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1 Multi-instanton Contributions in sine-Gordon QM

1.1 Multi-Instanton Contributions

Borel sum of Perturbation series — Imaginary
Instanton (Bion) contributions — Imaginary
Cancel each other : nonperturbative physics encoded in perturbation series
Resurgence to higher orders of nonperturbative exponentials requires
Systematic computations of multi-instanton (bions) contributions
[nstanton and antiinstanton attract (non-BPS) : moduli integral requires
BZJ prescription
(i) g < 0 — Analytic continuation to g% > 0

(ii) € species of fictitious fermions and subtract 1 /€ poles
E.B.Bogomolny, Phys.Lett.B91 431 (1980); J.Zinn-Justin, Nucl.Phys.B192 125 (1981); - - -

Verified only at the leading order of nonperturbative factor (single Bion)
Universal WKB results in quantum mechanics:

provides a good test for multiple instanton calculations

G.V.Dunne and M.Unsal, Phys.Rev.D 89, 105009 (2014); - - -

3



Our purpose

1. To compute multi-instanton amplitudes in the sine-Gordon quantum me-
chanics

2. 'To propose an appropriate subtraction scheme for multi-instanton am-
plitudes.

3. To compare with the result of the uniform WKB method.

1.2 Path-integral representation of Energy

Schrodinger eq. for Sine-Gordon QM (harmonic oscillator when g = 0)
1 d?

- 2dx?

Euclidian Lagrangian

Ho(@) = |5+ oo sin®(2g0) | $(@) = B (@)
g

1 /dz? 1
L = 5 (d—f> + V(x), V(x) = 8—925in2(29w)

Bloch angle 8 € [0, 7] to label energy eigenstate in the band
¥ (x+m/(29)) = ()
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Figure 1: Sin-Gordon potential with g = 1. Periodicity is 7 /(2g).

Path-integral representation of the lowest band energy eigenvalue

—1
E=1lim —logZ, Z=Tre P2

B—o0

Z = / Dax(t) e 5 1T1Q@0
2(t=—B/2)=x(t=0/2)

1 [~ d(2g=x)
= — dt—————-
@ iy /_oo dt

Perturbative Fyert and nonperturbative AE contributions

E = E,o(g°) + AE



Perturbation series is divergent

Epai(9?) = ) ax(¢”)%, ax ~K!
K=0
2 > —t 2 = AK i
IE‘:pert(g ) — / dte Bpert(g t)? Bpert(t) — Z Et
0 K—0 .

Nonalternating divergent series: Borel resummation gives imaginary part
Epert(g?) is a real analytic function of g* — dispersion relation

Dispersion rel. in complex g?-plane gives the coefficient ag as

e T e 0B (0”)
kK x Jo (g2)E+1

This imaginary part should be unphysical and cacelled by

the nonperturbative contribution AE from instantons (Resurgence)

1.3 Instantons

BPS equation
dx 1
— = —sin(2gx),
dt 2g



anti-BPS equation

dx 1
— = ——sin(2gx),
dt 2g

Single instanton solution with Q =1
r7(t) = (2arctane’ " + nw)/(2g), n € Z
is BPS for even m, anti-BPS for odd n: No other (anti-)BPS solutions

to is the translational zero mode (moduli)

Integrating the translational zero mode tg, one finds the contribution A E(1:0)
of single instanton [Z] to the energy (with one-loop determinant)

10

e I
AEYY) = _[T] = — e

\/ Tg*?
Any combination of adjacent (anti-)instantons are always non-BPS

Interaction energy of instanton and (anti-)instanton at separation R

Viz(R) = ﬁexp[—m, Vi2(R) = —ﬁexp[—R]



2 Multi-instanton contributions

2.1 (General setting with BZJ prescription

Methods to obtain mutli-instanton contributions

1. Integration over separation R between instantons
2. Attractive interactions require analytic continuations from g? < 0

3. Divergence at large R : Regularize by € number of fictitious fermions

(fermion zero mode exchange gives attraction at large R)

4. Subtraction of divergence as € — 0

[nteraction potential between instanton and (anti-)instanton
2
V(R) = :I:E exp(—R) + €R

Our proposal for subtraction of multiple moduli integral

1. Enumerate all possible distinct configurations

2. Enumerate possible ordering of moduli integrations for each config.



3. Subtract possible poles like 1 /€ for the first integration, and then
perform the next integration successively, and retain the finite piece.

4. Average the results of all orderings and sum over distinct configura-

tions

Physics behind the 1 /e subtraction:
Logarithm — only connected configurations

(dilute gas multi-particle contributions are subtracted)

Z=Zo+ 21+ 22+ -

E— lim —tlog Z — Ii _1[1 Z—|—Z1—|—(22 —Z%>+ ]

= lim —lo = lim — |lo — — — e
B— 00 /8 g B—00 18 g 0 ZO

2.2 2 instantons

There is only one configuration and one ordering: [ZZ]
Two-instanton amplitude in unit of instanton factor &€ = =51 //mg? is

. o0 2
[ZT]e 29¢2% = / dR exp (——26_R — eR)
0 g



271

Figure 2: Two instanton configurations [ZZ]. Horizontal lines stand for the vacuum.

oIt (g;fF(e) = — ('y + log %) + O (%) + O(e)

. 2
AE(2’O) — €2z9€2 (’Y 1 log?>

2.3 1 instanton 4+ 1 anti-instanton

Attraction : compute at g2 < 0 then analytic continuation to g2 > 0

10



There are two configurations with one ordering for each: [ZZ] and [ZZ]

[ZZ)¢72 = /000 dR exp (—_2g2e_R — eR)

2 — a2\ € —g’=e T 2 ]-
%<1 ( g) I'(e) gP=eTimg? _(7 n log?>:|:i7"‘|‘0(z>+0(e)

2
2n 2n
) T / \ ) T
ZZ]o [Z7] o
: N

271 : 27

Figure 3: One-instanton and one anti-instanton amplitude ([ZZ], [ZZ]).

Same contribution from [ZZ]

By summing over [ZZ], [ZZ], nonperturbative correction is
_ _ 2
AEMY = ([TZ] + [IT]) = €2 [2 <7 + log —2> + 22'71']
g
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Imaginary part should be cancelled by perturbative contribution
Im[AEM)] 4 Im[E, o] = 0

_ 2
_ T [% g B (@) 1% ) 2€ /g
ap = A g (g2)F+2

2
S
mJo 0T (gP)RH ™

2.4 2 instantons + 1 anti-instanton

3 configurations [ZZZ], [ZZZ], [ZZZ]
First configuration [ZZZ]: unique ordering

[ZZZ]e "¢ = / dR;dR; exp [—
0

2

3 2\2 17x% 2 1
:_(7—|—]og—> — 3w |vy+log— | +0O |- _l_O(e)
9 qg? 12 g° €

Second configuration [ZZZ] : two orderings

_ . > 2 2
[ZZZ]e "¢73 = dR;dR; exp | ——e 1 — —
0 g’ —g°

(et e F2) — e(R; + Rz)]

€_R2 — €(R1 -+ Rz)]
1. R, then R, integral gives

3 2 2 572 : 2 1
_<7_|_10g—> ——:|:2Z7r(')/—|-log—> —|—0(— + O(e)
2 g2 12 g° €
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Figure 4: Two-instanton and one-anti-instanton amplitudes ([ZZZ], [ZZZ], [ZZZ]).
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2. Ry then Ry integral gives

3 2\? w2 2 1
—|v+log—= )| + —xin(~v+log— | + O(—) + O(e)
2 g2 12 g? €

Averaging the two orderings gives

[ZTZT)e ¢ 3 = 3 (’y + log 3>2 — ﬂ-—2 + Ez’ﬂ' (7 + log E)

2 g? 6 2 g2

Third configuration gives the same result as second [ZZZ] = [ZZZ],
By summing over [ZZZ], [ZZZ], [ZZZ], nonperturbative correction is

2\? 7n? 4 2
(fy—l—log—2> — —— x zim (v +log—
g

AE®2D — _gez‘e £3
2 18 ~ 3 g

Imaginary part should be cancelled by imaginary part of perturbative
contribution on one-instanton background (Large order behavior)

1 /OO 102 Im[AE®ZVe=®/¢] 6 s(k + 1, 2))
g _
0

ap X — —
" (g?)k+1 0 k!

Stirling number of first kind : s(k + 1,2) = (k + 1)s(k,2) + k!

k! (log 2 +

J.Zinn-Justin, Nucl.Phys.B192 125 (1981)
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Agreement with perturbative result on instanton — Resurgence

2.5 Comparison to universal WKB

1. We have computed explicitly all nonpertubative contributions up to four
instantons and/or anti-instantons.

2. We found complete agreement with nonpertubative contributions
obtained by universal WKB method.

3. We have given a systematic prescription to compute all muliti-
instanton contributions, which is directly applicable to field theory.

2.6 Why are Bions not exact classical solutions ?

Why should we include bion configurations that are not the solution 7

Answer: Bions are the solutions of Complexified QM with fermions

A.Behtash, G.V.Dunne, T.Schafer, T.Sulejmanpasic and M.Unsal, Phys.Rev.Lett.116, 011601 (2016);
arXiv:1510.03435 [hep-th]; E.Witten, [arXiv:1001.2933 [hep-th]] - - -

sine-Gordon QM, double-well QM, - -+ : Tin’s talk

We wish to clarify and add several new aspects
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1. Study CPN~1 QM (to explore CPN~=1 2d FT) on R x S?!)
instead of the sine-Gordon QM

2. Compute 1-loop determinant explicitly
3. Evaluate the neccessary corrections from quasi-moduli integral

4. Determine Lefschetz thimbles and their weight by using dual thimble

T.Fujimori, S.Kamata, T.Misumi, M.Nitta and N.Sakai, arXiv:1607.04205 [hep-th]

3 Complexified cpN-1 Quantum Mechanics

3.1 CPN—1 QM from 2d FT
CPN~1 2d field theory

1 2 i =] k—k
S:gT d*x G;;0,p'0"¢’, G;= —log(1 + ¢"¢")
2d

Zin-twisted boundary conditions

16



Kaluza-Klein decomposition — Dimensional reduction

27 k .
Sok(ml) mZ) — Z (P’(Cn) (331) exp [ZT (TL -+ N) wzl — QOI({;O) (wl) e"'kmw2
nez
! 0 5 3 0 i i
Lia = gTGI(J) [8w190’€0)8w190l(0) + klmz‘vol(eo)sol(())} ; G/il‘) = Gri(¢" = ¥(p))
1d

with m = 2w /(NL) and 1/g?, = L/g3,

CPN~1 2d field theory at small L — CPN~! quantum mechaniics
CP! = S§?: ¢ = tan gei¢

Phase modulus is lost if we take the sine-Gordon quantum mechanics

3.2 Introducing Fermions (SUSY for e = 1)

1 O0,p0,;p
Sg = /dT [ — + V(pp)
’ g* (1 + pp)?
1 mipp 1 — @
Viep) = —, — €m -
g% (1 + pp)? 1+ @

17



2 conserved quantities : Energy E. angular momentum [
1 O0,;p0,;p

g*> (1+ ¢p)?
Finite action — boundary condition at 7 — Fo00

lirin Y = lirin p=0 — =0, E=E|,—0=€em

Real Bion exact solution (Most general solution)

i w? 1 = 1_|_2csg2
= e =
’ w? — m2isinhw(r — )’ m

90—1 — ew(T—T_|_)—z'q§_|_ i e—w(T—T_)—iqb_

1 42

0y
=10+t —1Io = —
+ 0 2w gw2 _mza ¢:|: ¢O:F 9

2 real moduli parameters : 19: translational moduli, ¢¢: U (1) moduli

Value of Lagrangian L and action .S for the real bion solution

w? coshw(T — 79) 2

L = 4me

— me
w? + (w2 — m?) sinh? wW(T — 7)

18



(a) 3(7) for real bion (b) 3(7) for complex bion

rigure 5: IKInk profiles of real and complex bions. The complex bion solution

has singularities where 33(7) = {755 diverges.

w+ m

W —m

o° 2w
Sip = / dr(L + me) = — + 2elog
oo g

Real bion gives a nonperturbative correction to ground state energy
Other contributions should cancel this in SUSY case (e = 1)

19



3.3 Complexification

SUSY (e = 1) requires other solution — Complexification

@ — @ F# complex conjugate of ¢

Action should be holomorphic in both ¢, ¢
1 O0,;p0,-p
Ste#) = [ ar | L L Viep
i g2 (1 + ¢p)? (¢¢)
Form of Equation of Motion is unchanged : All the solutions can be generated
by complexified global symmetry — complexified moduli 79, ¢pg € C

A new solution by imaginary time translation : Immy

B 1 72
To — To=To+ ——(0
w 2

Complex bion exact solution

(’0—1 _ ew(T—T+)—i¢+_|_e—w(7'—7-_)—i¢_, 95—1 _ ew(T—T_|_)-|—iqb_|__I_e—w(r—q-_)_|_i¢_

with complexified position and phase moduli

1 | 4w? , s
. =19+ — (1o + i = g — —
£ =ToE g P =do—

20



A
A
A
A

© O

(a) @ = argg? > 0 (b) @ = argg? < 0
riguwre 6: 1 he integration contour for Sep, — Spp. Depending on the sign of

arg g2, Scp, — Syp is given by the residue at either T;;)le Or Tpole:

21



o0 w?sinh w(7T — 79) ?
Scp = —4me/ dr

o w? — (w? — m?) cosh? w(T — 1)

2
= 19 + Larccosh,/—*—
w w m

: +
Lagrangian has a double pole at 7 = 7.,

Stokes phenomenon: regularize by arg g2 % 0: Action for complex bion

S +27mie

Scpb = Spp £ 27wie, — e 7P = e Prbe

We should integrate only half of complex moduli (Lefschetz thimble)
2 solutions with 2 real moduli in complexified QM
Exact zero modes are divided into two
ReTy, Redq : should be integrated
ImTy, Im@q : should not be intgrated, label to distinguish solutions
SUSY case € = 1: e 9 = e~5b — No cancellation of vacuum energy ?

Cancellation can only be verified by computing 1-loop determinant

22



3.4 One-Loop Determinant on Bion background

Combining the real bion (1) and complex bion (e*2™€) contributions
172 : 16w* 2w w + m
— lim —— = —i(1—eT?™) exp (—— — 2¢elog * )
B—oo B Zy g*(w? — m?) g’ w—m

Valid for g2 — 0 with fixed boson-fermion coupling A = emg? < m?
For 0 < € < 1, there are normalizable quasi-zero-modes :

Relative position T, and relative phase ¢,
Zbion ~ /d’ngQb() /d’Trder det"A exp (_‘/eff)

det” A : determinant excluding exact and quasi zero modes
Large separation of instanton and anti-instanton —
det” A = product of determinant of constituent (anti-)instantons

Complexify 7., ¢, and determine integration paths (thimbles) and their
weight (by intersection of dual thimbles with original path)
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3.5 Lefschetz thimble and quasi moduli integral

Path-integral of complexified theory (in Infinite dimensional function space)

Z = /’Dgo exp (—S|[p]) = Z NoZo

ceS
Saddle points o : 5 /dp = 0, at p = Y,
Thimble : ResS increasing away from saddle point with ImS constant
Dual thimble : ReS decreasing from saddle point with ImS constant
Intersection number of dual thimble gives a weight n, of the thimble.

Gradient flow equation

dop G_lﬁ I
- — ~ 11m — ¥sol, o
dt 580, oo ¥ Psol,

Infinite dimensional path-integral — trancate to quasi-moduli modes

Quasi-moduli integral of Sine-GGordon QM

Sine-Gordon instanton Z and anti-instanton Z : attractive interaction
4m

[ ZZ] :/ dre V56 Vyau(r) = —?e_mT_w—l—ZemT
Cr
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To regularize the Stokes phenomenon, a phase for g2 — g2e® is introduced

Gradient flow equation (1 dimensional (7), instead of infinite dim.)

dr 1 OVsa _ _z_me—m?—l—ie 1e

dt  2m or g2
Saddle points : OVsg /0T = 0 at
1 2m ,
T =Ty = — [log—2—|—zaa] sy g =20 —1)r—0, ocZ
m €g
Thimble : —oo < Rer < oo, ImT = —a,/m = constant,

Dual thimble : ImVsg(7) = ImVse (T = 75) = 2¢(—1 4+ mT,)
2msin(mImt + a,)

— mRerT = log [ ] s  (—as—m < mt; < —ay,+7)

eg? mImrt + a,

Intersection number n, of o-thimbles
[ (0,1) for 8 = +0
(0, 1) = { (1,0) for @ = —0
[I:z-] _ Zy—1 for 0 = +0 7 — ie—27'rie(20'—1) g_26i0 B F(ZG)
o Zo-z() for @ = —0 °’ U_m 4m
Exact agreement with BZJ prescription
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J1

i(m — 6) }Tl -.71_ . i(m — 6)
>T

L

5
‘ i Cr == k.,
—i(m +0) }T . —i(7 +6)
A Jo 0 Jo

]CO ' K:g

n; = (Cr, K1) =1 ng = (Cr, Ko) =1

Figure 7: Real axis intersects with dual thimble of & = 1 for 8 = 40(left), and that of
o = 0 for 8 = —O0(right)
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(a) originaf contour (b) extended contour

Quasi-moduli integral of CP! QM

Fractional instanton and anti-instanton interaction : depends on @

4m

ZZ] = / do / dre V™), V(r, ¢) = ——5 COs ¢ e ™" + 2emT
- o0 g
Periodic variable —mw < ¢ < 7 : add half infinite contours

E.Witten, [arXiv:1001.2933 [hep-th]] - - -

Redefining variables as 7 = 7 + %qb, T_ =T — %cbj

Vsa(74) + Vsa(7-)
2

V(T’ ¢) —
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Combining 1-loop determinant with quasi-moduli integral

Non-perturbative correction to the ground state energy

. 1 7, 8m* _ _2m
— lim — =~ — [ZZ]e o
B—oo B Zy gt
2 \ 2(e—1) . :
_ g SIn €7 g —2m e™  for@ = —0
o 2m (Qm) TT I (6) e v X { 6_7.”.6 for @ = —I—O

Agrees with BZJ prescription for € — 0
Vanishing correction for SUSY limit (e = 1)

Precise agreement for near susy case at leading order in € — 1

E = Epert + Ebiona Epert — (92 o m)5e + O (562) ?

_2m _4m
Eyion = —2me 9°0e+ O (e g%, 562>
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4

L.

Conclusions

To compute multi-instanton amplitudes, we have proposed a generaliza-
tion of BZJ prescription and an appropriate subtraction scheme
for multi-instanton amplitudes.

. Our results agree with the result of the uniform WKB method.

. CPN=! quantum mechanics instead of the sine-Gordon quantum

mechanics should be used to find the compactification limit of CPN 1!
field theory on R x S*.

. Nonperturbative contributions in CP?! quantum mechanics can be given

by real and complex bion exact solutions, provided one intro-
duces fermions, and complexify the theory:.

. We have explicitly evaluated the 1-loop determinant on the back-

ground of the bion solutions.

. For most of cases of interest including purely bosonic and supersymmetric

cases, 1-loop approximation is not accurate and we need to integrate over
quasi-zero modes.

. To determine the integration path and weight for bion saddle points,

we determined the Lefschetz thimbles and dual thimbles in the

29



truncated function space.

8. The nonperturbative contributions from the bion solutions agree with
the results of the BZJ prescription.
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