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In a nutshell 

● AdS wormhole (WH) ~ left and right dual CFT; traversability ~ 
coupling between CFTs

● Four-wave scattering ~ out-of-time-ordered correlator (OTOC)

● OTOC: relaxation rate = Lyapunov exponent; scrambling 

● Chaos bound: Lyapunov exponent              , saturated for BHλ≤2πT
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In a nutshell 

● What happens to OTOC when we perturb BH into a WH?

● Results in the literature for eternal AdS2 wormhole 
(Maldacena & Qi 2018) from the field theory dual (Garcia-
Garcial et al 2019, Gao&Jafferis 2019 ...)

● Here: non-eternal WH and the bulk calculation
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In a nutshell 

● Eternal AdS traversable WH known in 1+1 dim and non-
eternal in 2+1 dim             can work within Einstein GR

● Dual QFT (not just QM as in AdS2 WH) 

● Can access some different regimes than in dual field theory 

⇒
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Conclusions in a nutshell 

● #1: non-eternal WH are still strongly chaotic; only very long-
living (near-eternal) WH can have slow chaos or no chaos 

● #2: catch-22 for the WH teleportation protocol: long-living 
and large-throat WH increase teleportation fidelity but make 
it very slow (because of slow OTOC growth)
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Outline
● Setup – traversable wormholes and out-of-time ordered 

correlators (OTOCs)

● Computing OTOCs in wormhole backgrounds – Lyapunov 
spectra and the dual field theory interpretation

● The phase diagram – maximal chaos, fast chaos, slow chaos 
and no chaos



  

Traversable wormhole in AdS 

● Making it traversable: need to violate the null energy 
condition (NEC)              couple the two CFTs

● Maldacena & Wu 2018: eternal WH dual to two coupled 
Sachdev-Ye-Kitaev (SYK) models 

● Gao, Jafferis & Wall 2017 (GJW) – time-dependent WH by 
turning on a double-trace coupling between CFTs:

⇒

H=HQFT(ΦL)+HQFT(ΦR)+γΦLΦR⇒∫ dUTUU<0

HSYK=∑i≤ j≤ k≤l
J ijkl χ iχ jχk χ l



  

Traversable wormhole in AdS

● Field theory: double-trace coupling

● In the bulk: excitation backreacts on geometry, removes the 
horizon and opens the throat:

● For OTOC need the full metric, not just average null energy

● Hard to do explicitly but ...

gμν=(
γh gUV 0

gUV γ
~
h 0

0 0 gϕ ϕ
)

h≡h(U ,V ) , ~h≡h(V ,U )

exp (2 rh t)=−U /V

H=HQFT(ΦL)+HQFT(ΦR)+γΦLΦR⇒∫ dUTUU<0

Kruskal coordinates

r /r h=(1−UV )/(1+UV )



  

Traversable wormhole model

● From eternal WH solution we know the throat is            and 
the far region is BTZ

● Quick WH: turn on                at         , turn off at          and 
take            (Freivogel et al 2019 [1907.13140])

● Slow WH: take              and           instead 

● Critical conformal dimension                 of the scalar      :        
-                smooth WH mouth

-                sharp WH mouth (but of course curvature finite) 

h(U ,V )=−
8 Δ2

(1−2Δ)2
1−UV
1+UV

1
(U−U 0)

2Δ+1

γΦLΦR

t 0→ t 1

ΦΔ=1/2

h(U ,V )=−
2U 0

U 2

1−UV
1+UV

Θ(U−U 0)

Δ<1/2

Δ>1/2

AdS2

t=t 0 t=t 1

t 0→−∞ t 1→∞



  

Matching the WH expansions
● Matching the solutions in the throat (near-         ) and outer 

(near-BTZ region) (coordinates           ):

 - outer:

 - throat:     

● Klein-Gordon bulk-to-boundary propagator found by mode 
summation:

 

AdS 2

dsin
2
=(−dt 2

+d ϕ2
) (1+ρ2

/ γ rh
2 )+

d ρ2

1+ρ2
/ γ r h

2
+

2 γU 0 rh
2

1+ρ2
/ γ rh

2
dt dρ

dsout
2 ∼−fdt2+dr 2/ f +r 2dϕ2

K (r ; t , t ' ;ϕ ,ϕ ')=∑l∫dω F in(r ;ω , t ; l ,ϕ)Fout (r ;ω , t ' ; l ,ϕ ' )e
il (ϕ−ϕ ' )

t , r ,ϕ

F in (ρ(r );ω , t ; l ,ϕ)=e
ilϕ−iω t−2 iωγ rh

2U 0 /3ρ
2

K
√Δ−1 (√ l

2−ω2ρ )

Fout (r ;ω , t ; l ,ϕ)=e
i (l ϕ−ω t ) f (r)r−Δ 2F1(i(ω+ l) /2 Rh−Δ/2, i(ω−l)/2Rh−Δ/2, Δ , r)

ρ(r )=(r−r h)/ γ r h

Rh=rh(1−2 γU 0)f (r )=(ω r−Rh
2
)/ (r2

−Rh
2
)−ωarctan (r /Rh)



  

Out-of-time-ordered correlators - 
OTOC

● Out-of-time-ordered correlator (OTOC):

● Several interpretations:

 - thermalization rate (      from the system,       from the bath) 

 - quantum Lyapunov exponent (                                       )     

 - quantum teleportation protocol (       from one subsystem    
   and        from the other)

⟨∣[A (t ), B(0)]∣2 ⟩=⟨A+
(t )B+(0)A (t )B(0)⟩+h.c.+TOC

A B

A≡x , B≡ϵ p=−i ϵd /dx

A
B



  

OTOC for black holes in AdS/CFT

● BH: Shenker, Stanford et al 2014, 2015

● Correlator of          ,           ,           and            @T                    
scattering amplitude by 2 infalling and 2 outgoing waves:

● Eikonal phase:

● The key simplification:                                                       
infinite redshift at the horizon              shock-wave solutions

● Glue the BH solution with mass        to the solution with 
mass

⟨A+(t )B+(0)A (t )B(0)⟩T = ∫ dp i∫ dpoC ⟨ IN( p i , po)∣OUT ( pi , po)⟩ e
−iSclass

⇔A( t)A+( t) B(0)B+(0)

Sclass=∫dp i∫ dpo√−gδ gμνT
μν

⇒

δ gUU∝Θ(U ) , δgVV∝Θ(V ) T UU
∝δ(U ) , T VV

∝δ(V )

M
M+ p



  

Outline
● Setup – traversable wormholes and out-of-time ordered 

correlators (OTOCs)

● Computing OTOCs in wormhole backgrounds – Lyapunov 
spectra and the dual field theory interpretation

● The phase diagram – maximal chaos, fast chaos, slow chaos 
and no chaos



  

OTOC in a BH vs. WH

Black hole

● Infinite redshift @horizon: 
shock wave at leading order   

Wormhole

● Large redshift @             :        
shock wave + smooth

U ,V∼0
δ gμν

(1 )



  

OTOC in a BH vs. WH

Black hole

● Infinite redshift @horizon: 
shock wave at leading order   

● Phase shift (classical action) 
negligible away from horizon

Wormhole

● Large redshift @             :        
shock wave + smooth

● Phase shift (classical action) 
comes from the whole space

U ,V∼0
δ gμν

(1 )



  

OTOC in a BH vs. WH

Black hole

● Infinite redshift @horizon: 
shock wave at leading order   

● Phase shift (classical action) 
negligible away from horizon

● Geodesics always fall into the 
black hole

Wormhole

● Large redshift @             :        
shock wave + smooth

● Phase shift (classical action) 
comes from the whole space

● Geodesics may be more 
complex or go back and forth

U ,V∼0
δ gμν

(1 )



  

Kinematics of the perturbation

Wormhole opened by the 
boundary coupling           

Two coupled SYKs 
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Perturbed wormhole metric

● Perturbatively in wormhole tunnel size     : keep the shock 
wave component but add smooth corrections

● Stress-energy tensor determined by the geodesic equation 
(analytical for small          ):

γ

gμν→gμν+δgμν ,   δ gμν=(
piΘ(U ) γ F (U ,V ) 0

γ F (U ,V ) poΘ(V ) 0
0 0 γ f (U ,V ))

F , f

A

U ,V

tμ ν=δ(U (τ)−U )δ(V (τ)−V )gμα gνβ Ẋ
α Ẋβ

/U̇

tVV=O (γ
2
) tUV=O( γ)tUU=tUU

BH
+O(γ2

)



  

Perturbed wormhole metric

● Perturbatively in wormhole tunnel size     : keep the shock 
wave component but add smooth corrections

● Stress-energy tensor determined by the geodesic equation 
(analytical for small          ):

γ

gμν→gμν+δgμν ,   δ gμν=(
piΘ(U ) γ F (U ,V ) 0

γ F (U ,V ) poΘ(V ) 0
0 0 γ f (U ,V ))
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α Ẋβ
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Scattering amplitude

● Full formalism by Balasubramanian et al 2019 [1908.08955]

● Here: perturbative formalism, start from momentum-space 
representation and correct perturbatively for momenta non-
conservation) by

● In and out states for fields A and B with dimensions

Φ2,4=K (Δ2,U ,V ;t=0,ϕ)∣U=U (τ) , V=V ( τ)

∣IN> = ∂nU K (Δ2 ;U ,V ; 0,ϕ)K (Δ1 ;U ,V ;t ,ϕ ')∣0>

⟨A+
(t )B+(0)A (t )B(0)⟩

Φ1,3=K (Δ1;U ,V ;t ,ϕ)∣U=U (τ) , V=V ( τ)

∣OUT> = ∂nV K (U ,V ;0,ϕ)K (U ,V ;t ,ϕ ')∣0>

Δ1 , Δ2

∂
U
→p0

U
+γ ∂

nV , ∂V→p0
V
+γ∂

nU



  

Eikonal phase

● Classical action:

● Rather unimpressive at first glance: quantitative corrections 
but still the factor          implies

● Perturbative calculations in        and saddle-point 
approximations for the integral in the action give                    

Sclass=∫dU∫ dV √−gδ gμ ν t
μν ( p i(U ,V ) , po(U ,V ))

tμ ν ∝ p iδ+ poδ δ gμν=(
piΘ 0 0
0 poΘ 0
0 0 0

)+(
0 γ F 0
γ F 0 0

0 0 γ f )
Sclass ∼ p i+ poe

r ht+ pi po e
rh t+γ(p i

2
+ po

2 e2 rh t) wormhole 
contribution 

erh t λ∝T

γ

λ (T ,γ ,Δ1,2)



  

Outline
● Setup – traversable wormholes and out-of-time ordered 

correlators (OTOCs)

● Computing OTOCs in wormhole backgrounds – Lyapunov 
spectra and the dual field theory interpretation

● The phase diagram – maximal chaos, fast chaos, slow chaos 
and no chaos



  

Regimes of OTOC

● Saddle-point integration and the Schwarz-Pick theorem

●  Message #1: sum of exponentials with different exponents:

the relevant exponent:                      – depends on

OTOC=∑n
e λn t

λ=maxnλn γ , t 0,T



  

Regimes of OTOC

● Saddle-point integration and the Schwarz-Pick theorem

●  Message #1: sum of exponentials with different exponents:

the relevant exponent:                      – depends on

● Message #2: if BH horizon exists in any corner of spacetime 
some signals will feel it             non-eternal WH always gives 
linear non-zero chaos exponent 

OTOC=∑n
e λn t

λ=maxnλn γ , t 0,T

⇒

λ∝T



  

Regimes of OTOC

● Saddle-point integration and the Schwarz-Pick theorem

●  Message #1: sum of exponentials with different exponents:

the relevant exponent:                      – depends on

● Message #2: if BH horizon exists in any corner of spacetime 
some signals will feel it             non-eternal WH always gives 
linear non-zero chaos exponent 

● Message #3: if no BH horizon ever exists ("eternal" WH, for   
                      ) then exponentially slow OTOC:

OTOC=∑n
e λn t

λ=maxnλn γ , t 0,T

⇒

λ∝T

t 0→−∞ , t 1→∞ λ∝exp(−1 /T )



  

Regimes of OTOC

● Saddle-point integration and the Schwarz-Pick theorem

●  Message #1: sum of exponentials with different exponents:

the relevant exponent:                      – depends on

● Message #2: if BH horizon exists in any corner of spacetime 
some signals will feel it             non-eternal WH always gives 
linear non-zero chaos exponent 

● Message #3: if no BH horizon ever exists ("eternal" WH, for   
                      ) then exponentially slow OTOC:

● Message #4: for large        "eternal" WH can give            – 
polynomial (non-exponential) OTOC  

OTOC=∑n
e λn t

λ=maxnλn γ , t 0,T

⇒

λ∝T

t 0→−∞ , t 1→∞ λ∝exp(−1 /T )

γ λ=0



  

Regimes of OTOC

t 0→−∞ , t 1→∞ λ∝exp(−1 /T )

γ λ=0

                                                                                                 
                                                                                                 
       

● Message #3: if no BH horizon ever exists ("eternal" WH, for   
                      ) then exponentially slow OTOC:

● Message #4: for large        "eternal" WH can give            – 
polynomial (non-exponential) OTOC  

Slow chaos is a nonperturbative effect (need eternal WH)
No chaos is a quantitative effect only (large WH throat)



  

Phase diagram for OTOC

Early times        

λ

t∼t 0 Late times           t≫t 0

violet: low    
red              λ=2πT

Reproduced Nosaka&Numusawa 
[2009.10759]:                    λ∼exp(−1/T )



  

Phase diagram for OTOC

  Early times           
zoom-in

t∼t 0 Late times           t≫t 0

λ=2πT
violet: low    
red              

λ

Reproduced Nosaka&Numusawa 
[2009.10759]:                    λ∼exp(−1/T )



  

Phase diagram for OTOC

  Early times           t∼t 0 Late times           t≫t 0

violet           
red              λ=2πT

γ>γc

λ=0

λ=0  For           :            

γγ



  

Phase diagram for OTOC

Late times           t≫t 0

γ>γc λ=0  For           :            

γ



  

Appendix: WH teleportation

● What is all this good for? - the meaning of Lyapunov spectra 
and the relation to teleportation



  

Quantify the teleportation fidelity by 
OTOC

● Response of L to manipulation on R (if nontrivial, there is 
teleportation):

● Fidelity       : overlap of the teleported R state with the L state

response≡⟨U (t )⟩T = ⟨e−i ϵψR( t )e−ig ψLψRψLe
igψLψR ei ϵψR( t )⟩T∼TOC+g2

×OTOC

g2
⟨[ψR( t) ,ψL(0)] [ψR (t) ,ψL (0)]⟩T+…

Manipulate a bit with 
commutators and BCH

response ≈ ⟨e−igψLψR ψLe
ig ψLψR ⟩T−i ϵ⟨ [ψR(t) , e

−ig ψLψR ψL e
ig ψLψR ]⟩T+O(ϵ

2
)

OTOC

℘=<0∣e
−i ϵψRU (t)∣0>T=∫ d Δψ (TOC (Δψ; t )+g

2OTOC (Δψ; t ))

℘



  

Scrambling for a quick WH

Decay rate linear in T, 
preserved time order of 
signals    

Teleportation protocol of Gao 
and Jafferis 2019 [1911.07416]



  

Scrambling for a slow WH

Decay rate exponentially 
slow, mixed time order of 
signals    

λ∝e−1/T

Reproduced SYK model result 
of Nosaka and Numusawa 
2020 [2009.10759]

Teleportation protocol of Gao 
and Jafferis 2019 [1911.07416]

γ=0.05



  

Scrambling for a slow large WH

Decay rate exponentially 
slow, mixed time order of 
signals    

λ∝e−1/T

Reproduced SYK model result 
of Nosaka and Numusawa 
2020 [2009.10759]

Teleportation protocol of Gao 
and Jafferis 2019 [1911.07416]

γ=0.15



  

Scrambling for a slow very large WH

Infnitely dense peaks, power-
law envelope determines the 
scrambling time    

λ∝e−1/TOTOC ~ 

Teleportation protocol of Gao 
and Jafferis 2019 [1911.07416]

γ=0.25
1/ t 2Δ ⇒

℘∼TOC+γ2 exp(2 λ t)→TOC+γ2const.Catch-22:

Either lo-f (small     ) or scrambling slooow (large     )γ γ



  

Conclusions

● Spectrum of Lyapunov exponents for WH (and likely many 
other complex geometries): there is more to OTOC than just 
a single exponent!

● If there ever was a BH horizon, it implies exponential OTOC 
and exponent linear in T!

● Hi-fi wormhole teleportation is fishy!
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