such that∧
Ci 〈θi1, . . . , θin〉|Uij

Φij //

��

∧
Cj 〈θ

j
1, . . . , θ

j
n〉|Uij

��
C i

φij // Cj

commutes.
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Introduction and first definitions Superspaces and morphisms

Spaces

To simplify the exposition we use the following notation and terminology:

Scheme = Complex algebraic variety X (may have singularities and
nilpotent functions). Technically they are noetherian and locally of
finite type over C. OX denote the sheaf of algebraic functions.

Analytic space = same with analytic functions. Here OX denotes the
sheaf of analytic functions on X .

Differentiable supermanifold. OX = sheaf of (real or complex,
depending on the context) differentiable functions on X .
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Introduction and first definitions Superspaces and morphisms

Superspaces

Definition

A superscheme (resp. analytic superspace, differentiable supermanifold) is
a pair X = (X ,OX ) where

1 X is a (ordinary) scheme (resp. analytic space, differentiable
manifold). We refer to it as to the bosonic part of X .

2 OX is a Z2-graded commutative algebra, OX = OX ,0 ⊕OX ,1.

3 If J = (OX ,1)2 ⊕OX ,1 (ideal generated by the odd elements), then

1 OX = OX /J
2 GJOX := OX ⊕ J /J 2 ⊕ J 2/J 3 ⊕ . . . is a coherent OX -module and

locally OX ∼→ GJOX

Then, all types of superschemes, super analytic spaces, differentiable
supermanifolds are graded-commutative locally ringed spaces.
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Introduction and first definitions Superspaces and morphisms

Projected an split superschemes

X = (X ,OX ) superscheme. E = J /J 2 is a module over OX and there is
a closed immersion i : X ↪→ X .

X is projected if there is a retraction p : X → X , p ◦ i = Id

X is split if E is a locally free OX -module (i.e. the sheaf of sections
of a vector bundle) and OX ∼→

∧
OX
E (globally) in a compatible way

with the projections to OX .

X is locally split if E is locally free and
∧
E ∼→ GJOX .

Split =⇒ locally split and projected

When X is locally split, we define dimX = m|n, where m = dimX and
n = rk E .

Any locally split superscheme of dimension m|1 is split. In this case,
J = E , and then 0→ E → OX → i∗OX → 0 gives E = OX ,1,
OX ,0 ∼→ OX .
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Introduction and first definitions Examples. Projective superspaces and super Grassmanians

Examples

1 If X = Am and E = O⊕nX , then Am|n := (Am,
∧
OAm
E) is the

superaffine space of dimension m|n.

2 If X = Pm and E = OX (−1)⊕n, then Pm|n := (Pm,
∧
OPm
E) is the

superprojective space of dimension m|n (Manin).

3 Write m = a + b and n = c + d . Mimicking the construction of the
Grassmanian by glueing ‘big cells’, one defines the supergrassmanian

Gr(a|c ; km,n) = (Gr(a; km)× Gr(c; kn),OGr)

of a|c-dimensional graded subspaces of km,n.

It is locally split of dimension ac + bd |ad + bc.
Gr(1|0; km,n) ∼→ Pm|n.
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Introduction and first definitions Differentials, cotangent and tangent sheaves

Differentials

f : X → S, g : Z → S, morphisms of superspaces.
There exists the fibre product f × g : X ×S Z → S together with two
projections p1 : X ×S Z → X , p2 : X ×S Z → Z and the diagonal
morphism X ↪→ X ×S X .

The sheaf of (relative) differentials (relative cotangent sheaf) is
ΩX/S = ∆f /∆2

f , where ∆f is the ideal of the diagonal.

The relative tangent sheaf is defined by ΘX/S = ΩX/S ' DerOS (OX )

Assume X is locally split. One has:

0→ E = J /J 2 → ΩX|X → ΩX → 0 .

Then
ΩX
∼→ Ω+X := (ΩX|X )0 , E ∼→ Ω−X := (ΩX|X )1 .

Taking duals,

ΘX
∼→ Θ+ := (ΘX|X )0 , E∗ ∼→ Θ−X := (ΘX|X )1 .
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Introduction and first definitions Splitness

Obstructions to splitness

There are classes
ωi ∈ H1(X ,Θ(−1)iX ⊗

∧i E)

depending on several choices, that control the splitness of X .
1 If we can make choices such that ωi = 0 for every i , then X is split.

2 Any differentiable supermanifold is split (Batchelor), because the
sheaves Θ(−1)iX ⊗

∧i E are fine, and then acyclic.
3 The non-vanishing of ωi for one choice does not imply that X is not

split.
4 ω2 does not depend on previous choices. Then ω2 6= 0 =⇒ X is not

split. Moreover, ω2 6= 0 =⇒ X is not projected.
5 A locally split superscheme X = (X ,OX ) of dimension m|2 is

determined by (X , E , ω2), with ω2 ∈ H1(X ,ΘX ⊗
∧2 E). Moreover,

any such triple arises from some X .
6 A locally split superscheme of dimension m|2 is projected if and only

if it is split.
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Introduction and first definitions Splitness

Examples of non projected superschemes

There exists a notion of very ample locally free sheaf of rank 1|0 on a
superscheme, similar to the ordinary one, so that very ample line bundles
give immersions into projective superspaces.
Let X be a superscheme.

1 An invertible sheaf L is very ample on X ⇐⇒ the restriction L|X is
very ample on X (Le Brun-Poon-Wells).

2 If X is projected and p : X → X is the projection, any invertible sheaf
L(0) on X is the restriction of L = p∗L(0). Then

X projected and X projective =⇒ X superprojective, that is, there is
a closed immersion X ↪→ Pp|q.

3 In general, an invertible sheaf on X may fail to be extended to X .
X projective 6=⇒ X superprojective.

4 a(m − a)b(n − b) 6= 0, =⇒ Gr(a|c; km,n) is not superprojective
(Penkov) =⇒ Gr(a|c ; km,n) is not projected.
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Punctured SUSY curves SUSY curves

Supersymmetric curves

Our next goal is to study SUSY curves and their supermoduli.

Supersymmetric (SUSY) curves were introduced because their moduli
seemed to be right integration spaces to compute the scattering
amplitudes of the supersymmetric strings.

For the bosonic string, these are computed by integrating the
Polyakov measure on a compactification of the moduli spaces of
algebraic curves (or Riemann surfaces).

The compactification introduces poles in the measure, fermions were
introduce to compensate them.

Since then, the moduli of SUSY curves (with and without punctures)
has attracted a lot of attention.
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Punctured SUSY curves SUSY curves

Definition of SUSY curve

A SUSY curve over a superscheme S of genus g is a relative
(smooth) supercurve π : X → S of genus g endowed with a
superconformal structure, that is, a locally free subsheaf of rank 0|1
of the relative tangent sheaf, D ↪→ ΘX/S , such that the composition

D ⊗OX D
[ , ]−−→ ΘX/S → ΘX/S/D

is an isomorphism of OX -modules, D ⊗OX D ∼→ ΘX/S/D.

That is, D is totally non-integrable.

Locally, there exist superconformal relative graded coordinates (z , θ)
such that

D = 〈D〉 , D =
∂

∂θ
+ θ

∂

∂z
, D ⊗ D 7→ 2

∂

∂z
.
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Punctured SUSY curves NS and RR punctures

Two kinds of punctures

There are two kinds of punctures on a SUSY curve, according to the
different bosonic of fermionic fields that are inserted in the theory.

Neveu-Schwartz (NS) punctures. These are merely unordered points,
understood as the insertion points of bosonic operators:

A NS N-puncture on a SUSY curve (π : X → S,D) is a unordered
family (x1, . . . , xN) of (S-valued) points of π : X → S (i.e. sections
xi : S ↪→ X of π).

Ramond-Ramond (RR) punctures. These correspond to divisors where
the superconformal structure degenerates and are related to the
insertion of fermionic operators.
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Punctured SUSY curves NS and RR punctures

Ramond-Ramond punctures

π : X → S, supercurve, Z ↪→ X positive superdivisor (codim = 1|0) of
relative degree n.

We assume that Z is not ramified over the base S , that is, intersects every
fibre in n different points.

π : X → S has a RR-puncture along Z if there is a locally free
subsheaf of rank 0|1 of the relative tangent sheaf, D ↪→ ΘX/S , such
that the composition

D ⊗D [ , ]−−→ ΘX/S → ΘX/S/D

induces an isomorphism of OX -modules D ⊗D ∼→ (ΘX/S/D)(−Z).

We also say that (π : X → S,D) is a RR-SUSY curve and that D is a
Ramond-Ramond conformal structure for (X → S,Z).

The irreducible components of Z are called RR-punctures.
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D.H. Ruipérez (Universidad de Salamanca) Supermoduli Iberian Strings 2021 15 / 31



Punctured SUSY curves NS and RR punctures

Ramond-Ramond punctures

π : X → S, supercurve, Z ↪→ X positive superdivisor (codim = 1|0) of
relative degree n.
We assume that Z is not ramified over the base S , that is, intersects every
fibre in n different points.

π : X → S has a RR-puncture along Z if there is a locally free
subsheaf of rank 0|1 of the relative tangent sheaf, D ↪→ ΘX/S , such
that the composition

D ⊗D [ , ]−−→ ΘX/S → ΘX/S/D

induces an isomorphism of OX -modules D ⊗D ∼→ (ΘX/S/D)(−Z).

We also say that (π : X → S,D) is a RR-SUSY curve and that D is a
Ramond-Ramond conformal structure for (X → S,Z).

The irreducible components of Z are called RR-punctures.
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Punctured SUSY curves NS and RR punctures

Local equations

The local expression of a RR-superconformal structure is similar to the one
for SUSY curves, but with a difference in the relative case.
Let (X ,Z,D)→ S be a RR-SUSY curve.

There exists an étale covering T → S for which, on the base-change
RR-SUSY curve (XT ,ZT ,DT )→ T , there exist locally relative
graded coordinates (z , θ) (superconformal coordinates) such that

1 ZT is given by the equation z = 0.
2

DT = 〈D〉 , D =
∂

∂θ
+ zθ

∂

∂z
.

For a single RR-SUSY curve (that is, S = Spec k is one point), no
étale covering is required (or better, T → S is the identity)
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1 ZT is given by the equation z = 0.

2

DT = 〈D〉 , D =
∂

∂θ
+ zθ

∂

∂z
.

For a single RR-SUSY curve (that is, S = Spec k is one point), no
étale covering is required (or better, T → S is the identity)
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Punctured SUSY curves NS and RR punctures

RR-Spin structures

When the base superscheme is an ordinary scheme S , RR-SUSY curves
(π : X → S ,Z,D) are RR-Spin curves:

One has OX = OX ⊕ ΠL.

The structure of RR-SUSY curve gives

L ⊗ L ∼→ κX/S ⊗OX (Z ) = κX/S(Z ) , L ∼→ κX/S(Z )1/2 .

Conversely, any isomorphism L ⊗OX
L ∼→ κX/S(Z ) on X induces the

structure of a RR-SUSY curve on X → S with D ∼→ L−1⊗OX
(OX )Π.

This forces n = degZ to be even.

That is, for a scheme S :{
RR-SUSY curves
(X → S ,Z,D)

}
↔
{

Relative RR-spin curves
(X → S ,Z ,L)

}
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Punctured SUSY curves NS and RR punctures

Morphisms of RR-SUSY curves

π : (X ,Z,D)→ S, π′ : (X ′,Z ′,D′)→ S RR-SUSY curves of degree n
over S.
A morphism of RR-SUSY curves over S is a morphism φ : X → X ′ of S
superschemes that preserves the divisor and the superconformal structure,
i.e. such that φ(Z) ⊆ Z ′ and φ∗D ⊆ D′.

(X ,Z,D)→ S , RR-SUSY curve over a scheme S , so that
OX = OX ⊕ ΠL and L ⊗ L ∼→ κX/S(Z ).
An automorphism of the SUSY curve is a pair (φ0, φ1) where

φ0 is an automorphism of X/S .

φ1 is an automorphism of L such that the isomorphism
L ⊗ L ∼→ κX/S(Z ) is preserved.

In particular, if φ0 = Id, then φ1 = ±1.

Then, a RR-SUSY curve always has a non-trivial automorphism.
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Supermoduli of supercurves with punctures Statement of the problem

Moduli functor of RR-SUSY curves on superschemes

S  SCRR
gn (S) =

{
Isom. classes of relative RR-SUSY curves π : X → S

of genus g and RR-punctures of degree n

}

Moduli problem: To find a superscheme SMRR
gn “representing SCRR

gn ”.
This means that for every superscheme S, one has:

Hom(S,SMRR
gn ) ∼→ SCRR

gn (S) .

That is, every relative RR-SUSY curve over S has to be obtained as the
pull-back by a unique morphism S → SMRR

gn of a certain “universal

RR-SUSY curve” over SMRR
gn .

This problem has no solution due to the presence of automorphisms of the
RR-SUSY-curves.
However, we can slightly modify the definitions so that there will exist a
supermoduli for RR-SUSY-curves, which is no longer a superscheme but a
more general kind of object.
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Supermoduli of supercurves with punctures Statement of the problem

Steps in the construction of the supermoduli

The supermoduli for RR-SUSY curves is constructed in the same way as
the supermoduli for SUSY curves.

We assume first that curves have genus g ≥ 2 and an n-level structure
(n ≥ 3) so that they have no automorphisms but the identity.

Then, there exist a fine moduli scheme Mg and a universal relative
genus g curve πg : Xg → Mg .

Some technical difficulties arise, but everything boils down to solving the
following key points:

1 Construction of the bosonic supermoduli MRR
gn .

2 Construction of the “local supermoduli superscheme”.

3 Construction of the (global) supermoduli.
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Supermoduli of supercurves with punctures Bosonic moduli

The bosonic moduli of RR-SUSY curves

The bosonic moduli MRR
gn is constructed as follows:

Consider Xg → Mg universal curve of genus g . There is an open Mgn

of the n-symmetric power X
[n]
g → Mg that parametrizes families of

non-ramified positive divisors of degree n. The pull-back Xgn → Mgn

of Xg → Mg has a “universal” relative positive divisor Zn ↪→ Xgn of
relative degree n over Mgn.

For every d , one has the relative Jacobian (or Picard scheme)
ρd : Jd = Jd(Xgn/Mgn)→ Mgn endowed with a universal “degree d
line bundle class” Υd .
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Supermoduli of supercurves with punctures Bosonic moduli

The bosonic moduli of SUSY curves, II

One has a cartesian diagram that defines the bosonic moduli MRR
gm

RR-SUSY of curves of genus g along a positive divisor of degree n:

Jg−1+n/2 µ2 // J2g−2+n µ2(N ) = N⊗2

MRR
gn

?�

OO

ρ // Mgn
?�
ι

OO

ι = section induced by κXg/Mg
(Zn)

ρ : MRR
gn → Mgn is an étale covering of degree 22g , =⇒ MRR

gn is a
quasi-projective scheme of dimension 3g − 3 + n.

There exists a “universal class” Υ ∈ Pic(Xgn/M
RR
gn ) such that

Υ2 = [κ(Zn)] , κ = κXgn/Mgn
.
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Supermoduli of supercurves with punctures Bosonic moduli

Local universal RR-SUSY curve

There is an affine trivializing étale covering U → MRR
gn such that

ΥU = [LU ] for a line bundle LU on XgnU .

LU ⊗ LU ∼→ κ(ZnU), where κ = κXgnU/U

Now,
πU : XgnU = (XgnU ,OXgnU

⊕ ΠLU)→ U ,

is a ‘local universal RR-SUSY curve over the bosonic moduli with
RR-punctures along ZnU .
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Supermoduli of supercurves with punctures Local supermoduli

Fermionic structure of the supermoduli

The fermionic structure os the supermoduli is determined by the odd
deformations of the locally universal’ RR-SUSY curve πU : XgnU → U:

If the supermoduli SMRR
gn do exists, it is locally of the form

(SMRR
gn )|V = (V ,

∧
OV
EV ) .

The sheaf E is determined by E∗ = Θ−(SMRR
gn ) .

The sections of Θ−(SMRR
gn ) in U (the odd vector fields) are the odd

infinitesimal deformations of πU : XgnU → U.

They are given by [R1πU∗GπU ]1, where

G(U) = {D ′ ∈ Der(OX ) | [D ′,D] ∈ D(U), for every D ∈ D(U)}
Gπ = G ∩ΘX/S .
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Supermoduli of supercurves with punctures Local supermoduli

The local supermoduli superscheme of RR-SUSY curves

One computes that [R1πU∗GπU ]1 ∼→ R1πU∗(κ(ZnU)−1/2).

By relative duality one has:

E ∼→ (R1πU∗(κ(ZnU)−1/2))∗ ∼→ πU∗(κ⊗ κ(ZnU)1/2) .

Then, the candidate to “local supermoduli supescheme” is

U = (U,
∧
πU∗(κ⊗ κ(ZnU)1/2)) .

One has dimU = (3g − 3 + n, 2g − 2 + n/2).
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Global construction of the supermoduli

Generalizing results of LeBrun and Rothstein one proves that:

The “local universal RR-SUSY curve over the bosonic moduli”,
πU : XgnU → U, can be extended to a “local universal supercurve”:

πU : XgnU → U = (U,
∧
πU∗(κ⊗ κ(ZnU)1/2)))

whose ks map is an isomorphism.

There is an isomorphism U ∼→ SCRRgn ×MRR
gn

U of functors on

superschemes, where SCRRgn is the associated étale sheaf to SCRR
gn .

=⇒ the restriction to the étale covering U → MRR
gn of SCRRgn , is

representable by the superscheme U .
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Supermoduli of supercurves with punctures Global supermoduli

Gobal supermoduli of RR-SUSY curves

Theorem (Bruzzo-HR)

The sheaf SCRRgn of relative RR-SUSY curves of genus g along a
(non-ramified) relative positive divisor of degree n, is representable by
an Artin algebraic superspace SMRR

gn , which is the categorical
quotient of an étale equivalence relation of superschemes
R⇒ U → SMRR

gn .

Moreover dimSMRR
gn = dimU = (3g − 3 + n, 2g − 2 + n/2) .

There exists a “universal RR-SUSY curve class” XRR
gn → SMRR

gn ,
which is an Artin algebraic superspace of dimension
(3g − 2 + n, 2g − 1 + n/2).

For SUSY curves without punctures the corresponding statement was
proved by Doḿınguez Pérez-HR-Sancho de Salas (97).
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Supermoduli of NS-RR-SUSY curves

The case of NS punctures is simpler (Bruzzo-HR):

The sheaf of relative SUSY curves of genus g with N NS-punctures
and n RR-punctures is representable by the N-symmetric power

SM := (XSUSY
g )[N]

of the “universal SUSY curve class” XRR
gn → SMRR

gn :

This supermoduli is an Artin algebraic superspace of dimension

dimSM = (3g − 3 + N + n, 2g − 2 + N + n/2) .

There exists a “universal NS-RR-SUSY curve class”
(X→ SM,D,Z), which is an Artin algebraic superspace of
dimension (3g − 2 + N + n, 2g − 1 + N + n/2)
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Supermoduli of supercurves with punctures Global supermoduli

Compactifications of the supermoduli

The moduli of curves is compactified using the moduli of stable curves
(Deligne-Mumford).

Analogously, one can compactify the supermoduli of NS-RR-SUSY curves
using “punctured stable supercurves” whose definition is due to Deligne.
There are recent results on that direction:

Theorem (Felder-Kazhdan-Polishchuk, Moosavian-Zhou)

There exists a smooth and proper DM-stack over C representing the
functor of families of stable supercurves of genus g with N NS punctures
and n RR punctures.

The boundary of this compactification has been also described, as well a
“Mumford formula” in this situation (earlier considered by
Rosly-Schwarz-Voronov)
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A few references

The supermoduli of SUSY curves has been constructed locally (as a
Z2-orbifold) by LeBrun-Rothstein (1988).

Results on non-splitness by Falqui-Reina (1988-1990).

Recently, it has been constructed as a DM-superstack by
Codogni-Viviani (2017) without the assumptions on genus and level n
structures.

Donagi and Witten (2012-13), taking the existence for granted, have
proven:

SMSUSY
g is non-projected (in particular non-split) for g ≥ 5

SMNS
g1 is non-split for g ≥ 2. (supermoduli of 1-punctured NS SUSY

curves).
Consequence for pertubative string theory: Cannot integrate on the
supermoduli by first integrating over the fibres of a (non-existing)
porjection to the ordinary moduli.
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Foundations of supergeometry were developed in the past century
(Leites, Manin, Kostant, Bartocci-Bruzzo-HR, etc.). However,
“Grothendieck-style” algebraic supergeometry and problems like the
construction of the Hilbert and Picard superschemes have been
considered only quite recently (Bruzzo-HR-Polishchuk).

Thank you for your attention!!
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D.H. Ruipérez (Universidad de Salamanca) Supermoduli Iberian Strings 2021 31 / 31


	Introduction and first definitions
	Superspaces and morphisms
	Examples. Projective superspaces and super Grassmanians
	Differentials, cotangent and tangent sheaves
	Splitness

	Punctured SUSY curves
	SUSY curves
	NS and RR punctures

	Supermoduli of supercurves with punctures
	Statement of the problem
	Bosonic moduli
	Local supermoduli
	Global supermoduli


