Seiberg-Witten theory, string theory and WKB analysis

Salvatore Baldino

Instituto Superior Técnico
(Virtual) Lisbon, 21/01/2021

Introduction

- Goal of this talk: discuss the role of WKB in supersymmetric gauge theories
- Seiberg-Witten theory: find the effective action of $\mathcal{N}=2$ supersymmetric theories
- Appears in string theory in describing CY manifolds for compactification
- Seiberg-Witten theory can be discussed in terms of WKB approximation
- Present: studying via WKB a deformation of classical quantum mechanics

Outline

(1) Seiberg-Witten theory
(2) WKB analysis and Seiberg-Witten curves
(3) A deformation: finite difference WKB
(1) Seiberg-Witten theory
(2) WKB analysis and Seiberg-Witten curves
(3) A deformation: finite difference WKB

Seiberg-Witten theory

The setting
$S U(2)$ pure gauge theory

$S U(2)$ breaking ground state: $\phi=a \sigma_{3}$
Gauge invariant parameter: $u(a)=\operatorname{tr} \phi^{2}=2 a^{2}$

Seiberg-Witten theory

Moduli space
u coordinate on the moduli space of inequivalent vacua
Not all u points are equal!

- $u \neq 0 \rightarrow S U(2)$ is broken into $U(1)$: one massless boson, two massive ones
- $u=0 \rightarrow S U(2)$ is realized: three massless bosons
- $u=\infty \rightarrow$ weak coupling region

Seiberg-Witten theory

The manifold of vacua

Seiberg-Witten theory

Effective Lagrangian

Quantum theory is determined by computing an effective Lagrangian

Most generic Lagrangian

$$
\mathcal{L}=\frac{1}{4 \pi} \operatorname{Im}\left(\int \mathrm{~d}^{4} \theta K(a, \bar{a})+\int \mathrm{d}^{2} \theta \frac{1}{2} \tau(a) W^{\alpha} W_{\alpha}\right)
$$

The Kähler potential $K(a, \bar{a})$ and the effective coupling $\tau(a)$ are expressed as

$$
K(a, \bar{a})=\frac{\partial \mathcal{F}(a)}{\partial a}, \quad \tau(a)=\frac{\partial^{2} \mathcal{F}(a)}{\partial^{2} a}=\frac{\theta(a)}{\pi}+\frac{8 \pi \mathrm{i}}{g^{2}(a)}
$$

$\mathcal{F}(a)$: prepotential

Seiberg-Witten theory

The prepotential

Classical: the prepotential must reproduce the classical $S U(2)$
Lagrangian

$$
\mathcal{F}_{\mathrm{cl}}(a)=\frac{1}{2} \tau_{0} a^{2}
$$

Quantum version: instanton corrections!

$$
\mathcal{F}(a)=\frac{1}{2} \tau_{0} a^{2}+\frac{\mathrm{i}}{\pi} a^{2} \log \left(\frac{a^{2}}{\Lambda^{2}}\right)+\frac{1}{2 \pi \mathrm{i}} a^{2} \sum_{l=1}^{\infty} c_{l}\left(\frac{\Lambda}{a}\right)^{4 l}
$$

Goal of SW: compute c_{l}

Seiberg-Witten theory

Non trivial monodromies

A consequence: $\tau(a)$ is multi valued
As an example: around ∞

$$
\tau=\text { const. }+\frac{2 \mathrm{i}}{\pi} \log \left(\frac{u}{\Lambda^{2}}\right)+\text { single-valued }
$$

Under rotation of $2 \pi \mathrm{i}, \tau \rightarrow \tau-4$
This is good: $\operatorname{Im}\{(\tau)\}$ is harmonic, cannot have a minimum if globally defined

Now it can have a minimum \rightarrow metric is positive definite

Seiberg-Witten theory

The quantum picture

Quantum theory moduli space:

- The singularity at ∞ stays there
- $u=0$ is no more a singular point
- Two new singularities at a scale $\Lambda: u= \pm \Lambda^{2}$

Seiberg-Witten theory

Quantum moduli space

Seiberg-Witten theory

Quantum singularities

Some motivation:

- $u=0$ not a singularity: if there was, there would be an R-symmetry relating the massive bosons becoming massless
- $u= \pm \Lambda^{2}$ singularities: BPS solitons become massless! New massless particles enter the spectrum
- Total number of singularities dictated by Witten index for $S U(2)$, that is 2

Seiberg-Witten theory

BPS states

A good way to understand masses: BPS states
For central charge Z, mass of solitons is bound from below:
$m^{2} \geq|Z|^{2}$
In $S U(2)$: central charge

$$
Z=q a+g a_{D}
$$

a_{D} : "Higgs magnetic field" dual to the "Higgs electric field" a

$$
a_{D}=\frac{\partial \mathcal{F}}{\partial a}
$$

Seiberg-Witten theory

BPS singularities
(q, g) - "electric" and "magnetic" charges
BPS states saturate the bound: $m^{2}=|Z|^{2}$
Around the particular points:

- $u=0$: not a singular point, $u=2 a^{2}$ cannot hold
- $u=\Lambda^{2}$: if $a \neq 0$ and $a_{D}=0$, a BPS state with purely magnetic charge can be a vacuum configuration of zero mass
- $u=-\Lambda^{2}$: similar situation (not necessarily $a=0$ and $a_{D} \neq 0$)

To describe prepotential: three patches (one around each singularity) are needed. No global coordinate!

Seiberg-Witten theory

Patching the local data
(a_{D}, a) forms a vector bundle on the manifold of minima
Around singularities: non trivial monodromy

$$
\binom{a_{D}}{a} \rightarrow M_{P}\binom{a_{D}}{a}
$$

Monodromy matrices detrmined by asymptotic behaviour and charge of BPS singularities

$$
M^{(q, g)}=\left(\begin{array}{cc}
1+q g & q^{2} \\
-g^{2} & 1-g q
\end{array}\right)
$$

Seiberg-Witten theory

Determining monodromies

At infinity: knowing semiclassical solution and its monodromy

$$
M_{\infty}=\left(\begin{array}{cc}
-1 & 4 \\
0 & -1
\end{array}\right)
$$

Global consistency condition

$$
M_{\infty}=M_{\Lambda^{2}} M_{-\Lambda^{2}}
$$

Determines solution uniquely, up to trivial conjugations: $(1,0)$ for $\Lambda^{2},(1,-2)$ for $-\Lambda^{2}$

The problem is now mathematical: find $a(u)$ and $a_{D}(u)$ with those explicit monodromies (Riemann-Hilbert problem, uniquely defined)

(1) Seiberg-Witten theory

(2) WKB analysis and Seiberg-Witten curves

3 A deformation: finite difference WKB

WKB and SW

Motivation

The natural setting for this problem: WKB analysis
Moduli space:

$$
\mathcal{M}_{u} \sim \mathbb{H}^{+} / \Gamma_{0}(4)
$$

$\Gamma_{0}(4)$ subgroup of $S L(2, \mathbb{Z})$ generated by monodromy matrices
Realize \mathcal{M}_{q} as a Riemann surface with \mathcal{M}_{q} as moduli space!
In this case, the surface is the subset of \mathbb{C}^{2} is given by (x, y) with

$$
y^{2}=\left(x^{2}-u\right)^{2}-\Lambda^{4}
$$

Analogy:

$$
-\hbar^{2} \partial_{x}^{2} \psi(x, \hbar)=2(E-V(x)) \psi(x, \hbar)
$$

WKB and SW

All orders WKB

- Define the quantum momentum as

$$
\psi(x, \hbar)=\exp \left(\frac{\mathrm{i}}{\hbar} \int_{x_{0}}^{x} P(t, \hbar) \mathrm{d} t\right)
$$

- The momentum solves

$$
\mathrm{i} \hbar \partial_{x} P(x, \hbar)-[P(x, \hbar)]^{2}=2(E-V(x))=[p(x)]^{2}
$$

- Series expansion of the momentum in \hbar :

$$
P(x, \hbar)=\sum_{n=0}^{\infty} \hbar^{n} P_{n}(x)
$$

- Determines recursion relations for the functions $P_{n}(x)$

WKB and SW

Integration cycles

- Relevant quantities for non perturbative effects: integrations over cycles

$$
S_{i}(\hbar)=\oint_{\gamma_{i}} P(t, \hbar)
$$

- If γ_{i} is in a forbidden region, S_{i} is related to tunneling amplitudes
- Number of γ_{i} : properties of the spectral curve $y^{2}=2(E-V(x))$

WKB and SW

The bridge

Bridge between WKB and SW:

$$
a(u)=\oint_{\alpha} \lambda_{S W}, \quad a_{D}(u)=\oint_{\beta} \lambda_{S W}, \quad \lambda_{S W}=\frac{1}{\sqrt{2} \pi} x^{2} \frac{\mathrm{~d} x}{y(x, u)}
$$

(α, β) standard cycle basis of the torus: cycles between zeroes e_{1} and e_{2} of y, and e_{2} and e_{3}

Behaviour of cycles at varying u : singularities when two zeroes degenerate

Proposed $a(u)$ and $a_{D}(u)$ have the correct monodromies

WKB and SW

The torus

WKB and SW

The solution

Solving the WKB system is done through Picard-Fuchs equations

$$
\left(\left(\Lambda^{4}-u^{2}\right) \partial_{u}^{2} \partial_{u}^{2}-2 u \partial_{u}-\frac{1}{4}\right) \partial_{u} a(u)=0
$$

and analogous equation for $a_{D}(u)$
The cycles are hypergeometric functions!
Asymptotic form \rightarrow determination of quantum corrections to prepotential

WKB and SW

Explicit solution

Explicit solution:

$$
\begin{aligned}
& a(u)=\frac{\mathrm{i}}{4} \Lambda(u-1)_{2} F_{1}\left(\frac{3}{4}, \frac{3}{4}, 2 ; 1-u\right) \\
& a_{D}(u)=\frac{\mathrm{i}}{4} \Lambda u^{\frac{1}{4}}{ }_{2} F_{1}\left(-\frac{1}{4}, \frac{1}{4}, 1 ; u\right)
\end{aligned}
$$

Prepotentials are obtained by integration

WKB and SW

Conclusion

- SW theory: BPS solitons in $S U(2)$ pure gauge theory
- Through SW theory, find quantum corrections of prepotential
- SW problem can be obtained as a Riemann-Hilbert problem
- WKB gives a very natural setting for solving this problem
- At the end: all non perturbative information determined!

WB and SW

Generalizations

A note: for other gauge groups, the same procedure has been generalized

What can change is the moduli space \mathcal{M}_{u} and the spectral curve
For $S U(N)$

$$
y^{2}=\left(P_{N}\left(x, u_{i}\right)\right)^{2}-\Lambda^{2 N}
$$

$P_{N}\left(x, u_{i}\right)$ degree N polynomial with coefficients determined by u_{i}

General WKB problems are interesting!

(1) Seiberg-Witten theory

(2) WKB analysis and Seiberg-Witten curves

(3) A deformation: finite difference WKB

Finite difference WKB

Why?

Present work - understand a deformation of classical quantum mechanics

$$
H=2 \cosh \left(-\mathrm{i} \hbar \partial_{x}\right)+V(x)
$$

Spectral curves:

$$
2 \cosh y=E-V(x)
$$

Finite difference WKB

The expansion

Same expansion as ordinary WKB:

$$
\psi(x, \hbar)=\exp \left(\frac{\mathrm{i}}{\hbar} \int_{x_{0}}^{x} P(t, \hbar) \mathrm{d} t\right)
$$

$P(x, \hbar)$ solves an integral equation
Basics of WKB are still working: instantons described by

$$
S_{i}(\hbar)=\oint_{\gamma_{i}} P(t, \hbar)
$$

Finite difference WKB

Motivations from string theory

The spectral curves arise in Type IIA string theory and in the dual heterotic description

Equation of the spectral curve for $S U\left(N_{c}\right)$ symmetry

$$
y+\frac{1}{y}=2 P_{N_{c}}(x)^{2}
$$

Finite differences also appear in Toda lattice theory
The model is integrable

Finite difference WKB

Our goals

- Reproduce known results in a WKB setting
- Give a semiclassical interpretation to the phenomena arising in this deformed model
- Exact quantization conditions including instanton corrections
- Find spectra of important operators

References

R Alba Grassi, Mariño Marcos, et al.
A solvable deformation of quantum mechanics.
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 15:025, 2019.

W Lerche.
Introduction to seiberg-witten theory and its stringy origin. Nuclear Physics B-Proceedings Supplements, 55(2):83-117, 1997.

Nathan Seiberg and Edward Witten.
Electric-magnetic duality, monopole condensation, and confinement in $\mathrm{n}=2$ supersymmetric yang-mills theory. Nuclear Physics B, 426(1):19-52, 1994.

