$T\overline{T}$ -deformation of *q*-Yang-Mills theory

Joint work with Richard J. Szabo and Miguel Tierz:

JHEP (2019) [1810.05404], JHEP (2020) [2009.00657] (today)

Leonardo Santilli Iberian Strings, IST Lisbon _{via Zoom} 20/01/2021

Grupo de Física Matemática & Departamento de Matemática Faculdade de Ciências, Universidade de Lisboa

Leonardo Santilli (U. Lisboa)

TT-deformation of q-Yang-Mills

- Introduction: perturbing a QFT with the operator $T\overline{T}$.
- Lightening review: The family of two-dimensional Yang-Mills theories.
- *TT*-deformed *q*-Yang-Mills.
- Outlook.

Introduction

Understanding all possible deformations of a CFT allows to explore its neighbourhood in the space of theories.

Eventually, we want to chart the space of all consistent QFTs.

Understanding all possible deformations of a CFT allows to explore its neighbourhood in the space of theories.

Eventually, we want to chart the space of all consistent QFTs. *Vaste programme!*

More instructive approach: characterize deformations that preserve a distinguished property, e.g. integrability.

Leonardo Santilli (U. Lisboa)

 $T\overline{T}$ -deformation of q-Yang-Mills

Iberian Strings, 20/01/21 4 / 26

Irrelevant deformations of two-dimensional QFTs by the composite operator $T\overline{T}$ [Cavaglià-Negro-Szécsényi-Tateo, Smirnov-Zamolodchikov] have attracted considerable attention in recent years.

$$T = -2\pi T_{zz}, \quad T = -2\pi T_{\overline{z}\overline{z}}, \quad \Theta = 2\pi T_{z\overline{z}}$$
$$T\overline{T} = \lim_{(z',\overline{z}')\to(z,\overline{z})} \left(T(z,\overline{z})\overline{T}(z',\overline{z}') - \Theta(z,\overline{z})\Theta(z',\overline{z}') \right) + (\text{total deriv.})$$

That is, $T\overline{T} = det[stress-energy T]$ in complex coordinates, regularized with point splitting.

Leonardo Santilli (U. Lisboa)

Original motivation: it is the lowest spin representative of a family of integrability preserving deformations [Smirnov-Zamolodchikov].

The deformation is solvable: follow quantities along the irrelevant flow. The energy levels evolve according to a Burgers equation. Original motivation: it is the lowest spin representative of a family of integrability preserving deformations [Smirnov-Zamolodchikov].

The deformation is solvable: follow quantities along the irrelevant flow. The energy levels evolve according to a Burgers equation.

Regardless of the original QFT being integrable, T, \overline{T}, Θ are conserved $\implies T\overline{T}$ exists in a QFT under very mild assumptions. Broad variety of applications in 2d QFT, including

- integrability,
- holography (both $AdS_3/CFT_2^{T\overline{T}}$ and $AdS_2^{T\overline{T}}/CFT_1$),
- SCFTs,
- perturbation by generalized irrelevant operators, etc.

Turn on the deformation: plug $\tau T\overline{T}$ in the Lagrangian.

Direct approach: obtain deformed quantities solving the flow equation. "Solvability" is at work: this can often be done to all orders, obtaining closed form expressions [Many authors, including:

 $Bonelli, Conti, Doroud, Hernández Chifflet, Iannella, Jiang, Negro, Sfondrini, Tateo, Zhu, \ldots].$

Turn on the deformation: plug $\tau T\overline{T}$ in the Lagrangian.

Direct approach: obtain deformed quantities solving the flow equation. "Solvability" is at work: this can often be done to all orders, obtaining closed form expressions [Many authors, including:

 $Bonelli, Conti, Doroud, Hernández Chifflet, Iannella, Jiang, Negro, Sfondrini, Tateo, Zhu, \ldots].$

Breakthrough insight [Dubovsky-Gorbenko-HernándezChifflet]:

 $T\overline{T}$ -def. QFT₂ \cong QFT₂ + JT gravity

We use Euclidean formulation [Coleman-AguileraDamia-Freedman-Sony]. It is equivalent to a field-dependent change of variables [Conti-Negro-Tateo].

Leonardo Santilli (U. Lisboa)

The family of two-dimensional Yang-Mills theories

Yang-Mills action on a Riemann surface Σ :

$$S_{\rm \scriptscriptstyle YM} = \frac{1}{2g_{\rm \scriptscriptstyle YM}^2} \int_{\Sigma} \, {\rm Tr}\, F^A \ast F^A = \int_{\Sigma} \, {\rm Tr} \Bigl({\rm i}\, \phi\, F^A + \frac{g_{\rm \scriptscriptstyle YM}^2}{2}\, \phi^2\, \omega \Bigr) \label{eq:Symmetry}$$

with the second equality true in 2d inside the path integral.

Yang-Mills action on a Riemann surface Σ :

$$S_{\rm \scriptscriptstyle YM} = \frac{1}{2g_{\rm \scriptscriptstyle YM}^2} \int_{\Sigma} \, {\rm Tr} \, F^A \ast F^A = \int_{\Sigma} \, {\rm Tr} \Bigl({\rm i} \, \phi \, F^A + \frac{g_{\rm \scriptscriptstyle YM}^2}{2} \, \phi^2 \, \omega \Bigr) \label{eq:Symmetry}$$

with the second equality true in 2d inside the path integral.

Noteworthy aspects:

- YM₂ (or def.) \cong topological BF₂ (or def.) + V(ϕ).
- Dependence only on volume form ω , not on metric.
- Abelianization [Blau-Thompson] ⇒ path integral reduces to a finite-dimensional expression:

$$\mathcal{Z}_{q\text{-YM}}\left[\Sigma\right] = \sum_{R} (\dim_{q} R)^{\chi(\Sigma)} q^{\frac{p}{2}C_{2}(R)}.$$

Web of Yang-Mills theories in 2d:

Type IIA string theory on threefold

$$X = \operatorname{Tot} \left(\mathcal{O}(p - \chi(\Sigma)) \oplus \mathcal{O}(-p) \longrightarrow \Sigma \right)$$

with N D4 branes on the 4-cycle

$$C_4 = \operatorname{Tot} \left(\mathcal{O}(-p) \longrightarrow \Sigma \right)$$

and any number of D0 branes, and possibly with D2 branes wrapping Σ .

Type IIA string theory on threefold

$$X = \operatorname{Tot} \left(\mathcal{O}(p - \chi(\Sigma)) \oplus \mathcal{O}(-p) \longrightarrow \Sigma \right)$$

with N D4 branes on the 4-cycle

$$C_4 = \operatorname{Tot} \left(\mathcal{O}(-p) \longrightarrow \Sigma \right)$$

and any number of D0 branes, and possibly with D2 branes wrapping Σ .

Theory on C_4 : U(N) twisted 4d $\mathcal{N} = 4$ super-Yang-Mills. It reduces to Yang-Mills on Σ , with modified path integral measure, i.e. *q*-Yang-Mills [Aganagic, Ooguri, Saulina, Vafa].

Corollary: $\mathcal{Z}_{q-\text{YM}}[\Sigma]$ counts black holes BPS states.

Leonardo Santilli (U. Lisboa)

$T\overline{T}$ -deformed *q*-Yang-Mills

- start with BF_2 and use TFT axioms to cut Σ in elementary pieces;

- start with BF_2 and use TFT axioms to cut Σ in elementary pieces;

• turn on $V(\phi)$ (and q-deformation) on each component;

- start with BF_2 and use TFT axioms to cut Σ in elementary pieces;

- turn on $V(\phi)$ (and q-deformation) on each component;
- couple each flat component to JT gravity;

- start with BF_2 and use TFT axioms to cut Σ in elementary pieces;

- turn on $V(\phi)$ (and q-deformation) on each component;
- couple each flat component to JT gravity;
- topological part is unaffected.

We have shown that

- solving the gravitational path integral gives $V(\phi) \mapsto \frac{V(\phi)}{1 \frac{\tau_2}{\tau_2} V(\phi)}$,
- Abelianization persists, and
- we can glue back the pieces, obtaining the $T\overline{T}$ -def. theory on Σ .

We have shown that

- solving the gravitational path integral gives $V(\phi) \mapsto \frac{V(\phi)}{1 \frac{\tau_2}{\tau_2} V(\phi)}$,
- Abelianization persists, and
- we can glue back the pieces, obtaining the $T\overline{T}$ -def. theory on Σ .

For closed Σ ,

$$\mathcal{Z}_{q\text{-YM}}^{T\overline{T}}[\Sigma] = \sum_{R} (\dim_{q} R)^{\chi(\Sigma)} q^{\frac{p}{2} C_{2}^{T\overline{T}}(R,\tau)}$$

with $C_2^{TT}(R, \tau) = \frac{C_2(R)}{1 - \frac{\tau}{N^3} C_2(R)}$.

We have shown that

- solving the gravitational path integral gives $V(\phi) \mapsto \frac{V(\phi)}{1 \frac{\tau_2}{\tau_2} V(\phi)}$,
- Abelianization persists, and
- we can glue back the pieces, obtaining the $T\overline{T}$ -def. theory on Σ .

For closed Σ ,

$$\mathcal{Z}_{q\text{-YM}}^{T\overline{T}}[\Sigma] = \sum_{R} (\dim_{q} R)^{\chi(\Sigma)} q^{\frac{p}{2} C_{2}^{\overline{T}}(R,\tau)}$$

with $C_2^{TT}(R, \tau) = \frac{C_2(R)}{1 - \frac{T}{N^3}C_2(R)}$. (Derived earlier by [Conti-Iannella-Negro-Tateo, Ireland-Shyam], but without proof of Abelianization.)

Leonardo Santilli (U. Lisboa)

Similar expressions can be obtained for: Σ with boundaries and/or punctures, Wilson loops, symmetry defects. For example:

$$\langle W_{R_1}\cdots W_{R_s}\rangle \propto \sum_R (\dim_q R)^{\chi(\Sigma)-s} q^{\frac{p-a}{2}C_2^{T}(R)} \prod_{i=1}^s \sum_{\widetilde{R}_i} (\dim_q \widetilde{R}_i) q^{\frac{a_i}{2}C_2^{T}(\widetilde{R}_i)} \mathsf{N}_{RR_i}^{\widetilde{R}_i}$$

Similar expressions can be obtained for: Σ with boundaries and/or punctures, Wilson loops, symmetry defects. For example:

$$\langle W_{R_1}\cdots W_{R_s}\rangle \propto \sum_R (\dim_q R)^{\chi(\Sigma)-s} q^{\frac{p-a}{2}C_2^{T}(R)} \prod_{i=1}^s \sum_{\widetilde{R}_i} (\dim_q \widetilde{R}_i) q^{\frac{a_i}{2}C_2^{T}(\widetilde{R}_i)} \mathsf{N}_{RR_i}^{\widetilde{R}_i}$$

Motto: $T\overline{T}$ -deformation preserves Abelianization.

However, perturbing with $T\overline{T}$ spoils

 Factorization of the partition function [Many authors, including: Aganagic,Caporaso,Cirafici,Griguolo,Ooguri,Pasquetti,Saulina,Seminara,Szabo,Tanzini,Vafa...]. In the free fermion formalism [Douglas] TT introduces non-local interactions.

However, perturbing with $T\overline{T}$ spoils

 Factorization of the partition function [Many authors, including: Aganagic,Caporaso,Cirafici,Griguolo,Ooguri,Pasquetti,Saulina,Seminara,Szabo,Tanzini,Vafa...]. In the free fermion formalism [Douglas] TT introduces non-local interactions.

• Truncation of sum to integrable R at $q \rightarrow 1$ and connection with Chern-Simons theory.

Large N phase transition

U(N) YM₂ on $\Sigma = S^2$ undergoes a 3rd order phase transition [Douglas-Kazakov] induced by instantons [Gross-Matytsin].

U(N) YM₂ on $\Sigma = \mathbb{S}^2$ undergoes a 3rd order phase transition [Douglas-Kazakov] induced by instantons [Gross-Matytsin].

The same is true for q- and (q, t)-YM₂ and p > 2

[*Caporaso-Cirafici-Griguolo-Pasquetti-Seminara-Szabo,Arsiwalla-Boels-Mariño-Sinkovics,Jafferis-Marsano,Kokenyesi-Sinkovics-Szabo*]. The *q*-deformation enhances the volume of the weak coupling phase in parameter space.

 $U(N) YM_2^{T\overline{T}}$ on S^2 undergoes a 3^{rd} order transition induced by instantons [LS-Tierz]. $T\overline{T}$ -deformation reduces the volume of the weak coupling phase in parameter space.

Idea of proof: expand C_2^{TT} as a geometric series in τ . Large *N* equilibrium measure $\rho(x) dx$ determined by

$$\int \mathrm{d} u \frac{\rho(u)}{x-u} = \frac{A}{\chi} x \sum_{k=0}^{\infty} \left(k+1\right) \tau^k \left(\mu_2 - \frac{1}{12}\right)^k,$$

 $\mu_2 = \int \rho(u) u^2 du$. Solve it perturbatively: at each order in τ , simply get renormalized A.

 $U(N) YM_2^{T\overline{T}}$ on S^2 undergoes a 3^{rd} order transition induced by instantons [LS-Tierz]. $T\overline{T}$ -deformation reduces the volume of the weak coupling phase in parameter space.

Idea of proof: expand C_2^{TT} as a geometric series in τ . Large *N* equilibrium measure $\rho(x) dx$ determined by

$$\int \mathrm{d} u \frac{\rho(u)}{x-u} = \frac{A}{\chi} x \sum_{k=0}^{\infty} \left(k+1\right) \tau^k \left(\mu_2 - \frac{1}{12}\right)^k,$$

 $\mu_2 = \int \rho(u) u^2 du$. Solve it perturbatively: at each order in τ , simply get renormalized A.

Renormalization of A by a positive coefficient reduces the weak coupling phase. Look at instantons: suppression factor vanishes earlier with $T\overline{T}$ turned on.

Leonardo Santilli (U. Lisboa)

TT-deformation of q-Yang-Mills

q- and (q, t)-YM₂^{$T\overline{T}$} experience again a instanton-induced 3rd order phase transition. Volume of weak coupling phase is

- reduced, compared to q-YM₂
- enhanced, compared to $YM_2^{T\overline{T}}$

Proof as for ordinary $YM_2^{T\overline{T}}$. Look at instantons: both effects combine in deforming the suppression factor.

q- and (q, t)-YM₂^{$T\overline{T}$} experience again a instanton-induced 3rd order phase transition. Volume of weak coupling phase is

- reduced, compared to q-YM₂
- enhanced, compared to $YM_2^{T\overline{T}}$

Proof as for ordinary YM_2^{TT} . Look at instantons: both effects combine in deforming the suppression factor.

Transition extends below p = 2 [LS-Szabo-Tierz] all the way down to p = 1 (confirmed later in [Gorsky-Pavshinkin-Tyutyakina]).

Outlook

Add Higgs field to the story \implies Wavefunctions of 2d U(*N*) Yang-Mills-Higgs correspond to those of non-linear Schrödinger [*Gerasimov-Shatashvili*].

Add Higgs field to the story \implies Wavefunctions of 2d U(*N*) Yang-Mills-Higgs correspond to those of non-linear Schrödinger [*Gerasimov-Shatashvili*].

Reminder: $T\overline{T}$ preserves integrability.

Does the correspondence survive in the $T\overline{T}$ -deformed theories?

But why do we care?

But why do we care?

Eventually, we would like to gain analytic control on flows by irrelevant operators in higher dimensions.

 YM_2 is tightly related to four-dimensional SUSY theories:

- q-YM₂ descends from twisted 4d $\mathcal{N} = 4$ super-YM in $C_4 = \text{Tot} (\mathcal{O}(-p) \longrightarrow \Sigma)$ [Aganagic-Ooguri-Saulina-Vafa];
- Class S theories [Gaiotto, Gadde-Rastelli-Razamat-Yan];
- The 0-instanton sector of YM_2 on \mathbb{S}^2 appears from localization of $\mathcal{N} = 2$ with defects [Pestun, Giombi, Wang, Komatsu].

 YM_2 is tightly related to four-dimensional SUSY theories:

- q-YM₂ descends from twisted 4d $\mathcal{N} = 4$ super-YM in $C_4 = \text{Tot} (\mathcal{O}(-p) \longrightarrow \Sigma)$ [Aganagic-Ooguri-Saulina-Vafa];
- Class S theories [Gaiotto, Gadde-Rastelli-Razamat-Yan];
- The 0-instanton sector of YM_2 on S^2 appears from localization of $\mathcal{N} = 2$ with defects [Pestun, Giombi, Wang, Komatsu].

What happens if we couple the 2d sector to JT gravity? Can we pull the $T\overline{T}$ -deformation back to 4d?

This is the end of the presentation.

Thank you for your attention.