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Introduction

Goal of this talk: discuss the role of WKB in

supersymmetric gauge theories

Seiberg-Witten theory: find the effective action of N = 2

supersymmetric theories

Appears in string theory in describing CY manifolds for

compactification

Seiberg-Witten theory can be discussed in terms of WKB

approximation

Present: studying via WKB a deformation of classical

quantum mechanics
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Seiberg-Witten theory
The setting

SU(2) pure gauge theory

Aiµ

λiα ψβi

φiW i
α

Φi

SU(2) breaking ground state: φ = aσ3

Gauge invariant parameter: u(a) = trφ2 = 2a2
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Seiberg-Witten theory
Moduli space

u coordinate on the moduli space of inequivalent vacua

Not all u points are equal!

u 6= 0→ SU(2) is broken into U(1): one massless boson,

two massive ones

u = 0→ SU(2) is realized: three massless bosons

u =∞→ weak coupling region
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Seiberg-Witten theory
The manifold of vacua

× u = 0

u =∞

Salvatore Baldino Seiberg-Witten and WKB



8/33

Seiberg-Witten theory

WKB analysis and Seiberg-Witten curves

A deformation: finite difference WKB

Seiberg-Witten theory
Effective Lagrangian

Quantum theory is determined by computing an effective

Lagrangian

Most generic Lagrangian

L =
1

4π
Im

(∫
d4θK(a, ā) +

∫
d2θ

1

2
τ(a)WαWα

)
The Kähler potential K(a, ā) and the effective coupling τ(a) are

expressed as

K(a, ā) =
∂F(a)

∂a
, τ(a) =

∂2F(a)

∂2a
=
θ(a)

π
+

8πi

g2(a)

F(a): prepotential
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Seiberg-Witten theory
The prepotential

Classical: the prepotential must reproduce the classical SU(2)

Lagrangian

Fcl(a) =
1

2
τ0a

2

Quantum version: instanton corrections!

F(a) =
1

2
τ0a

2 +
i

π
a2 log

(
a2

Λ2

)
+

1

2πi
a2
∞∑
l=1

cl

(
Λ

a

)4l

Goal of SW: compute cl
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Seiberg-Witten theory
Non trivial monodromies

A consequence: τ(a) is multi valued

As an example: around ∞

τ = const. +
2i

π
log
( u

Λ2

)
+ single-valued

Under rotation of 2πi, τ → τ − 4

This is good: Im{(τ)} is harmonic, cannot have a minimum if

globally defined

Now it can have a minimum → metric is positive definite
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Seiberg-Witten theory
The quantum picture

Quantum theory moduli space:

The singularity at ∞ stays there

u = 0 is no more a singular point

Two new singularities at a scale Λ: u = ±Λ2
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Seiberg-Witten theory
Quantum moduli space

× u = 0

u =∞

×

×

u = Λ2

u = −Λ2
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Seiberg-Witten theory
Quantum singularities

Some motivation:

u = 0 not a singularity: if there was, there would be an

R−symmetry relating the massive bosons becoming

massless

u = ±Λ2 singularities: BPS solitons become massless! New

massless particles enter the spectrum

Total number of singularities dictated by Witten index for

SU(2), that is 2
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Seiberg-Witten theory
BPS states

A good way to understand masses: BPS states

For central charge Z, mass of solitons is bound from below:

m2 ≥ |Z|2

In SU(2): central charge

Z = qa+ gaD

aD: “Higgs magnetic field” dual to the “Higgs electric field” a

aD =
∂F
∂a
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Seiberg-Witten theory
BPS singularities

(q, g) - “electric” and “magnetic” charges

BPS states saturate the bound: m2 = |Z|2

Around the particular points:

u = 0: not a singular point, u = 2a2 cannot hold

u = Λ2: if a 6= 0 and aD = 0, a BPS state with purely

magnetic charge can be a vacuum configuration of zero

mass

u = −Λ2: similar situation (not necessarily a = 0 and

aD 6= 0)

To describe prepotential: three patches (one around each

singularity) are needed. No global coordinate!
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Seiberg-Witten theory
Patching the local data

(aD, a) forms a vector bundle on the manifold of minima

Around singularities: non trivial monodromy(
aD
a

)
→MP

(
aD
a

)

Monodromy matrices detrmined by asymptotic behaviour and

charge of BPS singularities

M (q,g) =

(
1 + qg q2

−g2 1− gq

)
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Seiberg-Witten theory
Determining monodromies

At infinity: knowing semiclassical solution and its monodromy

M∞ =

(
−1 4

0 −1

)
Global consistency condition

M∞ = MΛ2M−Λ2

Determines solution uniquely, up to trivial conjugations: (1, 0)

for Λ2, (1,−2) for −Λ2

The problem is now mathematical: find a(u) and aD(u) with

those explicit monodromies (Riemann-Hilbert problem,

uniquely defined)
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WKB and SW
Motivation

The natural setting for this problem: WKB analysis

Moduli space:

Mu ∼ H+/Γ0(4)

Γ0(4) subgroup of SL(2,Z) generated by monodromy matrices

Realize Mq as a Riemann surface with Mq as moduli space!

In this case, the surface is the subset of C2 is given by (x, y)

with

y2 = (x2 − u)2 − Λ4

Analogy:

−~2∂x
2ψ(x, ~) = 2(E − V (x))ψ(x, ~)
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WKB and SW
All orders WKB

Define the quantum momentum as

ψ(x, ~) = exp

(
i

~

∫ x

x0

P (t, ~)dt

)
The momentum solves

i~∂xP (x, ~)− [P (x, ~)]2 = 2(E − V (x)) = [p(x)]2

Series expansion of the momentum in ~:

P (x, ~) =

∞∑
n=0

~nPn(x)

Determines recursion relations for the functions Pn(x)
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WKB and SW
Integration cycles

Relevant quantities for

non perturbative effects:

integrations over cycles

Si(~) =

∮
γi

P (t, ~)

If γi is in a forbidden

region, Si is related to

tunneling amplitudes

Number of γi: properties

of the spectral curve

y2 = 2(E − V (x))
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WKB and SW
The bridge

Bridge between WKB and SW:

a(u) =

∮
α
λSW , aD(u) =

∮
β
λSW , λSW =

1√
2π
x2 dx

y(x, u)

(α, β) standard cycle basis of the torus: cycles between zeroes

e1 and e2 of y, and e2 and e3

Behaviour of cycles at varying u: singularities when two zeroes

degenerate

Proposed a(u) and aD(u) have the correct monodromies
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WKB and SW
The torus

• • • •
e1 e2 e3 e4

α

β
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WKB and SW
The solution

Solving the WKB system is done through Picard-Fuchs

equations (
(Λ4 − u2)∂u

2∂u
2 − 2u∂u −

1

4

)
∂ua(u) = 0,

and analogous equation for aD(u)

The cycles are hypergeometric functions!

Asymptotic form → determination of quantum corrections to

prepotential
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WKB and SW
Explicit solution

Explicit solution:

a(u) =
i

4
Λ(u− 1)2F1

(
3

4
,
3

4
, 2; 1− u

)
aD(u) =

i

4
Λu

1
4 2F1

(
−1

4
,
1

4
, 1;u

)
Prepotentials are obtained by integration
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WKB and SW
Conclusion

SW theory: BPS solitons in SU(2) pure gauge theory

Through SW theory, find quantum corrections of

prepotential

SW problem can be obtained as a Riemann-Hilbert

problem

WKB gives a very natural setting for solving this problem

At the end: all non perturbative information determined!
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WB and SW
Generalizations

A note: for other gauge groups, the same procedure has been

generalized

What can change is the moduli spaceMu and the spectral curve

For SU(N)

y2 = (PN (x, ui))
2 − Λ2N

PN (x, ui) degree N polynomial with coefficients determined by

ui

General WKB problems are interesting!
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Finite difference WKB
Why?

Present work - understand a deformation of classical quantum

mechanics

H = 2 cosh (−i~∂x) + V (x)

Spectral curves:

2 cosh y = E − V (x)
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Finite difference WKB
The expansion

Same expansion as ordinary WKB:

ψ(x, ~) = exp

(
i

~

∫ x

x0

P (t, ~)dt

)
P (x, ~) solves an integral equation

Basics of WKB are still working: instantons described by

Si(~) =

∮
γi

P (t, ~)
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Finite difference WKB
Motivations from string theory

The spectral curves arise in Type IIA string theory and in the

dual heterotic description

Equation of the spectral curve for SU(Nc) symmetry

y +
1

y
= 2PNc(x)2

Finite differences also appear in Toda lattice theory

The model is integrable
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Finite difference WKB
Our goals

Reproduce known results in a WKB setting

Give a semiclassical interpretation to the phenomena

arising in this deformed model

Exact quantization conditions including instanton

corrections

Find spectra of important operators
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