Geometric Extremization for AdS/CFT and Black Hole Entropy

Jerome Gauntlett

Couzens, JPG, Martelli, Sparks

JPG, Martelli, Sparks x 3

(Ferrero, JPG, Ipina, Martelli, Sparks x 2)

SCFTs with abelian R-symmetry

$$\{Q,Q\} \sim P$$
 $\{S,S\} \sim K$

$$\{Q,S\} \sim M + D + R$$

The R-symmetry encodes important exact results for physical observables. E.g.

- For chiral primary operators $\Delta(\mathcal{O}) = nR(\mathcal{O})$
- Central charges/free energies can be obtained from R

The R-symmetry can be obtained by variational techniques...

 $\mathcal{N} = 1, d = 4$

a-maximization [Intriligator, Wecht 03]

$$a(R_T) = \frac{9}{32} Tr R_T^3 - \frac{3}{32} Tr R_T$$
 and $a = a(R_*)$

$$\mathcal{N}=2, d=3$$

 $\mathcal{N}=2, d=3$ F-extremization [Jafferis 10]

$$F_{S^3}(R_T)$$

$$F_{S^3}(R_T)$$
 and $F_{S^3} = F_{S^3}(R_*)$

$$\mathcal{N} = (0,2), d=2$$
 c-extremization [Benini, Bobev 12]

$$c_R(R_T) = 3Tr\gamma_3 R_T^2$$

$$c_R = c_R(R_*)$$

$$\mathcal{N}=2, d=1$$

Is there a general extremization principle for susy QM??

— extremization conjecture: [Benini, Hristov, Zaffaroni 15]

Holographic dual for these extremization principles? Well established for Sasaki-Einstein solutions:

Type IIB

$$ds_{10}^2 = L^2[ds^2(AdS_5) + ds^2(SE_5)]$$
 $F_5 = -L^4[vol_{AdS_5} + vol_{SE_5}]$

Dual to N=ISCFT in d=4

$$ds_{11}^2 = L^2[ds^2(AdS_4) + ds^2(SE7)]$$

 $G = L^3vol_{AdS_4}$

Dual to N=2 SCFT in d=3

Fact: SE have canonical Killing vector

$$\mathcal{N}=1, d=4$$
 SCFT dual to $AdS_5 imes SE_5$: $a imes rac{1}{Vol(SE_5)}$

$${\cal N}=2, d=3$$
 SCFT dual to $AdS_4 imes SE_7$: $F_{S^3} pprox rac{1}{\sqrt{Vol(SE_7)}}$

R can be obtained using volume minimization:

[Martelli, Sparks, Yau 05]

Go off-shell: Consider Sasaki metrics - cone is Kahler with (n+1,0) form $\Psi \neq 0$ Choose holomorphic ξ with $\mathcal{L}_{\xi}\Psi = \frac{i}{c}\Psi$ Extremize $Vol(Sas)(\xi)$

- Can study dual CFT without knowing the Sasaki-Einstein metric Very powerful for identifying dual SCFTs
- Geometry: results apply to arbitrary SE_{2n+1}

Recent progress:

c-extremization for AdS_3 solutions dual to $\mathcal{N}=(0,2), d=2$ Identify infinite classes of AdS/CFT examples

New principle for AdS_2 solutions dual to $\mathcal{N}=2, d=1$

Includes a dual of \mathscr{I} - extremization as a special case and hence microstates of infinite classes of AdS4 black holes

Type IIB
$$ds_{10}^2 = L^2 e^{-B/2} [ds^2 (\mathrm{AdS}_3) + ds^2 (Y_7)]$$

$$F_5 = -L^4 \left[vol_{\mathrm{AdS}_3} \wedge F + *_7 F \right]$$

[Kim 05]

$$F_5 = -L^4 \left[vol_{\text{AdS}_3} \land F + *_7 F \right]$$

Dual d=2 SCFT has (0,2) supersymmetry

D=II
$$ds_{11}^2 = L^2 e^{-2B/3} \left[ds^2 ({\rm AdS}_2) + ds^2 (Y_9) \right] \ \ [{\rm Kim,Park} \ 06]$$

$$G_4 = L^3 vol_{{\rm AdS}_2} \wedge F$$

Dual SCQM has 2 supersymmetries with R-symmetry

Also can arise as near horizon limits of magnetically charged supersymmetric black holes in $AdS_4 \times SE_7$

[Gauntlett,Kim 07]

Both special cases of GK geometry

$$(Y_{2n+1}, g_{\mu\nu}, B, F)$$

Infinite classes of explicit $AdS_3 \times Y_7$ and $AdS_2 \times Y_9$ solutions have been known for a while [Gauntlett,MacConamhna,Mateos,Waldram 06] [Gauntlett,Kim,Waldram 06] (roughly analogous to

Until recently dual field theories essentially unknown...

Plan

- Introduce GK geometry
- Go off-shell and derive new geometric extremization principles

Sasaki-Einstein $Y^{p,q}$)

- Utilise toric geometry to further analyse special classes
- SCFTs on spindles

[Donos, Gauntlett, Kim 08]

GK Geometry
$$(Y_{2n+1}, g_{\mu\nu}, B, F)$$

Action:

$$F = dA$$

$$S = \int_{Y_{2n+1}} e^{(1-n)B} \left[R_{2n+1} - \frac{2n}{(n-2)^2} + \frac{n(2n-3)}{2} (dB)^2 + \frac{1}{4} e^{2B} F^2 \right] vol_{2n+1}$$

- Equations of motion: $\delta S = 0$
- Supersymmetry existence of certain Killing spinors
- Flux quantisation on codimension two cycles

Supersymmetry implies:

- Killing vector ξ (R-symmetry) $||\xi||^2 = 1$
- Define one-form η dual to Killing vector: $\xi^a \eta_a = 1$
- Metric:

$$ds_{2n+1}^2 = \eta^2 + e^B ds_{2n}^2$$

$$d\eta = c\rho$$

$$e^B = \frac{c^2}{2}R > 0$$

$$d\eta = c\rho \qquad e^{B} = \frac{c^{2}}{2}R > 0 \qquad F = -\frac{1}{c}J + d(e^{-B}\eta)$$

$$c = \frac{1}{2}(n-2)$$

Supersymmetric solution if

$$\delta S = 0$$

$$\Leftrightarrow$$

$$\Box R = \frac{1}{2}R^2 - R_{ij}R^{ij}$$

$$(Y_{2n+1}, B, I$$

 $c = \frac{1}{2}(n-2)$

- GK Geometry (Y_{2n+1},B,F) Supersymmetry implies:

 Killing vector ξ (R-symmetry) $||\xi||^2 = 1$ Killing vector: $\xi^a \eta_a = 1$

Metric:

$$ds_{2n+1}^2 = \eta^2 + e^B ds_{2n}^2$$

$$\leftarrow \qquad \text{Kahler} \left(J, \rho \right)$$

$$\rho_{ij} = J_i^{\ k} R_{kj}$$

$$d\eta = c\rho$$

$$d\eta = c\rho$$

$$e^B = \frac{c^2}{2}R > 0$$

$$F = -\frac{1}{c}J + d\left(e^{-B}\eta\right)$$

Supersymmetric solution if

$$\delta S = 0$$

$$\exists R - \frac{1}{2}R^2 - R_{ij}R^{ij}$$

Off-shell GK Geometry

• Consider cone metric on $C(Y_{2n+1}) \equiv \mathbb{R}_{>0} \times Y_{2n+1}$

$$ds_{2n+2}^2 = dr^2 + r^2 ds^2 (Y_{2n+1})$$

- Cone has an integrable complex structure
- R symmetry vector ξ is holomorphic
- No-where vanishing (n+1,0) form Ψ with

$$d\Psi = 0 \qquad \qquad \mathcal{L}_{\xi}\Psi = \frac{i}{c}\Psi \qquad \qquad c = \frac{1}{2}(n-2)$$

Geometric extremal problem

- Complex cone $C(Y_{2n+1})$ with (n+1,0) form Ψ
- Choose holomorphic $\xi \neq 0$ and $\mathcal{L}_{\xi}\Psi = \frac{\imath}{c}\Psi$
- Consider an off shell GK geometry on Y_{2n+1}

- Impose constraint: $\int_{Y_{2n+1}} \eta \wedge \rho^2 \wedge \frac{J^{n-2}}{(n-2)!} = 0$
- Impose flux quantization on codimension 2 cycles: $\int_{\Sigma_A} \eta \wedge \rho \wedge \frac{J^{n-2}}{(n-2)!} = N_A$
- Extremise action: $S(\xi) = \int_{Y_{2n+1}} \eta \wedge \rho \wedge \frac{J^{n-1}}{(n-1)!}$

For
$$AdS_3 \times Y_7$$

$$S(\xi_*) = \frac{3L}{2G_3} = c_{SCFT}$$

For
$$AdS_2 \times Y_9$$
 define "entropy function"

$$S(\xi_*) = \frac{1}{4G_2}$$

Generically expect

$$S(\xi_*) = \ln Z,$$

For black hole horizons $S(\xi_*) = S_{BH}$

Special Cases and Toric Geometry

Type IIB $AdS_3 \times Y_7$ with

$$Y_5 \hookrightarrow Y_7 \rightarrow \Sigma_g$$

Physical picture:

- Start with $AdS_5 \times Y_5$ and SE metric on Y_5 Dual to d=4 N=1 SCFT

 Isometries of Y_5 give rise to global (mesonic) symmetries 3-cycles of Y_5 give rise to global (baryonic) symmetries
- Compactify d=4 SCFT on Σ_g and add magnetic fluxes n_i , M_a for the global symmetries, including topological twist for susy
- IF we flow to d=2 SCFT in IR then expect it is dual to $AdS_3 \times Y_7$ with Y_7 fibred as above can we match c?

Focus on $AdS_5 \times Y_5$ with the complex cone $C(Y_5)$ admitting a toric Kahler cone metric: [Martelli,Sparks,Yau 05]

- Three holomorphic Killing vectors ∂_{φ_i} generate $U(1)^3$
- There is an associated polyhedral cone with d facets specified by inward pointing normal vectors $\vec{v}_a \in \mathbb{Z}^3$

 $ec{v}_a$ specifies which U(1) collapses along that facet

• The extremization problem for the $AdS_3 imes Y_7$ solutions with $Y_5 \hookrightarrow Y_7 \to \Sigma_g$ becomes algebraic in the \vec{v}_a !

Master volume for Y_5 fibre:

$$\mathcal{V}(\vec{b}; \{\lambda_a\}) = \frac{(2\pi)^3}{2} \sum_{a=1}^d \lambda_a \frac{\lambda_{a-1}(\vec{v}_a, \vec{v}_{a+1}, \vec{b}) - \lambda_a(\vec{v}_{a-1}, \vec{v}_{a+1}, \vec{b}) + \lambda_{a+1}(\vec{v}_{a-1}, \vec{v}_a, \vec{b})}{(\vec{v}_{a-1}, \vec{v}_a, \vec{b})(\vec{v}_a, \vec{v}_{a+1}, \vec{b})}$$

Extremization problem

$$A \sim$$
 Kahler class for Σ_g
 $\lambda_a \sim$ Kahler class for Y_5

$$S_{\text{SUSY}}(\vec{b}; \{\lambda_a\}; A) = -A \sum_{a=1}^{d} \frac{\partial \mathcal{V}}{\partial \lambda_a} - 4\pi \sum_{i=1}^{3} n_i \frac{\partial \mathcal{V}}{\partial b_i}$$

$$0 = A \sum_{a,b=1}^{d} \frac{\partial^{2} \mathcal{V}}{\partial \lambda_{a} \partial \lambda_{b}} - 2\pi n_{1} \sum_{a=1}^{d} \frac{\partial \mathcal{V}}{\partial \lambda_{a}} + 4\pi \sum_{a=1}^{d} \sum_{i=1}^{3} n_{i} \frac{\partial^{2} \mathcal{V}}{\partial \lambda_{a} \partial b_{i}}$$

$$N = -\sum_{a=1}^{a} \frac{\partial \mathcal{V}}{\partial \lambda_a}$$

Flux on
$$Y_5$$

$$M_a = \frac{1}{2\pi} A \sum_{b=1}^d \frac{\partial^2 \mathcal{V}}{\partial \lambda_a \partial \lambda_b} + 2 \sum_{i=1}^3 n_i \frac{\partial^2 \mathcal{V}}{\partial \lambda_a \partial b_i}$$

Flux on $\Sigma_g imes (\Sigma_a \subset Y_5)$

Results

ullet For arbitrary toric Y_5 and $Y_5 \hookrightarrow Y_7
ightarrow \Sigma_g$

Can calculate $c_{\rm sugra}$ for the $AdS_3 \times Y_7$ solutions as a function of the geometric twists and fluxes using geometric extremization

$$S = S(\vec{b}, g, v_a, n_i, N, M_a)$$

• Can compare with known dual quiver gauge theories using field theory c-extremization procedure

Find exact agreement (even off-shell)!

[JPG,Martelli,Sparks 19]

[Hosseini, Zaffaroni 19]

This provides an identification of an infinite classes of d=4 quiver field theories compactified on Σ_g with these $AdS_3 \times Y_7$ solutions!

Open issues: provided that they both exist...

- \bullet Geometry: there can be obstructions to the existence of Y_7 eg examples with $\ensuremath{c} < 0$
- Field theory: the field theory may not flow in the IR to a SCFT of the type we are considering

D=11 version

- ullet Analogous story for $AdS_2 imes Y_9$ solutions with with $Y_7\hookrightarrow Y_9
 ightarrow \Sigma_g$ and Y_7 toric [JPG,Martelli,Sparks 19] [Hosseini,Zaffaroni 19]
- Using toric data can calculate an off shell entropy function as a function of geometric twists and fluxes
- This can be identified with the entropy of a magnetically charged black hole in $AdS_4 \times Y_7$ (provided that they exist)
- Field theory: off-shell calculation of topological index \mathscr{I} for certain quiver gauge theories compactified on Σ_g calculated in [Hosseini, Zaffaroni 16]

Find exact agreement, even off-shell!

[JPG,Martelli,Sparks 19]Hosseini,Zaffaroni 1 [Kim,Kim19]

Gives microscopic state count for the entropy for asymptotically AdS black holes

• Consider $AdS_3 \times Y_7$ and $AdS_2 \times Y_9$ with

$$S^3/\mathbb{Z}_q \to Y_7 \to KE_4$$

$$S^3/\mathbb{Z}_q \to Y_9 \to KE_6$$

explicit solutions known

Remarkably geometry can be recast as

$$SE_5 \to Y_7 \to \mathbb{WCP}_{n_-,n_+}$$

$$SE_7 \to Y_9 \to \mathbb{WCP}_{n_-,n_+}$$

- Describe D=5,4 SCFTs compactified on a spindle!
- Latter case we have full D=4 black hole solution: an accelerating charged, rotating PD metric!
 - Supersymmetry without usual topological twist!
- Isometry of the spindle mixes with R-symmetry!

Summary and outlook

- ullet Geometric dual of c-extremization for type IIB $AdS_3 imes Y_7$
- ullet Geometric extremization for SCQM dual to D=11 $AdS_2 imes Y_9$
 - What is the field theory story? does it exist for finite N?
 - When arise as black hole horizons, entropy via extremization
 - Add rotation? [Couzens, Marcus, Stemerdink, van De Heisteeg, 20]
- ullet Interesting sub-class of examples $Y_5 \hookrightarrow Y_7
 ightarrow \Sigma_g \ Y_7 \hookrightarrow Y_9
 ightarrow \Sigma_g$
 - Toric case: striking agreement with field theory and new microstate counting of entropy of mag. charged AdS4 BHs
 - Obstructions? Geometry/field theory
 - Novel features arise in toric geometry develop
 - Many new black hole and black string solutions must exist
- SCFTs on spindles, orbifolds,....