$1 / 4 \mathrm{BPS} \mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

ANAYELI RAMÍREZ
UNIVERSIDAD DE OVIEDO

IBERIAN STRINGS
JANUARY 2021

BASED ON 1908.09851, 1909.09636, 1909.10510, 2011.00005
IN COLLABORATION WITH Y. LOZANO, N. MACPHERSON, C. NÚÑEZ AND S. SPEZIALI

Introduction \& Motivation

- There is a large effort in the classification of Type II supergravity or M-theory backgrounds with AdS_{d+1} factors.
- The $\mathcal{N}=(0,4) \mathrm{AdS}_{3}$ solutions remained however largely unexplored.
- There are certain AdS_{3} solutions, but they involve only NS-NS fields.
(Maldacena, Oouguri; Maldacena, Oouguri, Son)
- Canonical example: Near horizon of D1-D5. $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{CY}_{2}$ geometry realising $(4,4)$ superconformal symmetry.

One avatar where the CFT side is rather more developed than the gravity side is $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Introduction \& Motivation

- 2d CFTs play a prominent role in string theory and provide the best arena to test the AdS/CFT correspondence.
- The conformal group in 2 d is infinite dimensional and this makes two dimensional CFTs much more tractable than their higher dimensional counterparts.
- More general $(0,4)$ 2d CFTs such as the ones described by the quivers constructed in Haghighat, Lockhart, Vafa and collab.; Hanany, Okazaki are however still lacking a holographic description, one of the motivations of this work will be to fill this gap.

We will fill this gap and provide a classification of AdS $_{3}$ solutions to massive IIA supergravity with (small) $(0,4)$ SUSY and a concrete proposal to their 2 d dual CFTs.

From these classification, through T-duality, we obtain new AdS_{2} geometries with $\mathcal{N}=4$ SUSY in type IIB and propose a dual SCOM.

TALK OUTLINE

- AdS_{3} solutions to massive IIA with small $(0,4)$ SUSY
- Our 2d CFTs proposal
- An illustrative example
- $\mathrm{AdS}_{2} \times S^{2} \times \mathrm{CY}_{2} \times S^{1} \times I$ solutions to supergravity IIB with $\mathcal{N}=4$ SUSY
- SCOM proposal
- Conclusions

The geometry

Our approach to finding AdS_{3} solutions with small $\mathrm{N}=(0,4)$ superconformal symmetry is to construct spinors which manifestly realize the bosonic sub-algebra

$$
\mathfrak{H l}(2) \oplus \mathfrak{S u}(2)
$$

We shall seek solutions with metric decomposing as

$$
\begin{gathered}
d s^{2}=e^{2 A} d s^{2}\left(\mathrm{AdS}_{3}\right)+d s^{2}\left(\mathrm{M}_{7}\right) \\
d s^{2}\left(\mathrm{M}_{7}\right)=e^{2 C} d s^{2}\left(\mathrm{~S}^{2}\right)+d s^{2}\left(\mathrm{M}_{5}\right)
\end{gathered}
$$

To guarantee small $N=(0,4)$ symmetry we must solve the supersymmetric constraints.

Our strategy

- Construct spinors that ensure consistency with the bosonic sub-algebra of small $N=(0,4)$ superconformal symmetry.
- Exploit an existing $\mathrm{N}=1 \mathrm{AdS}_{3}$ classification to obtain sufficient conditions on the geometry and fluxes for a solution with small $N=(0,4)$ in IIA to exist.
- Study the classes consistent with our assumptions.

There are 2 classes of solutions

$$
\begin{gathered}
\mathrm{M}_{4}=\mathrm{CY}_{2} \\
\mathrm{M}_{4}=\text { Kähler }
\end{gathered}
$$

The geometry

We focus in the Class I solutions,

$$
\begin{aligned}
& d s^{2}=\frac{u}{\sqrt{h_{4} h_{8}}}\left(d s^{2}\left(\mathrm{AdS}_{3}\right)+\frac{h_{8} h_{4}}{4 h_{8} h_{4}+\left(u^{\prime}\right)^{2}} d s^{2}\left(\mathrm{~S}^{2}\right)\right)+\sqrt{\frac{h_{4}}{h_{8}}} d s^{2}\left(\mathrm{CY}_{2}\right)+\frac{\sqrt{h_{4} h_{8}}}{u} d \rho^{2} \\
& e^{-\Phi}=\frac{h_{8}^{\frac{4}{8}}}{2 h_{4}^{\frac{1}{4}} \sqrt{u}} \sqrt{4 h_{8} h_{4}+\left(u^{\prime}\right)^{2}}, \quad B_{2}=\frac{1}{2}\left(-\rho+2 \pi k+\frac{u u^{\prime}}{4 h_{4} h_{8}+\left(u^{\prime}\right)^{2}}\right) \operatorname{vol}\left(\mathrm{S}^{2}\right),
\end{aligned}
$$

$$
\hat{F}_{0}=h_{8^{\prime}}^{\prime}
$$

D8

$$
\hat{F}_{2}=-\frac{1}{2}\left(h_{8}-h_{8}^{\prime}(\rho-2 \pi k)\right) \operatorname{vol}\left(S^{2}\right)
$$

D6

$$
\hat{F}_{4}=h_{4}^{\prime} \operatorname{vol}\left(\mathrm{CY}_{2}\right)
$$

D4

$$
\begin{equation*}
\hat{F}_{6}=\left(h_{4}-h_{4}^{\prime}(\rho-2 \pi k)\right) \operatorname{vol}\left(\mathrm{CY}_{2}\right) \wedge \operatorname{vol}\left(\mathrm{S}_{2}\right) \tag{D2}
\end{equation*}
$$

The background is a SUSY solution of the Massive IIA equations if the functions satisfy,

$$
u^{\prime \prime}=0, \quad h_{8}^{\prime \prime}=0, \quad h_{4}^{\prime \prime}=0
$$

The geometry

The three functions are thus linear and piecewise continuous,
$h_{4}(\rho)=\left\{\begin{array}{ll}\frac{\beta_{0}}{2 \pi} \rho & 0 \leq \rho \leq 2 \pi \\ \alpha_{k}+\frac{\beta_{k}}{2 \pi}(\rho-2 \pi k) & 2 \pi k \leq \rho \leq 2 \pi(k+1) \\ \alpha_{P}-\frac{\alpha_{\rho}}{2 \pi}(\rho-2 \pi P) & 2 \pi P \leq \rho \leq 2 \pi(P+1) .\end{array} \quad h_{8}(\rho)=\left\{\begin{array}{ll}\frac{\nu_{0}}{2 \pi} \rho & 0 \leq \rho \leq 2 \pi \\ \mu_{k}+\frac{v_{k}}{2 \pi}(\rho-2 \pi k) & 2 \pi k \leq \rho \leq 2 \pi(k+1) \\ \mu_{P}-\frac{\mu_{p}}{2 \pi}(\rho-2 \pi P) & 2 \pi P \leq \rho \leq 2 \pi(P+1) .\end{array} \quad u=\frac{b_{0}}{2 \pi} \rho\right.\right.$
$+$
the functions vanish at $\rho=0$ and $\rho=2 \pi(P+1)$
continuity of the NS sector

continuity of the functions h_{4}, h_{8}
their derivatives present jumps

The geometry

Page Charges

$$
Q_{D 8}=\nu_{k-1}-\nu_{k} \quad Q_{D 4}=\beta_{k-1}-\beta_{k}
$$

D4, D8 branes will play the role of flavour branes

$$
Q_{D 6}=\mu_{k} \quad Q_{D 2}=\alpha_{k}
$$

D2, D6 branes will play the role of colour branes

$$
h_{4}^{(k)}=\alpha_{k}+\frac{\beta_{k}}{2 \pi}(\rho-2 \pi k), \quad h_{8}^{(k)}=\mu_{k}+\frac{\nu_{k}}{2 \pi}(\rho-2 \pi k)
$$

Supported by the analysis of the Bianchi identities

Hanany-Witten brane set-up
(Hanany, Witten'97)

$$
\begin{aligned}
& \begin{array}{|c|r|r|r|r|}
\bigotimes & \bigotimes F_{0} \mathrm{D} 8 & \bigotimes F_{1} \mathrm{D} 8 & \bigotimes F_{2} \mathrm{D} 8 \\
\beta_{0} \mathrm{D} 2
\end{array} \\
& \hline
\end{aligned}
$$

The geometry

We compute the Holographic Central Charge where the idea is to compute the volume of the internal space, thus for our background we get,

Krauss, Larsen; Klebanov, Kutasov,
Murugan; Macpherson, Nunez, et.al)

$$
c_{h o l}=\frac{3 \pi}{2 G_{N}} \operatorname{Vol}\left(\mathrm{CY}_{2}\right) \int_{0}^{2 \pi(P+1)} h_{4} h_{8} d \rho
$$

Observables calculated using the geometry are trustable as long as the numbers $\nu_{k^{\prime}}, \beta_{k}$ and P are large.

The 2d SCFTs

In usual cases, the Hanany-Witten brane set-ups have associated linear quivers. Our proposal relates our backgrounds with $\mathcal{N}=(0,4)$ SUSY quiver field theories.

The 2d SCFTs

The field theory is described in terms of $(0,2)$ multiplets that combine into $(0,4)$ and $(4,4)$ multiplets. It is obtained by assembling the building block:
$(4,4)$ vector multiplets

Using the contribution to the gauge anomaly coming from each multiplet, we find that for each SU(N) gauge group the cancellation of the anomaly imposes,

$$
2 R=Q
$$

We proposed that our quivers become conformal in the IR and then the central charge of the quiver and R-Symmetry anomaly get related by the $(0,4)$ superconformal algebra,

$$
c=6\left(n_{h y p}-n_{v e c}\right)
$$

The 2d SCFTs

We construct several examples with this building block

The 2d SCFTs

An illustrative example

Gauge anomaly $2 R=Q$

$$
\begin{gathered}
R=2 \nu \\
Q=\nu+3 \nu
\end{gathered}
$$

$$
R=P \beta
$$

$$
Q=(P-1) \beta+(P+1) \beta
$$

The anomalies of each of the gauge groups vanish

The 2d SCFTs
An illustrative example

Central Charge

$$
\begin{aligned}
& n_{\text {vec }}=\sum_{j=1}^{P}\left(j^{2}\left(\beta^{2}+\nu^{2}\right)-2\right) \\
& n_{\text {hyp }}=\sum_{j=1}^{P} j^{2} \nu \beta+\sum_{j=1}^{P-1} j(j+1)\left(\nu^{2}+\beta^{2}\right) \\
& c=6\left(n_{\text {hyp }}-n_{\text {vec }}\right) \\
& c=6 \nu \beta\left(\frac{P^{3}}{3}+\frac{P^{2}}{2}+\frac{P}{6}\right)-3\left(\nu^{2}+\beta^{2}\right)\left(P^{2}+P\right)+12 P \\
& \sim 2 \nu \beta P^{3}
\end{aligned}
$$

Holographic Central Charge

The holographic description of this system

$$
\begin{gathered}
h_{4}(\rho)= \begin{cases}\frac{\beta}{2 \pi} \rho & 0 \leq \rho \leq 2 \pi P \\
\frac{\beta P}{2 \pi}(2 \pi(P+1)-\rho) & 2 \pi P \leq \rho \leq 2 \pi(P+1)\end{cases} \\
h_{8}(\rho)= \begin{cases}\frac{\nu}{2 \pi} \rho & 0 \leq \rho \leq 2 \pi P \\
\frac{\nu P}{2 \pi}(2 \pi(P+1)-\rho) & 2 \pi P \leq \rho \leq 2 \pi(P+1)\end{cases} \\
c_{\text {hol }}=\frac{3}{\pi} \int_{0}^{2 \pi(P+1)} h_{4} h_{8} d \rho \sim 2 \nu \beta P^{3}
\end{gathered}
$$

exactly as the field theory!

$\mathrm{AdS}_{2} / \mathrm{SCOM}$

The geometry

T-duality

$$
\mathrm{AdS}_{3} \times \mathrm{S}^{2} \times \mathrm{M}_{4} \times \mathrm{I} \quad \longrightarrow \quad \mathrm{AdS}_{2} \times \mathrm{S}^{2} \times \mathrm{M}_{4} \times \mathrm{I} \times \mathrm{S}^{1}
$$

$d_{\mathrm{Alds}_{3}^{2}}^{2}=\frac{1}{4}\left[(d \tilde{\mathrm{j}}+n)^{2}+d \mathrm{~d}_{\mathrm{Ads}}^{2}\right]$

$$
d s^{2}=\frac{u}{\sqrt{\hat{h}_{4} h_{8}}}\left(\frac{1}{4} d s_{A d S_{2}^{2}}^{2}+\frac{\hat{h}_{4} h_{8}}{4 \hat{h}_{4} h_{8}+\left(u^{\prime}\right)^{2}} d s_{s^{2}}^{2}\right)+\sqrt{\frac{\hat{h}_{4}}{h_{8}}} d s_{C Y_{2}^{2}}^{u}+\frac{\sqrt{\hat{h}_{4} h_{8}}}{u}\left(d \rho^{2}+d \psi^{2}\right)
$$

$$
e^{-2 \Phi}=\frac{h_{8}}{4 \hat{h}_{4}}\left(4 \hat{h}_{4} h_{8}+\left(u^{\prime}\right)^{2}\right), \quad H_{3}=\frac{1}{2} \mathrm{~d}\left(-\rho+\frac{u u^{\prime}}{4 \hat{h}_{4} h_{8}+\left(u^{\prime}\right)^{2}}\right) \wedge \operatorname{vol}_{\mathrm{S}^{2}}+\frac{1}{2} \mathrm{vol}_{\mathrm{AdS}_{2}} \wedge \mathrm{~d} \psi,
$$

$$
\hat{F}_{1}=h_{8}^{\prime} \mathrm{d} \psi, \quad \hat{F}_{3}=\frac{1}{2}\left(h_{8}^{\prime}(\rho-2 \pi k)-h_{8}\right) \mathrm{vol}_{\mathrm{S}^{2}} \wedge \mathrm{~d} \psi+\frac{1}{4}\left(\frac{u^{\prime}\left(\hat{h}_{4} u^{\prime}-u \hat{h}_{4}^{\prime}\right)}{2 \hat{h}_{4}^{2}}+2 h_{8}\right) \mathrm{vol}_{\mathrm{AdS}_{2}} \wedge \mathrm{~d} \rho,
$$

$$
\hat{F}_{5}=\frac{1}{16}\left(\frac{\left(u-(\rho-2 \pi k) u^{\prime}\right)\left(u \hat{h}_{4}^{\prime}-\hat{h}_{4} u^{\prime}\right)}{\hat{h}_{4}^{2}}+4(\rho-2 \pi k) h_{8}\right) \operatorname{vol}_{\mathrm{AdS}_{2}} \wedge \operatorname{vol}_{\mathrm{S}^{2}} \wedge \mathrm{~d} \rho-\hat{h}_{4}^{\prime} \mathrm{vol} \mathrm{CY}_{2} \wedge \mathrm{~d} \psi .
$$

- The background is a SUSY solution of supergravity IIB if the functions satisfy, $u^{\prime \prime}=0, \quad h_{8}^{\prime \prime}=0, \quad h_{4}^{\prime \prime}=0$
- The three functions are lineal and piecewise, $h_{4}^{(k)}=\alpha_{k}+\frac{\beta_{k}}{2 \pi}(\rho-2 \pi k), h_{8}^{(k)}=\mu_{k}+\frac{\nu_{k}}{2 \pi}(\rho-2 \pi k), u=\frac{b_{0}}{2 \pi} \rho$

The geometry

T-duality
$A d S_{3} \times S^{2} \times M_{4} \times I$
 $A d S_{2} \times S^{2} \times M_{4} \times I \times S^{1}$
$\hat{F}_{0} \quad$ DB $\quad Q_{D 8}=\nu_{k-1}-\nu_{k}$
$\hat{F}_{1} \quad$ D7
$Q_{D 7}=\nu_{k-1}-\nu_{k}$
$\hat{F}_{2} \quad$ Db $\quad Q_{D 6}=\mu_{k}$
\hat{F}_{3} D5
$Q_{D 5}=\mu_{k}$
$\hat{F}_{4} \quad \mathrm{D} 4$
$Q_{D 4}=\beta_{k-1}-\beta_{k}$
\hat{F}_{5}
D3
$Q_{D 3}=\beta_{k-1}-\beta_{k}$
$\hat{F}_{6} \quad \mathrm{D} 2$
$Q_{D 2}=\alpha_{k}$
\hat{F}_{7}
DI
$Q_{D 1}=\alpha_{k}$

The Bianchi identities allow to determine which branes are actually present

- D1, D5 branes will play the role of color branes
- D3, D7 branes will play the role of flavour branes

The geometry

Hanany-Witten brane set-up
(Hanany, Witten'97)

$$
\begin{aligned}
& h_{4}^{(k)}=\alpha_{k}+\frac{\beta_{k}}{2 \pi}(\rho-2 \pi k), \\
& h_{8}^{(k)}=\mu_{k}+\frac{\nu_{k}}{2 \pi}(\rho-2 \pi k),
\end{aligned}
$$

"Holographic Central Charge"

$$
c_{h o l}=\frac{3}{\pi} \int_{0}^{2 \pi(P+1)} h_{4} h_{8} d \rho
$$

The same result as in AdS_{3}

- The proposal is to provide a UV $\mathcal{N}=4$ quantum mechanics, that conjecturally flows to a super conformal quantum mechanics dual to our AdS_{2} geometries

- From the original $S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$ symmetry of the CFT_{2}, only one of the sectors is kept
- On field theoretical terms, the number of vacua of the SCOM is $c=6\left(n_{h y p}-n_{\text {vec }}\right)$

Conclusions

We present a new entry in the mapping between SCFTs and AdS-supergravity backgrounds, for the case the 2d $\mathcal{N}=(0,4)$ (small) SCFTs and backgrounds with $\mathrm{AdS}_{3} \times \mathrm{S}^{2}$ factors.

We proposed explicit 2d dual SCFTs based in information obtained from the geometry. The SCFTs are defined as the IR fixed points of 2d OFTs built out of $(0,2)$ multiplets.We discussed one example that constitutes a stringent test, where the duality is checked with the computation of the central charge

We discussed that T-dualisation on AdS_{3} is equivalent to starting with a given $\mathcal{N}=(0,4) \operatorname{SCFT}_{2}$ doing a dimensional reduction keeping the $\mathcal{N}=4$ SUSY right sector.

We proposed a quiver quantum mechanics, that conjecturally flows in the IR to a $\mathcal{N}=4$ SCQM dual to our $A d S_{2} \times S^{2}$

Open problems

- Dual CFT of the solutions in class II?
- More checks of the duality

THANKS!

