Kaluza-Klein spectra and consistent truncations

Gabriel Larios – IFT UAM-CSIC

Iberian Strings 2021 January 21, 2021. *e*Lisbon

Based on:

GL, P. Ntokos, O.Varela – arXiv:1907.02087
GL, O. Varela – arXiv:1907.11027
K. Dimmitt, GL, P. Ntokos, O.Varela – arXiv:1911.12202
M. Cesàro, GL, O. Varela – arXiv:2007.05172

We consider a perturbed geometry

$$d\hat{s}_{d+4}^2 = e^{2A(y)} \left[\left(\bar{g}_{\mu\nu}^{\text{AdS}_4}(x) + h_{\mu\nu}(x,y) \right) dx^{\mu} dx^{\nu} + d\bar{s}_d^2(y) \right],$$

with $h_{\mu\nu}(x,y) = h_{\mu\nu}^{[tt]}(x) \mathcal{Y}(y)$ and $\bar{\Box} h_{\mu\nu}^{[tt]}(x) = (L^2 M^2 - 2) h_{\mu\nu}^{[tt]}(x).$

The D = d + 4 Einstein equations reduce to [C.Bachas, J.Estes '11]

$$-\frac{e^{-(d+2)A}}{\sqrt{\bar{g}}}\partial_M\left(e^{(d+2)A}\sqrt{\bar{g}}\ \bar{g}^{MN}\partial_N\mathcal{Y}\right) = L^2M^2\mathcal{Y} ,$$

with the spectrum organised in terms of the isometries of $d\bar{s}_d^2$.

Plan

- Solutions from uplift
 - Gaugings and uplifts
 - Kaluza-Klein gravitons
 - Universality of traces
 - Duality covariant approach
- Other solutions
 - $\bullet~G\mbox{-}structures$ and the GMPS classification
 - The dual of the \mathcal{Z}^3 -deformed ABJM
 - (numerical) Kaluza-Klein gravitons
 - The space invaders scenario

In the SL(8) basis, 36 36' + 420 + 420'912 + \longrightarrow $\Theta_{\mathbb{M}}^{[CDEF]}$ $\Theta_{\mathbb{M}}{}^{\alpha} \quad \mapsto \quad \left(\Theta^{[AB]C}{}_{D} \quad , \quad \Theta_{[AB]}{}^{C}{}_{D} \quad , \quad$ where $\Theta^{[AB]C}{}_D = 2\delta^{[A}{}_D \xi^{B]C}$. $\Theta_{[AB]}{}^C{}_D = 2\delta^C_{[A}\theta_{B]D} ,$ We consider : $\theta_{AB} = \operatorname{diag}(1, \dots, 1)$, $\xi^{AB} = 0$. $SO(8)_e$ ISO(7): $\theta_{AB} = \text{diag}(1, ..., 1, 0)$, $\xi^{AB} = \operatorname{diag}(0, \dots, 0, 1) ,$ $[SO(6) \times SO(1,1)] \ltimes \mathbb{R}^{12}$: $\theta_{AB} = diag(1,\ldots,1,0,0)$, $\xi^{AB} = \text{diag}(0, \dots, 0, 1, -1)$.

Vacua of $D = 4 \mathcal{N} = 8$ supergravities that preserve same susy and bosonic symmetry tend to exhibit the same universal spectrum of masses, *irrespectively of the gauging* considered

Critical point	SO(8)	ISO(7)	$\left[\operatorname{SO}(6) \times \operatorname{SO}(1,1)\right] \ltimes \mathbb{R}^{12}$	same spectrum?
$\mathcal{N} = 8 \operatorname{SO}(8)$	\checkmark	×	×	_
$\mathcal{N} = 2$ U(3)	\checkmark	\checkmark	×	\checkmark
$\mathcal{N} = 1 \ \mathrm{G}_2$	\checkmark	\checkmark	×	\checkmark
$\mathcal{N} = 1$ SU(3)	×	\checkmark	\checkmark	\checkmark
$\mathcal{N} = 0$ SO(7)	\checkmark	\checkmark	×	\checkmark
$\mathcal{N} = 0$ SO(6)	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{N} = 0$ G ₂	×	\checkmark	×	_
$\mathcal{N} = 0$ SU(3)	×	\checkmark	\checkmark	×

[N.P.Warner '83] [A.Guarino, O.Varela '15] [A.Guarino, C.Sterckx '19]

The question

However, these gaugings enjoy different uplifts:

- SO(8) \longrightarrow M-theory on AdS₄ × S⁷ [B.de Wit, H.Nicolai '87]
 - $ISO(7) \qquad \qquad \longrightarrow \qquad mIIA \text{ on } AdS_4 \times S^6$

[D.Jafferis, A.Guarino, O.Varela '15]

 $[\mathrm{SO}(6) \times \mathrm{SO}(1,1)] \ltimes \mathbb{R}^{12} \quad \hookrightarrow \quad \text{IIB on } \mathrm{AdS}_4 \times S^1 \times S^5 \text{ S-fold}$

[G.Inverso, H.Samtleben, M.Trigiante '16]

Is universality preserved in the KK spectrum upon reduction?

However, these gaugings enjoy different uplifts:

SO(8) \hookrightarrow M-theory on AdS₄ × S⁷ [B.de Wit, H.Nicolai '87] ISO(7) \hookrightarrow mIIA on AdS₄ × S⁶ [D.Jafferis, A.Guarino, O.Varela '15]

 $[SO(6) \times SO(1,1)] \ltimes \mathbb{R}^{12} \longrightarrow IIB \text{ on } AdS_4 \times S^1 \times S^5 \text{ S-fold}$ [G.Inverse, H.Samtleben, M.Trigiante '16]

Is universality preserved in the KK spectrum upon reduction?

Today we will show that the answer is yes, to some extent:

The spectra of KK gravitons in general differ, but the trace over masses at definite KK level is preserved.

Comparing gaugings

Inserting the uplifted metrics in the BE equation, find KK spectra which evaluate to [K.Dimmitt, GL, P.Ntokos, O.Varela '19]:

Solution	$L^2 M^2 @ SO(8)$	$L^2 M^2 @$ ISO(7)
$\mathcal{N} = 8 \operatorname{SO}(8)$	$\frac{1}{4}n(n+6)$	-
$\mathcal{N} = 2 \ \mathrm{U}(3)_c$	$\frac{\frac{1}{2}n(n+6) - \frac{1}{3}\ell(\ell+4) - \frac{1}{9}(\ell-2p)^2}{+\frac{1}{18}[3(n-2r) + 4(\ell-2p)]^2}$	$\frac{2}{3}k(k+5) - \frac{1}{3}\ell(\ell+4) + \frac{1}{9}(\ell-2p)^2$
$\mathcal{N} = 1 \ \mathrm{G}_2$	$\frac{5}{8}n(n+6) - \frac{5}{12}k(k+5)$	$\frac{5}{12}k(k+5)$
$\mathcal{N} = 1 \mathrm{SU}(3)$	-	$\frac{5}{6}k(k+5) - \frac{5}{12}\ell(\ell+4) - \frac{5}{36}(\ell-2p)^2$
$\mathcal{N} = 0 \ \mathrm{SO}(7)_v$	$\frac{3}{4}n(n+6) - \frac{3}{5}k(k+5)$	$\frac{2}{5}k(k+5)$
$\mathcal{N} = 0 \ \mathrm{SO}(7)_c$	$\frac{3}{10}n(n+6)$	_
$\mathcal{N} = 0 \ \mathrm{SU}(4)_c$	$\frac{3}{8}n(n+6) - \frac{3}{16}(n-2r)^2$	_
$\mathcal{N} = 0 \ \mathrm{SO}(6)_v$	-	$k(k+5) - \frac{3}{4}\ell(\ell+4)$
$\mathcal{N} = 0 \ \mathrm{G}_2$	-	$\frac{1}{2}k(k+5)$

and similarly for the type IIB uplift of $[SO(6) \times SO(1,1)] \ltimes \mathbb{R}^{12}$.

 \implies Individual eigenvalues are not preserved.

Universality of the traces

The sum of masses corresponding to a specific SO(8) level is universal in the U(3) solutions on S^6 and S^7 [Y.Pang, J.Rong, O.Varela '17].

Same occurs for all solutions if the D = 4 spectra already matches!

E.g.: for the SU(4)/SO(6) solutions of M-theory and mIIA, we find:

$$L^{2} \operatorname{tr} M_{(n)}^{2}[\text{D11}] \equiv L^{2} \sum_{r=0}^{n} M_{n,r}^{2} d_{n,r} = \frac{39}{2} D_{n-1,10} ,$$
$$L^{2} \operatorname{tr} M_{(n)}^{2}[\text{mIIA}] \equiv L^{2} \sum_{k=0}^{n} \sum_{\ell=0}^{k} M_{k,\ell}^{2} d_{k,\ell} = \frac{39}{2} D_{n-1,10} ,$$

from $[n, 0, 0, 0]_{SO(8)} \xrightarrow{SU(4) \times U(1)} \bigoplus_{r=0}^{n} [r, 0, n-r]_{2r-n}$, etc.

Same value obtained for IIB S-fold solution modulo small provisos.

In $\mathcal{N} = 8$ D = 4 gauged supergravities, there exist closed formulae for the mass matrices of the fields

[A. Le Diffon, H.Samtleben, M.Trigiante '11].

E.g., for vectors

$$(M_v^2)_{\mathbb{M}}^{\mathbb{N}} = -\frac{g^2}{24} \big[\operatorname{tr}(X_{\mathbb{M}} X_{\mathbb{P}}) + \operatorname{tr}(\mathcal{M}^{-1} X_{\mathbb{M}} \mathcal{M} X_{\mathbb{P}}^T) \big] \mathcal{M}^{\mathbb{P}\mathbb{N}}$$

Very lately, this has been extended up the KK tower via ExFT (see [E.Malek, H.Samtleben '19], [O.Varela '20], [O.Varela, M.Cesàro '20]).

But for gravitons we do not need that much machinery!

A duality covariant approach

For the gaugings considered here, $G \subset SL(8) \subset E_{7(7)}$, and the graviton eigenfunctions are polynomials in \mathbb{R}^8 coordinates,

$$\mathcal{Y}^{A_1...A_m} = \mu^{(A_1}...\mu^{A_m)} - \text{traces}, \qquad m = 0, 1, 2, ...,$$

with μ^A in the **8** of SL(8) constrained as $\theta_{AB}\mu^A\mu^B = 1$.

A duality covariant approach

For the gaugings considered here, $G \subset SL(8) \subset E_{7(7)}$, and the graviton eigenfunctions are polynomials in \mathbb{R}^8 coordinates,

$$\mathcal{Y}^{A_1\dots A_m} = \mu^{(A_1}\dots\mu^{A_m)} - \text{traces}, \qquad m = 0, 1, 2, \dots,$$

with μ^A in the **8** of SL(8) constrained as $\theta_{AB}\mu^A\mu^B = 1$.

Then, BE PDE becomes an algebraic eigenvalue problem with

$$\mathcal{M}^2 = \operatorname{diag}(M^2_{(0)}, M^2_{(1)}, \dots, M^2_{(m)}, \dots),$$

with the blocks being [K.Dimmitt, GL, P.Ntokos, O.Varela '20]:

$$\begin{split} M^2_{(0)} &= 0 , \qquad (M^2_{(1)})_A{}^B = -g^2 \mathcal{M}^{\mathbb{M}\mathbb{N}} \Theta_{\mathbb{M}}{}^B{}_C \Theta_{\mathbb{N}}{}^C{}_A , \\ (M^2_{(m)})_{A_1...A_m}{}^{B_1...B_m} &= -m \, g^2 \mathcal{M}^{\mathbb{M}\mathbb{N}} \Big[\Theta_{\mathbb{M}}{}^{(B_1|}{}_C \, \Theta_{\mathbb{N}}{}^C{}_{(A_1} \delta_{A_2}{}^{|B_2} \dots \delta_{A_m})^{|B_m)} \\ &+ (m-1) \Theta_{\mathbb{M}}{}^{(B_1}{}_{(A_1} \, \Theta_{\mathbb{N}}{}^{B_2}{}_{A_2} \delta_{A_3}{}^{B_3} \dots \delta_{A_m})^{B_m)} \Big] . \end{split}$$

Reducing SL(8) representations to those of G_{iso} , this recovers the values for the masses we obtained before.

Moreover, the universal coefficient in the traces is simply:

$$L^2 \mathrm{tr} \, M^2_{(1)} = \frac{6g^2}{V_0} \mathcal{M}^{\mathbb{M}\mathbb{N}} \, \Theta_{\mathbb{M}}{}^A{}_B \, \Theta_{\mathbb{N}}{}^B{}_A \; .$$

Plan

- Solutions from uplift
 - Gaugings and uplifts
 - Kaluza-Klein gravitons
 - Universality of traces
 - Duality covariant approach
- Other solutions
 - G-structures and the GMPS classification
 - The dual of the \mathcal{Z}^3 -deformed ABJM
 - (numerical) Kaluza-Klein gravitons
 - The space invaders scenario

The G-structures route

Demanding that the internal metric preserves $\mathcal{N} = 2$ and at least two isometries, the line element takes on the local form [M.Gabella, D.Martelli, A.Passias, J.Sparks '12]

$$ds_{11}^2 = \left(\frac{m_{FR}}{48}\right)^{2/3} (1+r^2+\alpha^{-2}) \left\{ ds_4^2 + \frac{f\cdot\alpha}{\sqrt{1+(1+r^2)\alpha^2}} ds^2 (\text{KE}_4) \right. \\ \left. + \frac{\alpha^2}{4} \left[dr^2 + \frac{r^2 f^2}{1+r^2} (d\tilde{\tau}+\sigma)^2 + \frac{1+r^2}{1+(1+r^2)\alpha^2} (d\tilde{\psi} + \frac{f}{1+r^2} (d\tilde{\tau}+\sigma))^2 \right] \right\},$$

with f(r) and $\alpha(r)$ obeying, from the torsion conditions,

$$\frac{f'}{f} = -\frac{1}{2}r\alpha^2 , \qquad \qquad \frac{(r\alpha' - r^2\alpha^3)f}{\sqrt{1 + (1 + r^2)\alpha^2}} = -3 .$$

For $ds^2(\text{KE}_4) = ds^2(\mathbb{CP}_2)$, the isometry group enhances to $SU(3) \times U(1)_{\tilde{\psi}} \times U(1)_{\tilde{\tau}}$, with $U(1)_{\tilde{\tau}}$ broken by fluxes.

There are at least two choices of (f, α) for which the metric extends globally on S^7 in terms of the angles

$$\psi = \frac{1}{p} \tilde{\psi} , \qquad \tau = \tilde{\tau} + \frac{1}{3} \left(1 - \frac{1}{p} \right) \tilde{\psi} , \qquad 0 \le r \le r_0 , \qquad p = 2, 3 ,$$

with ψ and τ of period 2π and r_0 a solution-dependent constant.

There are at least two choices of (f, α) for which the metric extends globally on S^7 in terms of the angles

$$\psi = \frac{1}{p} \tilde{\psi} , \qquad \tau = \tilde{\tau} + \frac{1}{3} \left(1 - \frac{1}{p} \right) \tilde{\psi} , \qquad 0 \le r \le r_0 , \qquad p = 2, 3 ,$$

with ψ and τ of period 2π and r_0 a solution-dependent constant.

Regularity, $S^7\mbox{-topology}$ and AdS/CFT require the asymptotics

$$f \xrightarrow[r \to r_0]{} \frac{3p}{p-1} , \qquad \alpha \xrightarrow[r \to 0]{} wr^{-1+1/p} , \quad \text{with } w > 0 ,$$

$$f \xrightarrow[r \to r_0]{} \frac{2\sqrt{1+r_0^2}}{r_0} (r_0 - r) , \qquad \alpha \xrightarrow[r \to r_0]{} \sqrt{\frac{2}{r_0(r_0 - r)}} .$$

Aside: ABJM and some deformations

ABJM is the superconformal CS-matter theory describing the worldvolume of a stack of M2s on a $\mathbb{C}^4/\mathbb{Z}_k$ orbifold singularity.

For k = 1, susy enhances to $\mathcal{N} = 8$, and the field content includes four chiral superfields $(\mathcal{Z}^1, \mathcal{Z}^2, \mathcal{Z}^3, \mathcal{Z}^4)$ with a quartic superpotential $W \sim \mathcal{Z}^1 \mathcal{Z}^2 \mathcal{Z}^3 \mathcal{Z}^4$.

ABJM admits two manifestly (SU(3), $\mathcal{N} = 2$)-preserving relevant deformations of the superpotential (schematically)

$$\Delta W = (\mathcal{Z}^4)^p , \begin{cases} p = 2 : \text{ CPW} \\ [\text{R.Corrado, K.Pilch, N.P.Warner '02]} \\ p = 3 : \text{ GMPS} \\ [\text{M.Gabella, D.Martelli, A.Passias, J.Sparks '12]} \end{cases}$$

leading to IR R-charges

$$R_1 \equiv R(\mathcal{Z}^A) = \frac{2(p-1)}{3p}, \ A = 1, 2, 3, \qquad R_2 \equiv R(\mathcal{Z}^A) = \frac{2}{p}.$$

The dual of the \mathcal{Z}^p -deformed ABJM

For p = 2 , the CPW solution is recovered for

$$f = 6\left(1 - \frac{r}{r_0}\right), \qquad \alpha = \sqrt{\frac{2}{r(r_0 - r)}}, \qquad r_0 = 2\sqrt{2}.$$

For p = 3, the solution is only known numeric-/perturbatively:

$$f(R) = \frac{9}{2} - cR^2 - \frac{c^2}{9}R^4 + \frac{(2187 - 128c^3)}{3888}R^6 + \frac{(19683c - 1264c^4)}{104976}R^8 + \mathcal{O}(R^{10}),$$

in terms of $R = r^{1/3}$ and a constant c .

Kaluza-Klein gravitons on GMPS

For the p = 3 solution, the eigenvalue problem $\mathcal{LY} = L^2 M^2 \mathcal{Y}$ depends on the operator [M.Cesàro, GL, O.Varela '20]

$$\begin{split} \mathcal{L} &= -\frac{4}{r\alpha^2 f^3} \partial_r \Big[r f^3 \partial_r \Big] - \frac{\sqrt{1 + (1 + r^2)\alpha^2}}{f \cdot \alpha} \Box_{S^5} \\ &- \frac{4}{9} \Big(1 + \frac{1}{r^2 \alpha^2} \Big) \partial_{\psi}^2 - \frac{8}{3} \Big[\frac{2}{9} \Big(1 + \frac{1}{r^2 \alpha^2} \Big) - \frac{1}{r^2 \alpha^2 f} \Big] \partial_{\psi} \partial_{\tau} \\ &- \Big[- \frac{\sqrt{1 + (1 + r^2)\alpha^2}}{f \cdot \alpha} + \frac{16}{81} \Big(1 + \frac{1}{r^2 \alpha^2} \Big) + \frac{4(1 + r^2)}{r^2 \alpha^2 f^2} - \frac{16}{9r^2 \alpha^2 f} \Big] \partial_{\tau}^2 \,, \end{split}$$

and the SU(3)×U(1) $_{\psi}$ ×U(1) $_{\tau}$ isometry can be exploited as

$$\mathcal{Y} = \sum_{\ell,m,j} \xi_{\ell,m,j}(r) \, Y_{\ell,m}(z,\bar{z},\tau) \, e^{ij\psi} \; ,$$

with

$$\Box_{S^5} Y_{\ell,m} = -\ell(\ell+4) Y_{\ell,m} \;, \qquad \partial_\tau Y_{\ell,m} = im Y_{\ell,m} \;.$$

Kaluza-Klein gravitons on GMPS

For the p = 3 solution, the eigenvalue problem $\mathcal{LY} = L^2 M^2 \mathcal{Y}$ depends on the operator [M.Cesàro, GL, O.Varela '20]

$$\begin{split} L^2 M^2 \xi &= -\frac{4}{r\alpha^2 f^3} \frac{d}{dr} \Big[r f^3 \frac{d\xi}{dr} \Big] + \frac{\sqrt{1 + (1 + r^2)\alpha^2}}{f \cdot \alpha} \ell(\ell + 4) \xi \\ &+ \frac{4}{9} \Big(1 + \frac{1}{r^2 \alpha^2} \Big) j^2 \xi + \frac{8}{3} \Big[\frac{2}{9} \Big(1 + \frac{1}{r^2 \alpha^2} \Big) - \frac{1}{r^2 \alpha^2 f} \Big] jm \xi \\ &+ \Big[-\frac{\sqrt{1 + (1 + r^2)\alpha^2}}{f \cdot \alpha} + \frac{16}{81} \Big(1 + \frac{1}{r^2 \alpha^2} \Big) + \frac{4(1 + r^2)}{r^2 \alpha^2 f^2} - \frac{16}{9r^2 \alpha^2 f} \Big] m^2 \xi \;, \end{split}$$

and the $\mathrm{SU}(3){\times}\mathrm{U}(1)_\psi{\times}\mathrm{U}(1)_\tau$ isometry can be exploited as

$$\mathcal{Y} = \sum_{\ell,m,j} \xi_{\ell,m,j}(r) Y_{\ell,m}(z,\bar{z},\tau) e^{ij\psi} ,$$

with

$$\Box_{S^5} Y_{\ell,m} = -\ell(\ell+4) Y_{\ell,m} , \qquad \partial_\tau Y_{\ell,m} = im Y_{\ell,m} . \checkmark$$

The RG flow connecting the SO(8) and GMPS solutions implies that the towers of KK gravitons must be related through

$$[n,0,0,0] \xrightarrow{\mathrm{SU}(3) \times \mathrm{U}(1)_3} \bigoplus_{\ell=0}^n \bigoplus_{t=0}^{n-\ell} \bigoplus_{p=0}^{\ell} [p, \ \ell-p]_{-R_1(\ell-2p)+R_2(n-\ell-2t)} ,$$

with the two sets of quantum numbers related as

$$n = 2k + |j| + \ell$$
, $m = 2p - \ell$, $j = n - \ell - 2t$.

Thus, we can sweep over the complete mass spectrum, and the schematic form of the dual operators, can be similarly inferred.

Kaluza-Klein gravitons on GMPS Completeness of the spectrum

n	$[p, \ell - p]_{\frac{4}{9}(2p-\ell) + \frac{2}{3}(n-\ell-2t)}$	$d_{p,\ell-p}$	$L^2 M^2$	Δ	Dual operator	Short?
0	$[0,0]_0$	1	0	3	$\mathcal{T}^{(0)}_{lphaeta} _{s=2}$	\checkmark
1	$[0,0]_{\pm \frac{2}{3}}$	1	$\frac{22}{9}$	$\frac{11}{3}$	$\mathcal{T}^{(0)}_{lphaeta}\mathcal{Z}^4 _{s=2}, ext{c.c.}$	✓
-	$[1,0]_{\frac{4}{9}}, [0,1]_{-\frac{4}{9}}$	3	1.76	3.50	$\mathcal{T}^{(0)}_{lphaeta}\mathcal{Z}^A _{s=2}, ext{c.c.}$	
	$[0,0]_{\pm \frac{4}{3}}$	1	$\frac{52}{9}$	$\frac{13}{3}$	$\mathcal{T}^{(0)}_{\alpha\beta}(\mathcal{Z}^4)^2 _{s=2}, \mathrm{c.c.}$	✓
	$[1,0]_{-\frac{2}{9}}, [0,1]_{\frac{2}{9}}$	3	4.68	4.13	$\mathcal{T}^{(0)}_{lphaeta}\mathcal{Z}^Aar{\mathcal{Z}}_4 _{s=2}, ext{c.c.}$	
2	$[2,0]_{\frac{8}{9}}, [0,2]_{-\frac{8}{9}}$	6	3.88	3.97	$\mathcal{T}^{(0)}_{\alpha\beta}\mathcal{Z}^{(A}\mathcal{Z}^{B)} _{s=2}, ext{ c.c.}$	
	$[1,0]_{\frac{10}{9}}, [0,1]_{-\frac{10}{9}}$	3	5.07	4.21	$\mathcal{T}^{(0)}_{lphaeta}\mathcal{Z}^A\mathcal{Z}^4 _{s=2}$, c.c.	
	$[0,0]_0$	1	5.92	4.36	$\mathcal{T}^{(0)}_{\alpha\beta}(1-4a^2\mathcal{Z}^4\bar{\mathcal{Z}}_4+b\mathcal{Z}^A\bar{\mathcal{Z}}_A) _{s=2}$	
	$[1,1]_0$	8	4	4	$\mathcal{T}^{(0)}_{\alpha\beta}(\mathcal{Z}^A\bar{\mathcal{Z}_B} - \frac{1}{3}\delta^A_B\mathcal{Z}^C\bar{\mathcal{Z}}_C) _{s=2}$	

For every n, and both p = 2, 3, the modes $[0, 0]_{\pm R_2 n}$ have mass

$$L^2 M_n^2 = R_2 n \left(R_2 n + 3 \right) \,.$$

These states are short, with $\Delta_n = R_2 n + 3$, and dual to $\mathcal{T}_{\alpha\beta}^{(0)}(\mathcal{Z}^4)^n$.

The corresponding eigenfunctions can be found analytically to be

$$\mathcal{Y}_j = (\xi_1)^j e^{ij\psi} = R^j e^{ij\psi}$$

-- Numerical Result -- Expected: $\xi = aR^3$ -- Numerical Result -- Expected: $\xi = aR^3$ -- Numerical Result -- Expected: $\xi = aR^3$

j=1 j=2 j=3

For $n \ge 2$, and both p = 2, 3, the modes $[1, 1]_{\pm R_2(n-2)}$ are dual to

$$\mathcal{T}^{\scriptscriptstyle (0)}_{\alpha\beta} \Big(\mathcal{Z}^A \mathcal{Z}_B - \frac{1}{3} \delta^A_B \mathcal{Z}^C \mathcal{Z}_C \Big) (\mathcal{Z}^4)^{n-2}$$

These operators are long, but $\Delta_n = (n-2)R_2 + 4$ (they are shadows of the massless vector [M.Billo et al. '00]).

For $n \geq 2$, and both p = 2, 3, the modes $[1, 1]_{\pm R_2(n-2)}$ are dual to

$$\mathcal{T}^{\scriptscriptstyle(0)}_{\alpha\beta} \Big(\mathcal{Z}^A \mathcal{Z}_B - \frac{1}{3} \delta^A_B \mathcal{Z}^C \mathcal{Z}_C \Big) (\mathcal{Z}^4)^{n-2}$$

These operators are long, but $\Delta_n = (n-2)R_2 + 4$ (they are shadows of the massless vector [M.Billo et al. '00]).

The corresponding eigenfunctions have the form

$$\mathcal{Y}_j = \xi_8 R^j Y_{2,0} e^{ij\psi} , \quad j = 0, 1, \dots$$

with $\xi_8 \propto f(r)$.

The relation $\xi_8 \propto f(r)$ holds on CPW too, and in both cases, as well

$$\xi_8 = (\xi_3)^2$$
.

Also, for CPW, $(\xi_3)^2 + (\xi_1)^2 = 1$ is the constraint defining S^7 in \mathbb{R}^8 .

On the GMPS solution, that would mean

$$f = \frac{9}{2} \left[1 - \left(\frac{r}{r_0}\right)^{2/3} \right] \quad \Rightarrow \quad \alpha^2 = \frac{4}{3r^2 \left[\left(\frac{r}{r_0}\right)^{-2/3} - 1 \right]}$$

The relation $\xi_8 \propto f(r)$ holds on CPW too, and in both cases, as well

$$\xi_8 = (\xi_3)^2$$
.

Also, for CPW, $(\xi_3)^2 + (\xi_1)^2 = 1$ is the constraint defining S^7 in \mathbb{R}^8 .

On the GMPS solution, that would mean

$$f = \frac{9}{2} \left[1 - \left(\frac{r}{r_0}\right)^{2/3} \right] \quad \Rightarrow \quad \alpha^2 = \frac{4}{3r^2 \left[\left(\frac{r}{r_0}\right)^{-2/3} - 1 \right]}$$

Sadly, $\nexists r_0$ such that

$$\frac{(r\alpha' - r^2\alpha^3)f}{\sqrt{1 + (1 + r^2)\alpha^2}} = -3 \; .$$

This means that our S^7 is not isometrically embedded in \mathbb{R}^8 ! (c.f. the squashed S^7 of [M.Awada, M.Duff, C.Pope '83]) Another similarity with the ADP squashed S^7 is that it neither allows an $\mathcal{N} = 8$ consistent truncation.

In the GMPS case, it only accommodates minimal $\mathcal{N} = 2$, D = 4 sugra [GL, O.Varela '19], as expected from [J.Gauntlett, O.Varela '07].

Also related to supersymmetry, we must allocate modes with different spins and same SU(3) charges in supermultiplets of $OSp(4|2)_3 \times SU(3)$, which is the preserved supergroup.

Another similarity with the ADP squashed S^7 is that it neither allows an $\mathcal{N} = 8$ consistent truncation.

In the GMPS case, it only accommodates minimal $\mathcal{N} = 2$, D = 4 sugra [GL, O.Varela '19], as expected from [J.Gauntlett, O.Varela '07].

Also related to supersymmetry, we must allocate modes with different spins and same SU(3) charges in supermultiplets of $OSp(4|2)_3 \times SU(3)$, which is the preserved supergroup.

However, as for the ADP S^7 again, this allocation cannot be made level by level!

The space invaders scenario

Spin	SO(8)		$SU(3) \times U(1)_3$										
2	1	1_0											
3 2	8 _s	1_{+1} 1_{-1}	$3_{\frac{1}{9}}$	$\bar{3}_{-\frac{1}{9}}$									
1	28	1 0	$3_{-\frac{8}{9}}$ $3_{\frac{10}{9}}$	$\overline{3}_{\frac{8}{9}}$ $\overline{3}_{-\frac{10}{9}}$	8 0	$3_{-\frac{2}{9}}$	3 ₂ 9	10					
	*		$3_{-\frac{8}{9}}$	$\bar{3}_{\frac{8}{9}}$									
$\frac{1}{2}$	56 _s		$3\frac{1}{9}$ $3\frac{1}{1}$	$\overline{3}_{-\frac{1}{9}}$ $\overline{3}_{-\frac{1}{9}}$	${f 8}_{+1}$ ${f 8}_{-1}$	$3_{\frac{7}{9}}$ $3_{-\frac{11}{9}}$	$\overline{3}_{-\frac{7}{9}}$ $\overline{3}_{\frac{11}{9}}$	1_{+1} 1_{-1}	$6_{-\frac{1}{9}}$	$\overline{6}_{\frac{1}{9}}$	$1_{rac{1}{3}}$	$1_{-rac{1}{3}}$	
	٦		$3_{-\frac{17}{9}}$	$\overline{3}_{rac{17}{9}}$		3 ₇ 9	$\bar{3}_{-\frac{7}{9}}$	1_{+1} 1_{-1}					$3\frac{1}{9}$ $\overline{3}_{-\frac{1}{9}}$
0	35_v				8 0	$3_{-\frac{2}{9}}$	$\bar{3}_{\frac{2}{9}}$	1 ₀	$6_{\frac{8}{9}}$	$\bar{6}_{-\frac{8}{9}}$	$1_{\frac{4}{3}}$	$1_{-\frac{4}{3}}$	$3_{\frac{10}{9}}$ $\bar{3}_{-\frac{10}{9}}$
	35 _c		$3_{-\frac{8}{9}}$	$\bar{3}_{\frac{8}{9}}$	8 0	$3_{-\frac{2}{9}}$	$\bar{3}_{\frac{2}{9}}$	10	$6_{-\frac{10}{9}}$	$\bar{6}_{rac{10}{9}}$	$1_{-\frac{2}{3}}$	$1_{\frac{2}{3}}$	
	*					$3_{\frac{16}{9}}$	$\bar{3}_{-\frac{16}{9}}$	$egin{array}{c} {f 1}_0 \ {f 1}_{+2} \ {f 1}_{-2} \end{array}$					$\begin{array}{c} 3_{-\frac{8}{9}}, \bar{3}_{\frac{8}{9}} \\ 3_{-\frac{8}{9}}, \bar{3}_{\frac{8}{9}} \\ 3_{-\frac{2}{9}}, \bar{3}_{\frac{2}{9}} \\ 3_{-\frac{2}{9}}, \bar{3}_{\frac{2}{9}} \\ 1_{0} \end{array}$
		Massless graviton	Short gravitino	Short gravitino	Massless vector	Short vector	Short vector	Long vector	Massive hyper	Massive hyper	Massive hyper	Massive hyper	Eaten modes

Today we showed:

- The complete spectra of KK gravitons around solutions of M-theory, mIIA and IIB from uplift and the universality of the mass traces.
- An SL(8)-covariant formula for their KK masses.
- The spectrum of gravitons around the dual of the cubic deformation of ABJM and some short supermultiplets.
- This solution can't be obtained from uplift of a maximal gauged supergravity, its metric isn't isometrically embedded in R⁸ and its spectrum displays space invasion.

Many conundra remain!

- Mechanism behind the universal behaviour?
- Generalisation of \mathcal{M}^2 and \mathcal{Y} for gaugings outside SL(8)?
- Embedding of GMPS in \mathbb{CP}^4 ?
- Correct invasion pattern?
- Exact relation between Uplift from $\mathcal{N} = 8 \leftrightarrow S^7 \hookrightarrow \mathbb{R}^8$ isometric \leftrightarrow No space inv.?

Many conundra remain!

- Mechanism behind the universal behaviour?
- Generalisation of \mathcal{M}^2 and \mathcal{Y} for gaugings outside SL(8)?
- Embedding of GMPS in \mathbb{CP}^4 ?
- Correct invasion pattern?
- Exact relation between Uplift from $\mathcal{N} = 8 \leftrightarrow S^7 \hookrightarrow \mathbb{R}^8$ isometric \leftrightarrow No space inv.?

Muito obrigado!!

The IR-fixed point dual to the GMPS solution is at the end of the flow generated by $\Delta W = (\mathcal{Z}^4)^3$.

At the level of the lagrangian,

$$\Delta \mathcal{L} = (Z^4)^2 (\bar{Z}^4)^2 + \frac{1}{2} \chi^4 \chi^4 Z^4 + \frac{1}{2} \bar{\chi}^4 \bar{\chi}^4 \bar{Z}^4 ,$$

which belong to the 294_v and 224_{cv} of SO(8), and therefore outside the supergravity level.

Kaluza-Klein gravitons on GMPS _{Numerics}

We can scan through the quantum numbers ℓ, m, j to obtain the *complete spectrum* numerically:

- So For given ℓ, m, j, we use the asymptotics for f and α to get the ODE near R → 0 and R → R₀, and keep the normalisable solution at each end.
- We integrate numerically the complete ODE using the above solutions as seeds. This is done from left and right with a parameter λ labelling all possible masses.
- The valid $\xi_{\lambda}^{L}(R)$ and $\xi_{\lambda}^{R}(R)$ must be linearly dependent over the whole range of R, i.e.:

$$W(\lambda, R) = \xi_{\lambda}^{L}(R) \, \dot{\xi}_{\lambda}^{R}(R) - \xi_{\lambda}^{R}(R) \, \dot{\xi}_{\lambda}^{L}(R) = 0 \,, \quad \forall R$$

This selects an infinite discrete set of λ 's that we label by $k = 0, 1, \ldots$.

Failure of the isometric embedding

We can check that $\xi_3 \propto \sqrt{\xi_8}$, but $\xi_3 \not\propto \sqrt{1-\xi_1^2}$:

The space invaders scenario

In contrast, for the $\mathcal{N} = 1$ G₂ solution

Spin	SO(8)			G_2			
2	1	1					
$\frac{3}{2}$	8_{s}	1	7				
1	28		7 + 7	14			
$\frac{1}{2}$	56_{s}		7	14	1	27	7
0	35_v				1	27	7
	35_c				1	27	7
		Massless graviton	Massive gravitino	Massless vector	Wess-Zumino	Wess-Zumino	Eaten modes

And the same happens for the other solutions from uplift (see [I.R.Klebanov, T.Klose, A.Murugan, '09] for $U(3)_c$).