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1984: 10 = 4 + 3× 2

First String Revolution [Green-Schwarz] anomaly cancellation;

Heterotic string [Gross-Harvey-Martinec-Rohm]: E8×E8 or SO(32), 1984 - 5

String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1985

SU(3)× SU(2)× U(1) ⊂ SU(5) ⊂ SO(10) ⊂ E6 ⊂ E8

Standard Solution (MANY more since): R3,1 ×X, X Ricci-flat, Kähler

mathematicians were independently thinking of the same problem:

Riemann Uniformization Theorem in dimC = 1: Trichotomy R < 0,= 0, > 0

Euler, Gauss, Riemann, Bourbaki, Atiyah-Singer . . .

χ(Σ) = 2− 2g(Σ) = [c1(Σ)] · [Σ] =
1

2π

∫
Σ

R =
2∑

i=0

(−1)ihi(Σ)

Calabi-Yau
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An Early Physical Challenge to Algebraic Geometry

CY3 X, tangent bundle SU(3)⇒
1 E6 GUT: commutant E8 → SU(3)× E6, then

2 Wilson-line/discrete symmetry to break E6-GUT to some SUSY version of

Standard Model (generalize later)

3 Particle Spectrum:
Generation n27 = h1(X,TX) = h2,1

∂
(X)

Anti-Generation n27 = h1(X,TX∗) = h1,1

∂
(X)

Net-generation: χ = 2(h1,1 − h2,1) = Euler Number

1980s Question: Are there Calabi-Yau threefolds with Euler number ±6?

None of obvious ones §

e.g., Quintic Q in P4 is CY3 Qh
1,1,h2,1

χ = Q1,101
−200 so too may generations

(even with quotient −200 6∈ 3Z)
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The First Data-sets in Mathematical Physics/Geometry

[Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)

CICYs (complete intersection CYs) multi-deg polys in products of CPni CICYs

Problem: classify all configuration matrices; employed the best computers at

the time (CERN supercomputer); q.v. magnetic tape and dot-matrix printout in Philip’s office

7890 matrices, 266 Hodge pairs (h1,1, h2,1), 70 Euler χ ∈ [−200, 0]

[Candelas-Lynker-Schimmrigk, 1990]

Hypersurfaces in Weighted P4

7555 inequivalent 5-vectors wi, 2780 Hodge pairs, χ ∈ [−960, 960]

[Kreuzer-Skarke, mid-1990s - 2000] Reflexive Polytopes

Hypersurfaces in (Reflexive, Gorenstein Fano) Toric 4-folds

6-month running time on dual Pentium SGI machine

at least 473,800,776, with 30,108 distinct Hodge pairs, χ ∈ [−960, 960]
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The age of data science in math-

ematical physics/string theory

not as recent as you might think

of course, experimental physics

had been decades ahead in

data-science/machine-learning

After 40 years of research by

mathematicians and physicists

. . . ...
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The Compact CY3 Landscape

cf. YHH, The Calabi-Yau Landscape: from Geometry, to Physics, to

Machine-Learning, 1812.02893, [Springer, to appear]
Vienna (KS, Knapp,. . . ), Penn (Ovrut,
Cvetic, Donagi, Pantev . . . ), Ox-
ford/London (Candelas, Constantin,
Lukas, Mishra, YHH, . . . ), MIT (Taylor,
Johnson, Wang, . . . ), Northeastern/Wits
(Halverson, Long, Nelson, Jejjala, YHH),
Virginia Tech (Anderson, Gray, SJ Lee,
. . . ), Utrecht (Grimm . . . ), CERN
(Weigand, . . . ), Cornell (MacAllister,
Stillman), Munich (Luest, Vaudravange),
Uppsala (Larfors, Seong) . . .

 S

Calabi−Yau Threefolds

KS
Toric Hypersurface

Elliptic Fibration

CICY
 Q
.

.

Georgia O’Keefe on Kreuzer-Skarke

Horizontal χ = 2(h1,1−h2,1) vs. Vertical h1,1+h2,1
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Triadophilia: Each Geometry is a Universe

Exact (MS)SM Particle Content from String Compactification

[Braun-YHH-Ovrut-Pantev, Bouchard-Cvetic-Donagi 2005] first exact MSSM

[Anderson-Gray-YHH-Lukas, 2007-] use alg./comp. algebraic geo & sift

Anderson-Gray-Lukas-Ovrut-Palti ∼ 200 in 1010 MSSM Stable Sum of Line Bundles

over CICYs (Oxford-Penn-Virginia 2012-)

Constantin-YHH-Lukas ’19: 1023 exact MSSMs (by extrapolation on above set)?
A Special Corner

[New Scientist, Jan, 5, 2008 feature]

P. Candelas, X. de la Ossa, YHH,

and B. Szendroi

“Triadophilia: A Special Corner of the

Landscape” ATMP, 2008

YANG-HUI HE (London/Oxford/Nankai) ML Mathematical Structures Iberian Strings, Jan, 2021 7 / 34



The Landscape Explosion & Vacuum Degeneracy Problem

meanwhile . . . LANDSCAPE grew rapidly with

D-branes Polchinski 1995

M-Theory/G2 Witten, 1995

F-Theory/4-folds Katz-Morrison-Vafa, 1996

AdS/CFT Maldacena 1998 Alg Geo of AdS/CFT

Flux-compactification Kachru-Kallosh-Linde-Trivedi, 2003, Denef-Douglas

2005-6: 10�500 possibilities . . .

String theory trades one hard-problem [quantization of gravity] by another

[looking for the right compactification] (in many ways a richer and more

interesting problem, especially for the string/maths community)
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Where we stand . . .

The Good Last 10-15 years: large collaborations of physicists, computational

mathematicians (cf. SageMATH, GAP, Bertini, MAGMA,

Macaulay2, Singular) have bitten the bullet computed many

geometrical/physical quantities and compiled them into various

databases Landscape Data (109∼10 entries typically)

The Bad Generic computation HARD: dual cone algorithm (exponential),

triangulation (exponential), Gröbner basis (double-exponential)

. . . e.g., how to construct stable bundles over the � 473 million KS

CY3? Sifting through for SM computationally impossible . . .

The ??? Borrow new techniques from “Big Data” revolution

YANG-HUI HE (London/Oxford/Nankai) ML Mathematical Structures Iberian Strings, Jan, 2021 9 / 34



A Wild Question

Typical Problem in String Theory/Algebraic Geometry:

INPUT

integer tensor −→
OUTPUT

integer

Q: Can (classes of problems in computational) Algebraic Geometry be

“learned” by AI ? , i.e., can we “machine-learn the landscape?"

[YHH 1706.02714] Deep-Learning the Landscape, PLB 774, 2017

( Science, Aug, vol 365 issue 6452, 2019 ): Experimentally, it seems so for

many situations in geometry and beyond.

2017

YHH (1706.02714), Seong-Krefl (1706.03346), Ruehle (1706.07024),

Carifio-Halverson-Krioukov-Nelson (1707.00655) Progress in String Theory
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A Prototypical Question

Hand-writing Recognition, e.g., my 0 to 9 is different from yours:

How to set up a bijection that takes these to {1, 2, . . . , 9, 0}? Find a clever

Morse function? Compute persistent homology? Find topological invariants?

ALL are inefficient and too sensitive to variation.

What does your iPhone/tablet do? What does Google do? Machine-Learn

Take large sample, take a few hundred thousand (e.g. NIST database)

. . . 28× 28× (RGB)

Supervised ML in 1 min
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NN Doesn’t Care/Know about Alg. Geometry (1706.02714)

Hodge Number of a Complete Intersection CY is the association rule, e.g.

X =



1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 0 2 0

0 1 1 0 0 0 0 1

1 0 0 0 0 1 1 0

0 0 0 1 1 0 0 1

 , h1,1(X) = 8 ; −→ 8

CICY is 12× 15 integer matrix with entries ∈ [0, 5] is simply represented as a

12× 15 pixel image of 6 colours Proper Way ; ML in matter of seconds/minutes

Cross-Validation:


- Take samples of X → h1,1

- train a NN, or SVM

- Validation on unseen X → h1,1
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Deep-Learning Algebraic Geometry

YHH (1706.02714) Bull-YHH-Jejjala-Mishra (1806.03121, 1903.03113), Krippendorf-Syvaeri

[2003.13679] Erbin-Finotello (2007.13379; Google Inception NN) YHH-Lukas [2009.02544]

0.2 0.4 0.6 0.8
Fraction of data used for training

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Hodge Number - Validation Learning Curves

SVM Classifier Validation Accuracy
Neural Net Regressor, Validation Accuracy
Neural Net Classifier, Validation Accuracy

Learning Hodge Number

h1,1 ∈ [0, 19] so can set up 20-

channel NN classifer, regressor, as

well as SVM,

bypass exact sequences

YHH-SJ Lee (1904.08530): Distinguishing Elliptic Fibrations in CY3
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bypass Oguiso-Kollar-Wilson

Theorem/Conjecture

learning curves for precision and Matthews φ
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More Success Stories in Algebraic Geometry/Strings

Ruehle ’17: genetic algorithm for bundle cohomology

Halverson, Nelson, Long et al ‘17- programme of ML of KS data

Brodie-Constantin-Lukas ’19: EXACT formulae for line-bundle coho /

complex surfaces Interpolation vs Extrapolation ; Conjecture Formulation

Ashmore-YHH-Ovrut ’19: ML Calabi-Yau metric: improves Donaldson

alg. for numerical CY metric by 10-100 times

Otsuka-Takemoto; Deen-YHH-Lee-Lukas ’20: Distinguishing Heterotic SMs

from the sum-line-bundle database and extrapolating beyond

q.v. K. Hashimoto ‘18: AdS/CFT = Boltzmann Machine;

Halverson-Anindita 2008.08601 NN=QFT; Vanchurin 2008.01540

NN=Spacetime; 2× de Mello-Koch, Cheng 1906.05212 RL = RG
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Representation/Group Theory

ML Algebraic Structures (GAP DB) [YHH-MH. Kim 1905.02263]

When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite

group? Bypass quadrangle thm (0.95, 0.9)

Can one look at the Cayley table and recognize a finite simple group?

bypass Sylow and Noether Thm; (0.97, 0.95) rmk: can do it via character-table

T , but getting T not trivial

SVM: space of finite-groups (point-cloud of Cayley tables) seems to exist a

hypersurface separating simple/non-simple

ML Lie Structure Chen-YHH-Lal-Majumder [2011.00871] Weight vector → length

of irrep decomp / tensor product: (0.97, 0.93); (train on small dim, predict high dim: (0.9, 0.8))

[Chen-YHH-Lal-Zas 2006.16114]: even/odd/reflection sym (>0.99); distinguishing CFT

3pt functions (>0.99); Fourier coefficients / conformal block presence (>0.97) . . .

(q.v. [Krippendorf-Syvaeri 2003.13679])
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Combinatorics, Graph/Quivers

[YHH-ST. Yau 2006.16619] Wolfram Finite simple graphs DB

ML standard graph properties:

?acyclic (0.95, 0.96); ?planar (0.8, 0.6); ?genus >,=, < 0 (0.8, 0.7); ?∃

Hamilton cycles (0.8, 0.6); ?∃ Euler cycles (0.8, 0.6)

(Rmk: NB. Only “solving” the likes of traveling salesman stochastically)

spectral bounds (R2 ∼ 0.9) . . .

Recognition of Ricci-Flatness (0.9, 0.9) (todo: find new Ricci-flat graphs);

[Bao-Franco-YHH-Hirst-Musiker-Xiao 2006.10783]: categorizing different

quiver mutation (Seiberg-dual) classes (0.9 - 1.0, 0.9)
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Number Theory: A Reprobate?

Arithmetic (PRIMES are HARD)

[YHH 1706.02714, 1812.02893:] Predicting primes tried supervised ML on

2→ 3, 2, 3→ 5, 2, 3, 5→ 7; fixed window of (yes/no)1,2,...,k to (yes/no)k+1,

no breaking banks yet (expect same for Riemann zeroes)

[Alessandretti-Baronchelli-YHH 1911.02008] (LMFdb/Cremona Database)

ML/TDA@Birch-Swinnerton-Dyer New Scientist feature Dec 9 X and Ω ok

with regression & decision trees: RMS < 0.1; Weierstrass → rank: random

Arithmetic Geometry (Surprisingly)

[Hirst-YHH-Peterken 2004.05218]: adjacency of dessin d’enfants

(Grothendieck’s Esquisse for Abs. Galois) → transcendental degree (>0.9)

YHH-KH Lee-Oliver, 2010.01213: ML Sato-Tate (>0.99) 2011.08958: ML

Number Fields (>0.97) 2012.04084: BSD from Euler coeffs (>0.99)
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Meta-mathematics/physics?

[YHH-Jejjala-Nelson ] “hep-th” 1807.00735

Word2Vec: [Mikolov et al., ’13] NN which maps words in sentences to a

vector space by context (much better than word-frequency, quickly adopted

by Google); maximize (partition function) over all words with sliding window

(W1,2 weights of 2 layers, Cα window size, D # windows )

Z(W1,W2) :=
1

|D|

|D|∑
α=1

log

Cα∏
c=1

exp([~xc]
T ·W1 ·W2)

V∑
j=1

exp([~xc]T ·W1 ·W2)

We downloaded all ∼ 106 titles of hep-th, hep-ph, gr-qc, math-ph, hep-lat

from ArXiv since the beginning (1989) till end of 2017 Word Cloud

(rmk: Ginzparg has been doing a version of linguistic ML on ArXiv)

(rmk: abs and full texts in future)
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Subfields on ArXiv has own linguistic particulars

Linear Syntactical Identities

bosonic + string-theory = open-string

holography + quantum + string + ads = extremal-black-hole

string-theory + calabi-yau = m-theory + g2

space + black-hole = geometry + gravity . . .

binary classification (Word2Vec + SVM) of formal (hep-th, math-ph, gr-qc)

vs phenomenological (hep-ph, hep-lat) : 87.1% accuracy (5-fold classification

65.1% accuracy). ArXiv classifications

Cf. Tshitoyan et al., “Unsupervised word embeddings capture latent

knowledge from materials science literature”, Nature July, 2019: 3.3. million

materials-science abstracts; uncovers structure of periodic table, predicts discoveries of new

thermoelectric materials years in advance, and suggests as-yet unknown materials
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Summary and Outlook

PHYSICS Use AI (Neural Networks, SVMs, Regressor . . . ) as

1. Classifier deep-learn and categorize landscape data

2. Predictor estimate results beyond computational power

MATHS how is AI doing maths w/o knowing any maths? (Alg Geo/C,

combinatorics, RT = integer matrices, NT ??)

1. Predictor form new conjectures/formulae

2. Classifier stochastically do NP-hard problems

Hierarchy of Difficulty ML struggles with: (YHH 2101.06317)

numerical < algebraic geometry over C <

combinatorics/algebra < number theory
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Thank you!

Syntax Semantics

Alpha Go → Alpha Zero

ML Patterns → Auto Thm Pf&Chk

Renner et al., PRL/Nature News, 2019:

ML (SciNet, autoencoder)

Lample-Charton, 2019: ML Symolic

manipulations in mathematics

Tegmark et al., 2019 AI Feynman, symb

regressor

Raayoni et al. 2020 Ramanujan-Machine

Barbaresco-Nielson 2021 Infor Geom/ML

Sophia (Hanson Robotics, HK)

1st non-human citizen (2017, Saudi)

1st non-human with UN title (2017)

1st String Data Conference (2017)
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Digressions
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χ(Σ) = 2 χ(Σ) = 0 χ(Σ) < 0

Spherical Ricci-Flat Hyperbolic

+ curvature 0 curvature − curvature

Fano Calabi-Yau General Type

Euler, Gauss, Riemann, Bourbaki, Atiyah-Singer . . .; generalize

χ(Σ) = 2− 2g(Σ) = [c1(Σ)] · [Σ] =
1

2π

∫
Σ

R =

2∑
i=0

(−1)ihi(Σ)

CONJECTURE [E. Calabi, 1954, 1957] / Thm [ST. Yau, 1977-8] M compact

Kähler manifold (g, ω) and ([R] = [c1(M)])H1,1(M). Then ∃!(g̃, ω̃) such that

([ω] = [ω̃])H2(M ;R) and Ricci(ω̃) = R.

Strominger & Yau were neighbours at IAS in 1985: CHSW named Ricci-Flat

Kähler as Calabi-Yau Back
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16 Reflexive Polygons Back to Reflexives

classify convex lattice

polytopes with single in-

terior point and all faces

are distance 1 therefrom

(up to SL(n;Z))

Kreuzer-Skarke: 4319 reflexive polyhedra, 473,800,776 reflexive 4-polytopes,

Skarke: next number is at least 185,269,499,015.
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Heterotic Comp: Recent Development

E6 GUTs a toy, SU(5) and SO(10) GUTs and SM: general embedding

Instead of TX, use (poly-)stable holomorphic vector bundle V

Gauge group(V ) = G = SU(n), n = 3, 4, 5, gives H = Commutant(G,E8):

E8 → G ×H Breaking Pattern

SU(3) × E6 248 → (1, 78) ⊕ (3, 27) ⊕ (3, 27) ⊕ (8, 1)

SU(4) × SO(10) 248 → (1, 45) ⊕ (4, 16) ⊕ (4, 16) ⊕ (6, 10) ⊕ (15, 1)

SU(5) × SU(5) 248 → (1, 24) ⊕ (5, 10) ⊕ (5, 10) ⊕ (10, 5) ⊕ (10, 5̄) ⊕ (24, 1)

MSSM: H Wilson Line−→ SU(3)× SU(2)× U(1)

Issues in low-energy physics ∼ Precise questions in Alg Geo of (X,V )

Particle Content ∼ (tensor powers) V Bundle Cohomology on X

LE SUSY ∼ Hermitian Yang-Mills connection ∼ Bundle Stability

Yukawa ∼ Trilinear (Yoneda) composition

Doublet-Triplet splitting ∼ representation of fundamental group of X

Back to Landscape

YANG-HUI HE (London/Oxford/Nankai) ML Mathematical Structures Iberian Strings, Jan, 2021 25 / 34



Various Databases

Kreuzer-Skarke: http://hep.itp.tuwien.ac.at/~kreuzer/CY/

new PALP: Braun-Walliser: ArXiv 1106.4529

Triang: Altmann-YHH-Jejjala-Nelson: http://www.rossealtman.com/

CICYs: resurrected Anderson-Gray-YHH-Lukas, http://www-thphys.

physics.ox.ac.uk/projects/CalabiYau/cicylist/index.html

q.v. other databases of interesting to the math/physics community:

Graded Rings/Varieties: Brown, Kasprzyk, et al. http://www.grdb.co.uk/

Finite Groups/Rings: GAP https://www.gap-system.org/

Modular Forms: Sutherland, Cremona et al. https://www.lmfdb.org/

Knots & Invariants: KnotAtlas http://katlas.org/ Return

. . .
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Progress in String Theory Back to ML/Maths

Major International Annual Conference Series

1986- First “Strings” Conference

2002- First “StringPheno” Conference

2006 - 2010 String Vacuum Project (NSF)

2011- First “String-Math” Conference

2014- First String/Theoretical Physics Session in SIAM Conference

2017- First “String-Data” Conference
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A Single Neuron: The Perceptron

began in 1957 (!!) in early AI experiments (using CdS photo-cells)

DEF: Imitates a neuron: activates upon certain inputs, so define

Activation Function f(zi) for input tensor zi for some multi-index i;

consider: f(wizi + b) with wi weights and b bias/off-set;

typically, f(z) is sigmoid, Tanh, etc.

Given training data: D = {(x(j)
i , d(j)} with input xi and known output d(j),

minimize

SD =
∑
j

(
f(
∑
i

wix
(j)
i + b)− d(j)

)2

to find optimal wi and b ; “learning”, then check against Validation Data

Essentially (non-linear) regression
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The Neural Network: network of neurons ; the “brain”

DEF: a connected graph, each node is a perceptron (Implemented on

Mathematica ≥ 11.1 / TensorFlow-Keras on Python)

1 adjustable weights/bias;

2 distinguished nodes: 1 set for input and 1 for output;

3 iterated training rounds.

Simple case: forward directed only,

called multilayer perceptron

Many Layers : DEEP Learning

Connectivity ; Emergence of Complexity

Essentially how brain learns complex tasks; apply to our Landscape Data

Back to Landscape
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CICYs

M =


n1 q1

1 q2
1 . . . qK1

n2 q1
2 q2

2 . . . qK2
...

...
...

. . .
...

nm q1
m q2

m . . . qKm


m×K

− Complete Intersection Calabi-Yau (CICY) 3-folds

− K eqns of multi-degree qij ∈ Z≥0

embedded in Pn1 × . . .× Pnm

− c1(X) = 0 ;
K∑
j=1

qjr = nr + 1

− MT also CICY

The Quintic Q = [4|5]1,101
−200 (or simply [5]);

CICYs Central to string pheno in the 1st decade [Distler, Greene, Ross, et al.]

E6 GUTS unfavoured; Many exotics: e.g. 6 entire anti-generations

Back to CICYs



AdS/CFT as a Quiver Rep/Moduli Variety Corr.

a 20-year prog. joint with A. Hanany, S. Franco, B. Feng, et al.

U(N)

N D3−Branes

World−Volume = 

Quiver Gauge Theory

CY3 Cone

Sasaki−Einstein 5−fold

Toric

Singularities

Generic

Orbifolds

del Pezzo

Abelian

Orbifolds

Local CY3

C

C
3.

.

D-Brane Gauge Theory

(SCFT encoded as quiver)

←→

Vacuum Space as affine Variety

(N = 4 SYM)

(
X

YZ

,W = Tr([x, y], z)

)
←→ C3 = Cone(S5) [Maldacena]

THM [(P) Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeya, Seong, Sparks, Vafa, Vegh, Yamazaki,

Zaffaroni . . . (M) R. Böckland, N. Broomhead, A. Craw, A. King, G. Musiker, K. Ueda . . . ] (coherent

component of) representation variety of a quiver is toric CY3 iff quiver +

superpotential graph dual to a bipartite graph on T 2 Back to Landscape

combinatorial data/lattice polytopes ←→ gauge thy data as quivers/graphs
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Computing Hodge Numbers O(eed)

Recall Hodge decomposition Hp,q(X) ' Hq(X,∧pT ?X) ;

H1,1(X) = H1(X,T ?X), H2,1(X) ' H1,2 = H2(X,T ?X) ' H1(X,TX)

Euler Sequence for subvariety X ⊂ A is short exact:

0→ TX → TM |X → NX → 0

Induces long exact sequence in cohomology:

0 → ��
���

�: 0

H0(X,TX) → H0(X,TA|X) → H0(X,NX) →

→ H1(X,TX)
d→ H1(X,TA|X) → H1(X,NX) →

→ H2(X,TX) → . . .

Need to compute Rk(d), cohomology and Hi(X,TA|X) (Cf. Hübsch)

Back to ML
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Back to Word2Vec

gr-qc hep-lat
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Classifying Titles

Compare, + non-physics sections, non-science (Times), pseudo-science (viXra)

````````````Actual

Word2Vec + SVM
1 2 3 4 5

1 40.2 6.5 8.7 24.0 20.6

2 7.8 65.8 12.9 9.1 4.4

3 7.5 11.3 72.4 1.5 7.4

4 12.4 4.4 1.0 72.1 10.2

5 10.9 2.2 4.0 7.8 75.1


1 : hep-th

2 : hep-ph

3 : hep-lat

4 : gr-qc

5 : math-ph

PPPPPPPPActual

NN
1 2 3 4 5 6 7 8 9 10

viXra-hep 11.5 47.4 6.8 13. 11. 4.5 0.2 0.3 2.2 3.1

viXra-qgst 13.3 14.5 1.5 54. 8.4 1.8 0.1 1.1 2.8 3.

6: cond-mat, 7: q-fin, 8: stat, 9: q-bio, 10: Times of India Back to Main
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